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ABSTRACT: Chirality is a fundamental asymmetry phenomenon, with chiral
optical elements exhibiting asymmetric response in reflection or absorption of
circularly polarized light. Recent realizations of such elements include nano-
plasmonic systems with broken-mirror symmetry and polarization-contrasting
optical absorption known as circular dichroism. An alternative route to circular
dichroism is provided by spin-valley polarized excitons in atomically thin
semiconductors. In the presence of magnetic fields, they exhibit an imbalanced
coupling to circularly polarized photons and thus circular dichroism. Here, we
demonstrate that polarization-contrasting optical transitions associated with
excitons in monolayer WSe2 can be transferred to proximal plasmonic nanodisks
by coherent coupling. The coupled exciton−plasmon system exhibits magneto-
induced circular dichroism in a spectrally narrow window of Fano interference, which we model in a master equation framework.
Our work motivates the use of exciton−plasmon interfaces as building blocks of chiral metasurfaces for applications in information
processing, nonlinear optics, and sensing.
KEYWORDS: two-dimensional semiconductors, metasurface, exciton−plasmon Fano coupling, magneto-induced circular dichroism

Direct band gap and reduced dielectric screening in
semiconducting monolayer transition-metal dichalcoge-

nides (TMDs)1,2 give rise to tightly bound excitons3 with
sizable light−matter interactions that facilitate efficient
coupling to dielectric or plasmonic systems.4−6 Capitalizing
on the large oscillator strength of TMD excitons and the
flexibility of combining them with plasmonic structures, recent
examples of coupled exciton−plasmon systems include
realizations in the strong- and weak-coupling regimes.7−10

While the former is characterized by the formation of exciton−
plasmon polaritons, the latter is distinguished by Fano-type
interference spectra, as discussed in early work on various
exciton−plasmon coupled systems.11−13 In this framework, the
dipolar selection rules of spin-valley polarized excitons in TMD
monolayers14−18 provide a route to chiral optical phenomena,
as the valley degeneracy can be lifted by a magnetic field to
induce spectrally imbalanced coupling to left- and right-handed
circularly polarized photons.19−23 This opto-valleytronic
feature of TMD monolayer excitons has been utilized to
demonstrate chiral effects such as directional coupling of light
in silver nanowires on WS2,

24 spatial separation of valley-
polarized excitons by silver nanogroove arrays,25 or second-
harmonic generation of circularly polarized photons in gold-
WS2 metasurfaces.26

Here, we study magneto-optical characteristics of an
exciton−plasmon metasurface based on a WSe2 monolayer
and gold (Au) nanodisks. We elucidate the effect of Fano
interference as a function of exciton−plasmon spectral
resonance detuning in the weak-coupling regime,10,27−31 and

study both experimentally and theoretically the polarization
properties of the coherently coupled system in the presence of
external magnetic fields. Remarkably, the coupled system
exhibits magnetic circular dichroism that is distinct from the
characteristics of the fundamental valley-polarized exciton
transition in monolayer WSe2. The resulting chiral behavior of
the Fano-coupled metasurface is manifested in the form of a
spectral window with polarization-dependent reflectivity in an
otherwise broad-band opaque medium. The observations are
substantiated by a master equation analysis with excellent
quantitative agreement with experimental findings. Our work
provides insight into the underlying coherent interference
phenomena and can serve as a guideline for the design of
exciton−plasmon metasurfaces with optical chirality in the
visible spectral range.

