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Abstract

TAR DNA-binding protein-43 (TDP-43) is a ubiquitously expressed DNA-/RNA-binding protein that has been linked
to numerous aspects of the mRNA life cycle. Similar to many RNA-binding proteins, TDP-43 expression is tightly
regulated through an autoregulatory negative feedback loop. Cell function and survival depend on the strict
control of TDP-43 protein levels. TDP-43 has been identified as the major constituent of ubiquitin-positive
inclusions in patients with Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD).
Several observations argue for a pathogenic role of elevated TDP-43 levels in these disorders. Modulation of
the cycle of TDP-43 production might therefore provide a new therapeutic strategy. Using a Drosophila model
mimicking key features of the TDP-43 autoregulatory feedback loop, we identified CG42724 as a genetic modulator of
TDP-43 production in vivo. We found that CG42724 protein influences qualitatively and quantitatively the TDP-43
mMRNA transcript pattern. CG42724 overexpression promotes the production of transcripts that can be efficiently
released into the cytoplasm for protein translation. Importantly, we showed that TCERGT1, the human homolog of the
Drosophila CG42724 protein, also caused an increase of TDP-43 protein steady-state levels in mammalian cells.

Therefore, our data suggest the possibility that targeting TCERG1 could be therapeutic in TDP-43 proteinopathies.
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Introduction

In 2006, TAR DNA-binding protein-43 (TDP-43) was
identified as the major constituent of ubiquitin-positive
inclusions in patients with Amyotrophic Lateral Sclerosis
(ALS) and Frontotemporal Lobar Degeneration (FTLD)
[2, 51]. In sporadic and familial FTLD/ALS patients,
TDP-43 is the most recurrent pathological constituent
[70]. TDP-43 proteinopathy can be present in up to 97%
of ALS patients, and can be noted in up to 50% of FTLD
cases. FTLD-TDP (FTLD with TDP-43 positives inclu-
sions) represents the most frequent FTLD subtypes.
Multiple studies identified mutations in the TARDBP/
TDP-43 gene in patients with FTLD/ALS [12, 37, 41, 65,
73], demonstrating that TDP-43 not only represents a
pathological hallmark, but also plays a causative role in
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FTLD/ALS physiopathology. Today, more than 50 mis-
sense TARDBP mutations have been described [38].

Besides FTLD and ALS, some degree of neuronal
TDP-43 pathology has also been reported in a variety of
additional neurodegenerative diseases, including Alzhei-
mer’s disease (up to 60% of the patients) [1, 36], cortico-
basal degeneration (CBD) [72], progressive supranuclear
palsy (PSP) [80], Parkinson’s disease [18] and Hunting-
ton’s disease [23, 62].

Whatever the disease, pathological TDP-43 manifesta-
tions in neurons and glia include the accumulation of in-
soluble, ubiquitinated and hyperphosphorylated TDP-43
inclusions in the cytoplasm, with a concomitant depletion
of TDP-43 from the nucleus [14, 24, 73]. Biochemical ana-
lysis of insoluble protein extracts isolated from patient
brain tissue also revealed that pathological TDP-43 pro-
teins are partially cleaved to generate carboxy-terminal
fragments [2, 51].
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TDP-43 is a ubiquitously expressed DNA-/RNA-bind-
ing protein [52]. The protein predominantly resides in
the nucleus, but is capable of nucleocytoplasmic shut-
tling [7, 79]. TDP-43 has been linked to numerous as-
pects of the mRNA life cycle, including transcription,
pre-mRNA splicing, mRNA stability, transport, and
mRNA translation [22]. TDP-43 also regulates non-cod-
ing RNAs (miRNAs, IncRNAs, etc.). Similar to many
RNA-binding proteins, TDP-43 expression is tightly reg-
ulated through an autoregulatory negative feedback loop.
The TDP-43 protein regulates its own protein levels by
binding to a sequence called TDPBR (for TDP-43 bind-
ing region) in the 3" UTR region of its cognate mRNA
[5, 6, 8, 42, 54]. The TDP-43 pre-mRNA contains mul-
tiple alternative introns as well as polyadenylation sig-
nals in its last intron (Additional file 1: Figure S1). In
steady-state conditions, most TDP-43 production within
cells comes from the transcript that uses the optimal
polyadenylation site pAl. When TDP-43 concentration
rises, increased binding of TDP-43 proteins on the
TDPBR region interferes with the selection of pAl and
promotes the excision of an alternatively spliced intron
(intron 7) containing the pAl polyadenylation site, and
the use of distal suboptimal polyadenylation sites. The
resulting isoforms were shown to be retained in the nu-
cleus (thus not available for protein synthesis) or sub-
jected to nonsense-mediated mRNA decay.

