AUTOCOMMENTARY

∂ OPEN ACCESS

Regulation of Ca²⁺ signaling in prostate cancer cells

Tatiana Kilch, Sven Kappel, and Christine Peinelt

Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University, Homburg, Germany

ARTICLE HISTORY Received 21 December 2015; Accepted 23 December 2015 **KEYWORDS** Ca²⁺ signaling; I_{CRAC}; Orai1; Orai3; prostate cancer; reactive oxygen species; SOCE; TRPM4

Upon store depletion, stromal interaction molecules (STIM) cluster and activate Orai Ca²⁺ channels in the plasma membrane, which mediate SOCE. The Orai protein family consists of 3 members: Orai1, Orai2, and Orai3. Several groups have demonstrated that these homologues can form heteromultimers. In contrast to Orai1 homomeric channels, Orai1/Orai3 heteromeric channels exhibit altered characteristics, such as altered pore properties and sensitivity to reactive oxygen species (ROS) in immune cells.^{1,2} Our study² demonstrated that, in Orai1, a cysteine residue in position 195 (Cys-195) conferred ROS sensitivity. In Orai3, this cysteine is absent, and consequently, Orai3 lacks ROS sensitivity. However, a gain-of-function mutation in Orai3 (Gly-170 to Cys-170, which is the position equivalent to Cys-195 in Orai1) conferred ROS sensitivity on Orai3. Furthermore, it has been demonstrated that, when one Orai3 subunit is included in the storeoperated heteromeric Orai1/Orai3 channel, it is sufficient to prevent ROS-induced block of SOCE.³

In 2013, we first described a store-operated heteromeric Orai1/Orai3 channel in human primary prostate epithelial cells (hPEC) and an increase in the Orai1/Orai3 ratio in prostate cancer cells.⁴

Our study, published in 2015, showed that SOCE was differentially regulated by ROS in hPECs and prostate cancer cells.⁵ In these cells, as in immune

cells, the ROS sensitivity of SOCE was highly correlated to the Orai1/Orai3 ratio.

When we stimulated the membrane androgen receptor (mAR), we observed submaximal store depletion, which was followed by low SOCE signals.⁴ An siRNA-based knockdown of Orai3 resulted in a reduction of these low SOCE signals, which emphasized the role of Orai3 in the formation of store-operated Orai1/Orai3 heteromeric channels. Remarkably, when Ca^{2+} stores were extensively depleted with thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum Ca^{2+} ATPase, SOCE was activated, but an siRNA-based knockdown of Orai3 only minimally altered store-operated Ca^{2+} entry, largely consistent with the findings of the Prevarskaya group.⁶

In one additional study, published in 2015, we showed that protein levels of transient receptor potential TRPM4 were elevated in malignant prostate cancer tissue.⁷ As previously reported for other cell types, we showed that, in prostate cancer cells, TRPM4 was activated by a rise in intracellular Ca²⁺. Upon activation, a Na⁺ influx via TRPM4 depolarized the membrane potential in prostate cancer cells, which reduced the driving force for Ca²⁺ and limited SOCE.

Figure 1 displays a simplified model of our findings on Ca^{2+} signaling in prostate cancer cells. TG leads to exhaustive Ca^{2+} depletion of the endoplasmic

© 2016 Tatiana Kilch, Sven Kappel, and Christine Peinelt. Published with license by Taylor & Francis.

CONTACT Christine Peinelt Ochristine.peinelt@uks.eu

Color versions of one or more of the figures in this article can be found online at www.tandfonline.com/kchl.

Autocommentary to: Holzmann C, et al. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget 2015; 6(39):41783-93; PMID: 26496025; http://dx.doi.org/10.18632/oncotarget.6157

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Figure 1. Ca²⁺ regulation in prostate cancer cells upon knockdown of Orai3. Upper panel: In prostate cancer cells, exhaustive store depletion by TG activates SOCE and subsequently TRPM4, as regulator of SOCE. An siRNA based knockdown of Orai3 does not reduce SOCE. Lower panel: Low SOCE signals do not activate TRPM4; thus, SOCE depends on the number of SOCE channels and the STIM/Orai ratio. siOrai3 reduces SOCE. Please see text for details.

reticulum and high SOCE signals. These high levels of intracellular Ca²⁺ activate TRPM4, which acts as an effective negative feedback mechanism for SOCE. In these conditions, a reduction in Orai3 may not be sufficient to reduce the SOCE signal to levels below the threshold for TRPM4 activation. Therefore, when SOCE signals exceed a certain threshold, and TRPM4 is activated, changes in the numbers of Orai1 homomeric channels, Orai1/Orai3 heteromeric channels, and the STIM/Orai ratio⁸ may not determine the overall amplitude of SOCE.

In contrast, submaximal store depletion by an endogenous stimulus (dihydrotestosterone, DHT) activates a lower SOCE signal amplitude. Under these conditions, a knockdown of Orai3 leads to a reduction in SOCE. The low SOCE signals may be insufficient for full TRPM4 activation. Thus, changes in the numbers of Orai1 homomeric channels, Orai1/Orai3 heteromeric channels, and the STIM/Orai ratio can determine the amplitude of SOCE, due to little or no negative feedback from TRPM4.

In prostate cancer cells, Ca^{2+} signals contribute to several physiological and pathophysiological functions. Further investigation of the key players involved and their regulation may extend our understanding of Ca^{2+} signals in cancer cells and lead to the identification of putative therapeutic targets in the future.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

References

- Schindl R et al. PNAS 2009; 106:19623-8; PMID:19887627; http://dx.doi.org/10.1073/pnas.0907714106
- Bogeski I et al. Sci Signal 2010; 3:115 ra24; PMID:20354224; http://dx.doi.org/10.1126/scisignal.2000672
- [3] Alansary D et al. BBA 2015; 1853:1541-50; PMID:25791427; http://dx.doi.org/10.1016/j.bbamcr.2015.03.007
- [4] Holzmann C et al. Oncotarget 2013; 4:2096-2107; PMID:24240085; http://dx.doi.org/10.18632/oncotarget.1483
- [5] Holzmann C et al. Biophys J 2015; 109:1410-9;
 PMID:26445441; http://dx.doi.org/10.1016/j.bpj.2015.08.006
- [6] Dubois C et al. Cancer Cell 2014; 26:19-32; PMID:24954132; http://dx.doi.org/10.1016/j.ccr.2014.04.025
- [7] Holzmann C et al. Oncotarget 2015; 26:19-32;
 PMID:26496025; [Epub ahead of print] http://dx.doi.org/ 10.18632/oncotarget.6157
- [8] Kilch et al. JBC 2013; 288:1653-64; PMID:23212906; http://dx.doi.org/10.1074/jbc.M112.417246