The exciton−plasmon interface was fabricated by encapsu-
lating a monolayer WSe2 in hexagonal boron nitride (hBN)
and placing the resulting heterostructure on top of a plasmonic
Au nanodisk array on a SiO2/Si substrate, as illustrated in
Figure 1a (see Methods for sample details). The sample
features regions of an encapsulated WSe2 monolayer and Au
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nanodisk arrays, as well as regions where both elements are
combined in vertical proximity. To characterize the optical
responses of the bare exciton and plasmon systems and the
regime of their coupling, we used differential reflection
spectroscopy at cryogenic temperatures (see Methods for
experimental details). The corresponding spectra are shown in
Figure 1c−e, where the differential reflection DR = (Rsub − R)/
Rsub was measured relative to the reflection Rsub of the SiO2/Si
substrate. The coupled system can be modeled in a three-level
system framework with relevant states and rates shown in
Figure 1e. The DR spectra in Figure 1c−e are representative
for the excitation from the ground state |g⟩ to the exciton state
|e⟩ with resonance and Rabi frequency ωeg and Ωeg and decay
rate Γeg (Figure 1c), the optical excitation to the plasmon state
|p⟩ with resonance and Rabi frequencies ωpg and Ωpg and decay
rate Γpg (Figure 1d), and the simultaneous excitation of the
interacting exciton−plasmon system with coherent coupling
constant Ωc (Figure 1e).

The band structure of the WSe2 monolayer is shown
schematically in Figure 1b, together with polarization-
contrasting optical transitions of the fundamental exciton X0

in K and K valleys of the hexagonal Brillouin zone. The
transitions are degenerate at zero magnetic field, resulting in a
single Lorentzian peak in the DR spectrum of Figure 1b at
ℏωeg ≃ 1.723 eV. The full-width at half-maximum (fwhm) line
width of the exciton transition ℏΓeg ≃ 8 meV is substantially
smaller than the plasmon line width of ℏΓpg ≃ 180 meV
obtained from the region of a bare Au nanodisk array in Figure
1d with the resonance energy at ℏωpg = 1.72 eV. Due to
variations in the dielectric environment of the nanodisk array,
the plasmon resonance energy ℏωpg varies in the range of 100
meV (see Section 1 in the Supporting Information for the
description of gold nanodisk arrays). In our studies, this
variation beneficially provides position-dependent spectral
energy detuning δ = ℏωpg − ℏωeg of the plasmon resonance
energy with respect to the exciton resonance which has
negligible variations across the sample.

The spectrum of the coupled system in Figure 1e is
characterized by a Fano interference line shape27,28,32,33 with a
narrow reflection dip in the broad plasmonic extinction peak. A
closer inspection of the spectrum reveals an additional peak
superimposed on the reflection dip, which we ascribe to the
contribution from uncoupled excitons that are located within
the optical spot yet sufficiently far away from plasmonic
nanodisks. To interpret the resulting line shape, we inspected
system realizations with different resonance detunings at
different spatial positions of the interfaced array. Two
representative DR spectra for negative and positive resonance
detuning δ are shown in Figure 2a,b, respectively. In both
spectra, the position of the dip remains essentially constant due
to a small variation in the exciton energy across the sample,
which also holds for the uncoupled exciton peak inside the
Fano dip. Due to the asymmetric character of the Fano
interference, however, the overall spectral shape is strongly
modified at different resonance conditions.

We model this intricate optical response in the framework of
two coherently coupled oscillators using a classical light field
interacting with exciton and plasmon dipolar excitations. The
dipole moments of the respective optical transitions are given
as the imaginary components of the quantum coherence
obtained from the master equation analysis (see Section 2 in
the Supporting Information for theoretical modeling of the
extinction spectrum). All main parameters of the system
including the decay rates Γeg, Γpg and the Rabi frequencies Ωeg,
Ωpg were determined from experiments on bare system
components. To quantify the coupling strength Ωc, we plot
the spectral position of the two maxima enclosing the dip in
the Fano spectra as a function of detuning δ in Figure 2e, with
their energy separation reproduced by the theoretical model
for a coupling strength ℏΩc = 28 meV, as shown by solid lines
in Figure 2e. With this coupling, our model yields the
normalized extinction spectra shown in Figure 2c,d for
resonance detunings δ = −38 and 32 meV as extracted from
the spectra in Figure 2a,b. All features of the optical response
are reproduced with good agreement by the theoretical model.