Cell function and survival depend on the strict control
of TDP-43 protein levels. Numerous studies showed that
the perturbation of TDP-43 levels by either increasing or
decreasing TDP-43 in animal and cellular models brings
severe consequences [17, 32, 44, 61, 71]. Furthermore,
several studies have observed an increase in TDP-43
mRNA and protein levels in various tissues (central ner-
vous system, cerebrospinal fluid, plasma ...) of patients
suffering from FTLD-TDP or ALS [20, 29, 35, 37, 39, 46,
56, 66, 69, 74, 77]. Interestingly, TDP-43 mutant proteins
show various degrees of prolonged half-life and en-
hanced stability [4, 76], which could lead to an elevated
steady-state levels of TDP-43 proteins [9, 64]. Recently,
it has been shown in a knock-in mouse model that the
FTLD/ALS-linked Q331K mutation perturbs TDP-43
autoregulation, leading to increased TDP-43 expression
and gain of function [78]. Altogether, these observations
argue for a pathogenic role of elevated TDP-43 levels.
Modulation of the TDP-43 production cycle might
therefore provide a new therapeutic strategy.

Our group recently developed new Drosophila models
mimicking key features of the TDP-43 autoregulatory
feedback loop, namely alternative splicing events, differ-
ential usage of polyadenylation sites, nuclear retention of
the transcript and a decrease in steady-state mRNA
levels [55]. These transgenic models are based on the
expression of an untagged wild-type form of human
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TDP-43 protein under the control of the TDPBR region.
Using these animal models, we identified the Drosophila
gene CG42724 as a genetic modulator of TDP-43 pro-
duction in vivo. We showed that CG42724 overexpres-
sion caused a drastic increase of TDP-43 protein
steady-state levels, whereas CG42724 down-regulation
resulted in a decrease of TDP-43 accumulation. The
study of the underlying molecular mechanisms allowed
us to demonstrate that the CG42724 protein influences
qualitatively and quantitatively the TDP-43 TDPBR
mRNA transcripts pattern. CG42724 overexpression
promotes the inclusion of the TDPBR sensor region and
the production of transcripts ending at the pAl polyade-
nylation, isoforms that can be efficiently released into
the cytoplasm for protein translation. Importantly, we
showed that TCERG1, the human homolog of the Dros-
ophila CGA42724 protein, also caused an increase of
TDP-43 protein steady-state levels in mammalian cells.

Materials and methods
An ethics statement is not required for this work.

DNA constructs

The fusion construct GFP:TDP43 was generated using
the PCR overlap extension procedure [33]. Each fragments
were first generated separately. PCR-amplification of GFP
c¢DNA was achieved with the primers 5-CCGCTCGAG
CGGCAAAATGGTGAGCAAGGGCGAGGAGC-3" and
5-CGGTTACCCGAATATATTCAGACTTGTACAGCT
CGTCCATGCCG-3'. PCR-amplification of TDP-43
c¢DNA was achieved with the primers 5-CGGCATGGA
CGAGCTGTACAAGTCTGAATATATTCGGGTAACC
G-3" and 5-TGCTCTAGAGCACTACATTCCCCA
GCCAGAAGACTTAGAATCC-3". Then, these over-
lapping fragments were both used as template in a PCR
reaction, using the primers 5-CCGCTCGAGCGGCA
AAATGGTGAGCAAGGGCGAGGAGC-3" and 5-TG
CTCTAGAGCACTACATTCCCCAGCCAGAAGACTTA
GAATCC-3'. The fusion GFP:TDP43 PCR product was
subcloned in the pcDNA3 vector and sequenced. PCR
amplification of the TDPBR region was achieved using the
PpUAST-TDP-43_TDPBR plasmid described in [55] and the
primers 5-TGCACTAGTTCACAGGCCGCGTCTTTGA
CGGTGGG-3" and 5'- TGCTCTAGAAAAACAAAGA
CACATATTATTTAAATCAG-3". The PCR product was
then subcloned into the pcDNA3-GFP:: TDP43 vector and
sequenced. The pEFBOST7-TCERG1 expression plasmid
was previously described in [67]. The expressed TCERG1
protein contains the 11-amino-acid T7 epitope tag at its
amino terminus.

Fly genetics
Drosophila were maintained on a 12:12 light/dark cycle
on standard cornmeal-yeast agar medium at 25°C. The
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following transgenic Drosophila strains were used in this
study: UAS-FUS [19], UAS-TDP-43_TDPBR [55]. The
GMR-Gal4, UAS-LacZ, UAS-CG42724"N4"  (stock
#33737 and #55357) lines were obtained from Blooming-
ton Stock Center. Detailed fly genotypes are listed in
Additional file 2.

Cell culture and transfections

HEK293T cells were grown and maintained as previously
described [59]. Transfections were performed in 35-mm
6-well plates. Each plate was seeded with approximately
1x 10° cells 20 h prior to transfection. The cells were
grown to approximately 60 to 70% confluence and trans-
fected with the appropriate amounts of the indicated
constructs by using the lipofectamine 2000 reagent
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s protocol. Approximately 48 h after transfec-
tion, the cells were harvested and processed for Western
blotting analysis.

Production of the TCERG1 antibody

To express TCERGL1 protein in Escherichia coli, we amp-
lified two segments containing amino and carboxyl se-
quences of the TCERG1 ¢DNA and cloned in frame into
the expression vector PGEX2TK (Pharmacia Biotech,
Piscataway, NJ, USA). The proteins were expressed as
GST fusions under previously published conditions [26].
Purified fusion proteins were used to generate in-house
polyclonal antibodies in guinea pigs following standard
protocols.

Mapping of the P{y+}UAS transposon by inverse PCR
Genomic DNA was prepared from 10 flies using the
DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Purified
genomic DNA (~5 pg) was digested by Mspl or Hinpl
(New England Biolabs Inc., Ipswich, MA, USA) for 2-3
h. Digested DNA (~20.5 ug) was self-ligated (T4 DNA
Ligase, New England Biolabs Inc.) overnight at 4°C in a
total volume of 150 uL. To isolate P-element insertion
sequence, primer pair OUY31 (5’ ATTGATTCACTTTA
ACTTGCAC 3’) and OUY52 (5" ACACAACCTTTCCT
CTCAACAA 3’) was used. The PCR protocol was 95 °C
5 min, 34 cycles of 95°C 30s, 55°C 1 min, 68 °C 2 min,
followed by 68 °C 10 min. PCR products were sequenced
with OUY31 or OUY52.

3'RACE, reverse transcription-quantitative multiplex

PCR of short fluorescent fragment (RT-QMPSF) and

data calculation

Total RNA extraction and quantification of overall
TDP-43 or CG42724 mRNA steady-state levels were per-
formed as previously described in [55]. To characterize
and quantify the relative abundance of TDP-43 mRNA
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splice isoform transcripts, we amplified the 3" ends of the
TDP-43 transcripts using the “3" RACE System for Rapid
Amplification of cDNA Ends” kit (Invitrogen), according
to the manufacter’s instructions. Briefly, 500 ng of RNA
were converted to cDNA. For qualitative studies (agarose
gel electrophoresis), the PCR was performed with 2 puL of
the first-strand reaction, 0.2 uM of AUAP primer and
0.2uM of TDP-43F3 primer, using the Diamond Taq
polymerase (Eurogentec, Liege, Belgium), as recom-
mended by the manufacturer. A touchdown method was
used with a DNA Engine (PTC-200) Peltier Thermal Cy-
cler (Bio-Rad Laboratories, Hercules, CA). Cycling times
were: 3min at 95°C, followed by 40 cycles including (i)
denaturation at 95 °C for 10s, (ii) annealing beginning at
65°C and ending at 55°C for 20s, and (iii) extension at
72 °C for 5 min, with a final extension at 72 °C for 10 min.
For quantitative studies, the PCR was performed with
1 pL of the first-strand reaction, 0.08 uM of AUAP primer,
0.08 uM of TDP-43 F3 primer, 0.05 uM of Cypl primers,
and 0.06 uM of RpLI13A primers. Sense primers were
6-FAM-labelled. All primers were used in a single PCR re-
action volume of 25 pL. Multiplex fluorescent PCR assays
were carried out using 2mM MgCl2, 1 unit of Diamond
Taq polymerase (Eurogentec) and 200 uM of ANTP. After
an initial cycle of denaturation at 95 °C for 5 min, 25 cycles
were performed consisting of denaturation at 95 °C for 10
s, annealing at 58.8 °C for 30, and extension at 72 °C for
1min 30, and final extension at 72°C for 10 min, in a
DNA engine Peltier Thermal Cycler (Bio-Rad Laborator-
ies). Fluorescent amplicons were separated on an ABI
prism 3500 Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA), and the resulting fluorescent profiles
were analyzed using the GeneMapper 5 software (Ap-
plied Biosystems). All QMPSF analyses were performed
at least in duplicate. For comparative analyses, the aver-
age peak heights obtained for TDP-43 amplicons were
compared to the mean peak height obtained for the
control amplicons for each genotype. The ratio ob-
tained was set at 100 for the control genotype (GMR >
TDP-43_TDPBR). TDP-43 expression levels were com-
pared between controls and each of the other genotype
by using a Student’s t-test. Primers used in this study
are listed in Additional file 3: Table S1.