With this understanding of the Fano interference phenom-
ena, we elucidate in the following the magneto-optical
response of the coupled exciton−plasmon system. First, we
quantify the degree of circular dichroism (CD) associated with
the exciton valley Zeeman effect in monolayer WSe2.

20−23 In
the presence of an out-of-plane magnetic field of 9 T, circularly
polarized DR spectra of Figure 3a,b reveal two exciton
resonances associated with K and K′ transitions that couple
to σ+ and σ− polarized light, respectively. The valley Zeeman

Figure 1. Fano interference in a coupled exciton−plasmon system.
(a) Schematic illustration of monolayer WSe2 encapsulated in hBN,
placed on gold nanodisks and probed with circularly polarized light.
(b) Band structure schematics of monolayer WSe2 at two opposite
corners of the hexagonal Brillouin zone, with σ+ (σ−) circularly
polarized optical transitions between spin-up (spin-down) polarized
states at the K (K′) valleys of the conduction band (CB) and valence
band (VB). (c−e) Differential reflection spectra of monolayer WSe2,
gold nanodisk, and the coupled system, respectively. (f) Energy levels
of the coupled system with |g⟩, |e⟩, and |p⟩ denoting the ground,
exciton, and plasmon states, respectively, and the corresponding
exciton and plasmon optical transition frequencies ωeg and ωpg, Rabi
frequencies Ωeg and Ωpg, and radiative decay rates Γeg and Γpg, as well
as the exciton−plasmon coupling strength Ωc.
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splitting of 2.1 meV corresponds to the exciton Lande ́ factor
with an absolute value of 4, as expected from previous
experiments21−23 and theory.34−37

The polarization-contrasting response of the two valleys is
quantified by CD, which calculates as CD = (DR− − DR+)/
(DR− + DR+), where DR+ and DR− are the σ+ and σ−

polarized DR spectra, respectively. Figure 3c shows the CD
at 9 T as a red solid line, where DR+ and DR− are the
Lorentzian fits to the σ+ and σ− polarized DR spectra shown as
solid lines in Figure 3a,b, respectively. It shows a reversal in
polarity around the resonance energy of the exciton at 0 T with
a maximum CD of ∼20%. The CD obtained from the
corresponding experiments at −9 T, shown in Figure 3c in
blue, is reversed in sign for the entire spectral range (deviations
from the mirror symmetry around the exciton energy at zero
field stem from sample inhomogeneities sampled by spatial
displacements in the magnetic field over a range of 18 T). All
main features of the spectra are captured by our model CD
spectra in Figure 3d obtained from extinction.

Next, we study the polarization-dependent optical response
of the coupled system in the presence of a magnetic field. The

valley Zeeman effect of the bare exciton is imprinted on the
exciton−plasmon system in an intricate way and is manifested
as polarization-dependent reflectance. Our theory captures the
experimentally observed features of the CD spectra and their
evolution with the magnetic field, as evidenced by comparing
experimental and theoretical data shown in Figure 4a,b and
Figure 4c,d, respectively. The evolution of CD with increasing
magnetic fields of 3, 6, and 9 T, recorded in the region of the
Fano interference with −15 meV resonance detuning, is shown
in Figure 4a. The magneto-induced dichroism becomes
increasingly pronounced with increasing magnetic field as for
the bare WSe2 monolayer. Notably, the spectra in Figure 4c

Figure 2. Exciton−plasmon Fano interference in experiment and
theory. (a, b) Normalized differential reflection spectra of the coupled
system for −38 and 32 meV energy detuning from the exciton−
plasmon spectral resonance condition. The spectra were recorded on
two positions of the nanodisk array with different plasmon energies
ℏωpg (determined from Lorentzian fits) for a weakly varying exciton
energy ℏωeg. (c, d) Respective Fano model spectra with exciton−
plasmon coupling strength ℏΩc = 28 meV. (e) Evolution of the
exciton−plasmon coupling as a function of resonance energy detuning
δ, with red data points corresponding to plasmonic array regions with
different ℏωpg and respective model results (black lines) obtained
with the bare exciton energy ℏωeg = 1.723 eV (dotted line) and ℏΩc =
28 meV.