Protein extraction and immunoblot analysis

Drosophila study: total proteins were prepared by ground-
ing 30 adult fly heads directly in 150 uL Protein Solving
Buffer (PSB) (Macherey-Nagel, Diiren, Germany), using
the TissueLyser LT (Qiagen) through high-speed shaking
(50 Hz) of samples in 2 mL microcentrifuge tubes with
two 5mm stainless steel beads for 2 min. Samples were
then spun down to collect the lysates, and protein concen-
trations were measured using the Protein Quantification
Assay Kit (Macherey-Nagel).
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For sequential extraction of soluble and insoluble pro-
teins, 30 adult fly heads or HEK293T cellular pellets were
homogenized in 150 pL Radio Immunoprecipitation Assay
(RIPA) buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1%
NP-40, 1% sodium deoxycholate, 0.1% SDS) (Pierce Bio-
technology, Rockford, IL, USA), supplemented with a
cocktail of protease inhibitors (Sigma-Aldrich) and phos-
phatase inhibitors (Thermo Fisher Scientific Inc.) using
the TissueLyser LT (Qiagen) (two 5mm stainless steel
beads; 50 Hz, 2 min). Samples were then spun down and
the lysates transferred to clean tubes. After centrifugation
(11,300 x g, 20 min, 4 °C), the supernatant (corresponding
to the RIPA-soluble fraction) was reserved in a separate
tube while the pellet was washed once in 50 uL of RIPA.
The resulting supernatant was pooled with the first one.
The remaining pellet was homogenized in 200 pL of urea
buffer (urea 9 M, Tris-HCl 50 mM pH 8, CHAPS 1%, and
a cocktail of protease and phosphatase inhibitors) and
centrifuged at 11,300 x g for 30 min. The supernatant was
collected as the urea fraction. Protein concentrations of
the soluble fraction were measured using the DC Protein
Assay Kit (Bio-Rad Laboratories). Soluble and insoluble
proteins were loaded for SDS-PAGE migration in a pro-
portion of 1:1. Proteins were resolved by TGX Stain-Free
12% gels (Bio-Rad Laboratories), and then transferred
onto nitrocellulose membrane (Bio-Rad nitrocellulose
Turbo transfer packs) for 7min, 25V, 2.5 A using the
Trans-Blot Turbo system (Bio-Rad Laboratories). Mem-
branes were then blocked using PBS 1x containing 5%
non-fat milk and 0.05% Tween, and then incubated with
antibodies. Gel loading was normalized by Stain-Free de-
tection of total proteins using a Geldoc™ EZ imager
(Bio-Rad Laboratories), as recommended by the manufac-
turer. The Stain-Free signal obtained in each lane was
quantified (ImageLab™ software, Bio-Rad Laboratories).
The following primary antibodies were used: rabbit poly-
clonal anti-TDP-43 (1:5000; Proteintech, Chicago, IL,
USA), LacZ (1/10,000; Promega, Charbonnieres-les-Bains,
France), FUS (1/5000; Bethyl Laboratories, Inc. Montgom-
ery, TX, USA), TCERG1 (1:5000). Membranes were incu-
bated with secondary peroxidase-labelled anti-mouse,
anti-guinea or anti-rabbit antibodies (1:10,000) from Jack-
son Immunoresearch Laboratories (WestGrove, PA,
USA), and signals were detected with chemiluminescence
reagents (ECL Clarity, Bio-Rad Laboratories). Signals were
acquired with a GBOX (Syngene, Cambridge, UK), moni-
tored by the Gene Snap software (Syngene). The signal in-
tensity in each lane was quantified using the Genetools
software (Syngene), and normalized with the Stain-Free
signal quantified in the corresponding lane.

RNA and protein subcellular fractionation
Fifty newly-eclosed adult fly heads were ground to pow-
der using the TissueLyser LT (Qiagen) through three
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one-minute cycles of high-speed shaking (50 Hz) in 1.5
mL microcentrifuge tubes with two 2.5mm stainless
steel beads. Samples were then gently homogenized in
240 pL of fractionation buffer (Hepes 10 mM, NaCl 10
mM, MgClI2 3 mM, NP-40 0.5%, RNAse inhibitor 100 u/
mL (Promega, Fitchburg, WI, USA)) on ice and centri-
fuged at 100 x g for 30s to spin down debris. Lysates
were then centrifuged at 2300 x g for 5min at 4°C to
separate nuclei from cytoplasm. Nuclei (pellet) were
washed 3 times in 500 pL of fractionation buffer and
stored overnight at — 80 °C. 20 pul of Sodium acetate 3 M
pH 5.2 and 600 pL of Ethanol 100% were added to cyto-
plasmic fractions (Supernatant). Samples were vortexed
vigorously and then stored at —80°C overnight. Cyto-
plasmic proteins and nucleic acids were then pelleted at
14,000 x g for 15min at 4°C and washed once with
500 pL of Ethanol 70%. Proteins and RNA derived from
nuclear and cytoplasmic fractions were then extracted
using the Nucleospin RNA/protein kit (Macherey-Nagel)
using the manufacturer’s recommendations.

Statistical analysis

All n reported are biological replicates. All statistical
analyses were performed using a two-tailed Student’s
t-test with Welch’s correction for unequal variances
(GraphPad, San Diego, CA, USA). Data on graphs are
expressed as mean values, error bars representing the
standard error of the mean (SEM). For significance sym-
bols, one asterisk means p < 0.05, two asterisks mean p
<0.01, and three asterisks mean p < 0.001.

Results

Identification of CG42724 as a modulator of TDP-43
production

In the course of a P[UAS]-based misexpression screen
for modifiers of TDP-43 production, we screened part of
the UY collection [47]. For the screen, we crossed
GMR-Gal4 > TDP-43_TDPBR females to UYi males and
assessed the F1 progeny for TDP-43 production by west-
ern blot analysis. The GMR-Gal4 driver line is expressed
in all cells of the developing and adult eyes, including
the photoreceptor neurons as well as accessory pigment
cells. We identified a P/UAS]-insertion line (L/Y5237)
that significantly increased TDP-43 production (Fig. 1a).
As expected western blot analysis of total protein ex-
tracts from newly-eclosed adult heads revealed a single
band with an apparent molecular mass of ~ 43 kDa that
corresponded to the predicted size of the 414 amino acid
TDP-43 sequence. No signal was detected in control
flies (GMR > +), indicating that the human TDP-43 anti-
body did not recognize Drosophila proteins, including
the Drosophila homolog TBPH. Normalization of the
amount of TDP-43 proteins using the stain-free technol-
ogy [58] showed that the P(UY)5237 element caused a
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Fig. 1 CG42724 expression modulates TDP-43 production. a-c Western Blot analyses of proteins extracted from transgenic flies expressing UAS-
TDP-43_TDPBR (@), UAS-FUS (b) or UAS-LacZ (c) constructs, in the presence or the absence of the P(UY)5237 element, under the control of the
GMR-Gal4 driver line. Control flies: GMR-Gal4 > +. Expression of TDP-43, FUS and LacZ proteins was qualified using specific antibodies. Representative
blots are shown (n = 4). Total protein was used as loading control and the normalized expression of the proteins of interest is reported in the graphs
(mean + SEM). Genotypes GMR-Gal4 > UAS-TDP-43_TDPBR, GMR-Gal4 > UAS-FUS and GMR-Gal4 > UAS-LacZ were arbitrarily set at 100 arbitrary units. The
P(UY)5237 element caused a drastic increase of TDP-43 protein steady-state levels (n =8, p=0.0001), but did not modify significantly FUS
(n=4, p=0.524) or LacZ (n =4, p=0.822) expression. d, e Western Blot analyses of total proteins extracted from transgenic flies expressing
UAS-TDP-43_TDPBR with or without RNAi constructs targeting CG42724 (#33737 or #55357) under the control of the GMR-Gal4 driver line (d).
Blots were probed with an anti-TDP-43 antibody and representative blots are presented (n = 4). Total protein was used as the loading control.
The normalized expression of the TDP-43 protein is reported in the graphs (mean + SEM) (e). Control (GMR-Gal4 > UAS-TDP-43_TDPBR) was
arbitrarily set at 100 arbitrary units. The reduction of CG42724 expression decreased TDP-43 production by about 50% (CG42724"NA 433737

n=4, p=00659, CG42724™455357: n = 4, p = 0.0040). a-e Protein levels were compared between both genotypes by using Student’s t-test.
ns: not significant, **: p < 0.01. ***: p < 0.001

drastic increase (~ 18-fold) of TDP-43 protein steady-
state levels (p =0.0001). In contrast, the P(UY)5237
element did not modify significantly FUS (p =0.524)
(Fig. 1b) and LacZ (p = 0.822) (Fig. 1c) expression.