Figure 3. Magnetic circular dichroism of the exciton transition. (a, b)
Valley-selective differential reflection spectra at 9 T for σ+ and σ−

polarized excitation, respectively (solid lines show Lorentzian fits). (c,
d) Circular dichroism of the exciton transition at +9 (red) and −9 T
(blue) from experiment and theory, respectively.

Figure 4. Magnetic circular dichroism of the coupled exciton−
plasmon system. (a, b) Experimental and theoretical circular
dichroism spectra of the coupled exciton−plasmon system at 3, 6,
and 9 T. (c, d) Experimental and theoretical circular dichroism
spectra in magnetic fields of +9 (red) and −9 T (blue).

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.2c04246
Nano Lett. 2023, 23, 614−618

616

https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04246?fig=fig4&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.2c04246?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


show a sign reversal of the CD response for the coupled system
in comparison to the bare exciton case in Figure 3c. While the
monolayer features a peak in the exciton DR spectrum, the
coupled exciton−plasmon spectrum is characterized by a
narrow dip around the exciton resonance as a result of Fano
interference, leading to reversed CD response and pronounced
asymmetry for finite exciton−plasmon detunings. In the
calculated spectra of Figure 4d, the asymmetry is manifested
in the form of an additional dip in the CD spectra, in
qualitative agreement with the experimental spectra in Figure
4c. The contribution of uncoupled excitons within the optical
focal spot with a reversed sign of CD explains this observation.
A maximum CD of up to ∼7% is achieved in the coupled
exciton−plasmon system, indicating a significant transfer of the
opto-valleytronic exciton features onto the coupled system.
Consistently, the CD spectra exhibit a sign reversal at magnetic
fields of ±9 T.

Our observation of magneto-optical effects in a coherently
coupled exciton−plasmon system and their detailed quantita-
tive understanding provide a pathway to design ultrathin
metasurfaces for chiral spectral filtering, which could be also
exploited to control nonreciprocal phenomena with the
magnetic field for a unidirectional flow of circularly polarized
photons as required for information transfer in quantum
networks.38,39 An obvious way to create a permanent chiral
exciton−plasmon metasurface is to utilize layered ferromagnets
that induce sizable exciton valley Zeeman splittings of several
meV, equivalent to external magnetic fields well above 10
T.40−44 Furthermore, the spectrally narrow response from
TMD excitons in the limit of an atomically thin mirror45−48

would yield a spectrally sharp Fano reflectance or windows of
transparency in a broad extinction response. As such, spectral
regions with perfect destructive quantum interference and
negative refractive index equivalent to electromagnetically
induced transparency could be realized for chiral slow light and
information storage.49−51

■ METHODS
The sample was fabricated by depositing monolayer WSe2
(HQ Graphene) embedded in high-quality hBN (NIMS) onto
a gold nanodisk array. The array was fabricated by standard
electron-beam lithography and gold evaporation on a Si/SiO2
substrate. All measurements were carried out at cryogenic
temperatures. The data in Figures 1 and 2 were recorded in a
helium bath cryostat at 4.2 K, whereas the magnetic field
measurements of Figure 3 were performed in a closed-cycle
magneto-cryostat (attocube systems, attoDRY1000) at 3.5 K.
White-light reflection spectroscopy was performed using a
halogen lamp (Ocean Optics, HL-2000) or a supercontinuum
laser (NKT, SuperK Extreme EXR-4) focused to a spot of ∼1
μm diameter in a home-built confocal microscope equipped
with cryogenic nanopositioners (attocube systems, ANP100
and ANP101 series) and micro-objectives (attocube systems,
LT-APO/VISIR/0.82 or LT-APO/LWD/NIR/0.63). The
reflected light was spectrally dispersed by a monochromator
(Roper Scientific, Acton SP2500 or Acton 300i) and detected
by a CCD (Roper Scientific, Spec 10:100BR/LN or Andor,
iDus 416).
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