PCR rescue experiments were then performed to identify
the insertion point and orientation of the transposon by
comparing the sequence of the flanking genomic DNA to
the Drosophila genome sequence database. The UY5237

line corresponds to a P{y+}UAS transposon inserted 170 bp
upstream of the CG42724 gene, potentially driving tran-
scription of the gene in a Gal4-dependent manner (Fig. 2a).
To validate that the transposon insertion in the Y5237
line leads to upregulation of the related downstream gene
in the presence of Gal4, we performed an RT-QMPSF (re-
verse transcription-quantitative multiplex PCR of short
fluorescent fragments). This assay is based on simultaneous
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rectangles below the transcription unit, and introns as a line. The arrow represents the orientation of transcription from the Pfy +}UAS transposon in
the UY5237 transgenic line. Scale bar (upper right) is 1000 bp. Schematic representation adapted from FlyBase. (b, ¢) Quantification of the CG42724
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t-test. **: p<0.01. b CG42724 mRNA expression in flies heterozygous for the UY5237 transposon was significantly increased, compared to
control flies (n=28, p=0.009). ¢ Expression of RNAi constructs targeting CG42724 (#33737 or #55357) significantly reduced CG42724 mRNA
steady-state levels, relative to control flies (CG42724™"#33737 n=4, p=0.0011, CG42724™'#55357 n=3, p=0.0037)

PCR amplification of short fluorescent fragments and al-
lows the comparative quantitative analysis of mRNA. We
compared the levels of CG42724 transcripts in GMR-
Gal4 > + and GMR-Gal4 > UY5237 Drosophila heads. We
indeed observed a significant upregulation of the CG42724
transcripts (about 27 fold, p=0.009) in GMR-Gal4 >
uys237 flies, compared to control flies (GMR-Gal4 > +)
(Fig. 2b, Additional file 4: Figure S2).

To confirm the role of CG42724 on TDP-43 proteins
steady-state levels, we then tested two independent
CG42724"™N4" Drosophila transgenic lines that target two
different regions of the CG42724 mRNA (Additional
file 4: Figure S2A). First, we validated the efficiency of
both RNAi by assessing the RNAi-mediated decrease of
CG42724 expression by RT-QMPSE. We found that
expression of RNAi constructs targeting CG42724
significantly reduced CG42724 mRNA steady-state levels
(CG42724RNA#33737 1) _ ) 0011, CGA2724RNAI#SS3ST ) _
0.0037) (Fig. 2c). Then, we quantified TDP-43 proteins
steady-state levels and we found that the reduction of
CG42724 expression decreased TDP-43 production by
about 50% (CG42724RNA#33737 p =0.0659,
CG42724"NA#S5357 1, — 0.0040) (Fig. 1d,e). The opposing
effects observed on TDP-43 production from RNAi and
overexpression approaches strongly argue that CG42724
acts as a genetic modulator of TDP-43 production.

Effect of the CG42724-mediated regulation of TDP-43
production on TDP-43 solubility and TDP-43 phenotypic
severity

We next assessed whether CG42724-mediated
creased expression of TDP-43 resulted in cellular tox-
icity in Drosophila retina. We observed that flies
carrying a single copy of the T'DP-43 TDPBR con-
struct with the P(LY)5237 element displayed no obvi-
ous external phenotype, compared to control flies
(Additional file 5: Figure S3). However, when we max-
imized TDP-43 protein expression by making use of
flies bearing two copies each of the TDP-43 TDPBR
transgene, we found that CG42724 co-expression
caused strong synergistic effects (Fig. 3a). Compared
to control eyes, TDP-43_TDPBR** expression induced
no discernible phenotype. In contrast, CG42724 over-
expression resulted in a rough-eye phenotype.
Co-expression of TDP-43 TDPBR™ and CG42724 in
the eye was associated with a more severely disorga-
nized rough-eye phenotype.

Interestingly, we also observed that CG42724 overex-
pression is associated with the appearance of TDP-43
high-molecular weight (HMW) species (Fig. 3b). Adult
heads from GMR > TDP-43 TDPBR*> or GMR >
TDP-43_TDPBR*, 1IY5237 transgenic flies were extracted
with RIPA buffer followed by extraction in urea buffer to

in-
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Fig. 3 CG42724-mediated increase of TDP-43 production results in the appearance of insoluble TDP-43 aggregates and causes cellular toxicity in
Drosophila retina. a Light micrographs of newborn Drosophila adult eyes raised at 23 °C. Compared to control flies (GMR-Gal4? > +), TDP-43_TDPBR*
(GMR-Gal4? > UAS-TDP-43_TDPBR*) expression alone triggered no structural defects. Flies overexpressing CG42724 (GMR-Gal4 *? > Uy5237) displayed
alteration of the external eye aspect (‘rough-eye phenotype”). Coexpression of CG42724 and TDP-43_TDPBR (GMR-Gal4 *? > UAS-TDP-43_TDPBR*,
UY5237) enhanced the severity of the “rough-eye phenotype” in a synergistic manner. b Western blot analyses of TDP-43 proteins extracted from flies
expressing TDP-43_TDPBR* with or without the P(UY)5237 transposon under the control of the GMR-Gal4 driver, and control flies bearing only the
GMR-Gal4 transgene. Proteins were sequentially extracted in RIPA (soluble) and Urea (insoluble) buffers. Samples were loaded with (+ DTT) or without

(— DTT) reducing agent. Blots were probed with an anti-TDP-43 antibody and representative blots are presented (n =4). Total protein was used as the
loading control. CG42724-mediated increased expression of TDP-43 resulted in appearance of DTT-sensitive high molecular weight (HMW) species

recover insoluble TDP-43. Samples were loaded with or the insoluble urea fraction, indicating that TDP-43 species
without reducing agent (-DTT) to prevent dissociation of = were mainly recovered as soluble forms in Drosophila. As
putative HMW forms. Only a faint signal was detected in  expected, the expression of CG42724 increased the
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TDP-43 protein steady-state levels. TDP-43 proteins were
detected as either full-length monomeric forms or HMW
species, with TDP-43 proteins being the most prone to
form aggregates in the presence of the Y5237 transgene.
When samples were analysed in the presence of the redu-
cing agent (+DTT), we observed a decrease of the HMW
forms and, concomitantly, an increase of TDP-43
monomeric species, indicating that these complexes
were indeed DTT-sensitive. Altogether, these data
showed that CG42724-mediated increased expression
of TDP-43 results in the appearance of TDP-43
HMW species and is associated with cellular toxicity
in Drosophila retina.

CG42724-mediated regulation of TDP-43 production
depends mainly on the presence of the TDPBR region

To address the molecular mechanisms underlying these
genetic interactions, we first determined whether the
TDPBR region contributes to the CG42724-mediated
regulation of TDP-43 protein production using the
UAS-TDP-43 construct (no TDPBR region) previously de-
scribed in [55]. Western blot analysis of total protein ex-
tracts showed that, in contrast to what we observed with
the UAS-TDP-43 TDPBR construct (about 18 fold, p =
0.0001), overexpression of CG42724 caused only a 2-fold
increase in TDP-43 protein steady-state levels (p = 0.0002)
(Fig. 4), demonstrating that CG42724-mediated regulation
of TDP-43 protein production predominantly depends on
the presence of the TDPBR region.
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CGA42724 expression regulates TDP-43 production by
regulating alternative splicing events and
nucleocytoplasmic export of TDP-43 mRNAs
We previously demonstrated that the self-regulatory
process of TDP-43 protein steady-state levels in flies de-
pends on alternative splicing events, differential usage of
polyadenylation sites, nuclear retention of the transcript
and a decrease in steady-state mRNA levels [55]. Inter-
estingly, the CG42724 gene encodes a homolog of the
human TCERGI1 (Transcription elongation regulator 1)
gene (Additional file 6: Figure S4). Human TCERGI is a
nuclear protein that has been implicated in transcription
and pre-mRNA-splicing regulation. TCERG1 physically
couples transcription elongation and splicing events by
interacting with splicing factors and the RNA polymer-
ase II. We therefore sought to determine which of the
cellular processes involved in the TDP-43 autoregulatory
feedback loop were affected by CG42724 overexpression.
We first evaluated whether changes in TDP-43
steady-state mRNA levels could account for the ob-
served modulation at the protein level. We performed
RT-QMPSF experiments on GMR > TDP-43_TDPBR or
GMR > TDP-43 TDPBR, UY5237 transgenic flies, using
pairs of primers that can detect all isoforms of the
TDP-43 mRNA (F1/R1 and F2/R2, Additional file 7: Fig-
ure S5A and Additional file 3: Table S1). As shown in
Fig. 5a and Additional file 7: Figure S5B, modulation of
CG42724 expression resulted in a slight, but not signifi-
cant statistical increase of overall TDP-43 mRNA levels
compared to the control (p = 0.055).

TDP-43 TDP-43_TDPBR
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the UAS-TDP-43 construct was expressed (n=7, p=0.0002)

Fig. 4 CG42724-mediated regulation of TDP-43 production depends mainly on the presence of the TDPBR region. Western Blot analyses of
proteins extracted from transgenic flies expressing the UAS-TDP-43_TDPBR or the UAS-TDP-43 constructs, in the presence or the absence of the
P(UY)5237 element, under the control of the GMR-Gal4 driver line. Control flies: GMR-Gal4 > +. a Blots were probed with an anti-TDP-43 antibody
and representative blots are presented (n = 7). Total protein was used as the loading control. b The normalized expression of the TDP-43 protein
is reported in the graphs (mean + SEM). Genotypes GMR-Gal4 > UAS-TDP-43_TDPBR and GMR-Gal4 > UAS-TDP-43 were arbitrarily set at 100 arbitrary
units. Protein levels were compared between both genotypes by using Student's t-test. ***: p < 0.001. The P(UY)5237 element caused a drastic
increase of TDP-43 protein steady-state levels in the context of the UAS-TDP-43_TDPBR construct (n =8, p=0.0001), but only a slight rise when
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Fig. 5 CG42724 influences TDP-43 production by regulating qualitatively and quantitatively the pattern and the nucleocytoplasmic export of TDP-
43 mRNA transcripts. a Quantification of the TDP-43 mRNA steady-state levels by RT-QWMPSF experiments in GMR-Gal4 > UAS-TDP-43_TDPBR and
GMR-Gal4 > UAS-TDP-43_TDPBR, UY5237 flies. The graph represents mean + SEM after normalization with Cyp1 (reference gene). Controls were
arbitrarily set at 100 arbitrary units. The mRNA levels were compared between both genotypes by using Student’s t-test. ns: not significant.
(CG42724 expression did not significantly influence TDP-43 mRNA steady-state levels (n =4, p=0.055). b Total RNA from cytoplasmic and nuclear
fractions were isolated from GMR > TDP-43_TDPBR or GMR > TDP-43_TDPBR, UY5237 transgenic flies. The graph represents mean + SEM of TDP-43
mMRNA levels detected by RT-QMPSF experiments, after normalization with Cyp1. Controls were arbitrarily set at 100 arbitrary units. TDP-43
expression levels were compared by using Student's t-test. ns: not significant. CG42724 expression did not modulate global TDP-43 mRNA
nucleocytoplasmic export (n =3, p=0.992). ¢ Agarose gel electrophoresis of the PCR products in the 3" RACE analysis. The 3' RACE experiments
were performed using RNA described in (a). Left: representative gel image (n > 10). Expression of CG42724 resulted in a qualitative distinct
pattern. Right: schematic representation of the long and the short TDP-43_TDPBR mRNA variants detected in flies. d Quantification of the relative
abundance of the TDP-43_TDPBR mRNA variants by 3" RACE PCR amplification combined to QMPSF methodology, in GMR-Gal4 > UAS-TDP-
43_TDPBR and GMR > TDP-43_TDPBR, UY5237 transgenic flies. The mRNA fractions from the cytoplasm and from whole cells (total RNA) were
analyzed. Three fluorescent peaks corresponding to a short isoform, intermediate species and a long isoform were detected after separation by
capillary electrophoresis (Additional file 7: Figure S5C). e The graph represents the ratio of the relative abundance of the short isoform/long
isoform in each experimental condition presented in (d) (n =4, GMR-Gal4 > UAS-TDP-43_TDPBR: p = 0.038, GMR > TDP-43_TDPBR, UY5237: p=0.017)

We next asked whether CG42724 expression could cytoplasmic fractions. Quantification of TDP-43 steady-
affect the nucleocytoplasmic export of TDP-43 mRNAs. state mRNA levels was achieved again by RT-QMPSE,
We performed cell fractionation (Additional file 8: Figure using the F1/R1 and F2/R2 primers (Additional file 3:
S6), and extracted total RNAs from nuclear and Table S1 and Additional file 7: Figure S5A). If CG42724
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expression modulates TDP-43 mRNA nucleocytoplasmic
export, we expect to have different TDP-43_TDPBR,
UY5237 / TDP-43_TDPBR ratios in the nuclear and the
cytoplasmic compartments. However, we detected similar
ratio in both compartments (p = 0.992) (Fig. 5b), indicat-
ing that CG42724 expression did not modulate TDP-43
mRNA nucleocytoplasmic export.

We also examined whether the regulation of TDP-43
production by CG42724 occured via changes in alternative
splicing events and/or differential usage of polyadenylation
sites, performing 3’ Rapid Amplification of cDNA Ends
(RACE) experiments. PCR products were amplified using a
human TDP-43-specific primer (F3, Additional file 7:
Figure S5A and Additional file 3: Table S1) and an oligo-dT
adapter primer. Agarose gel electrophoresis revealed, as
previously described in [55], that TDP-43 TDPBR trans-
genic flies displayed a complex pattern of 3" RACE PCR
amplification (Fig. 5¢), with a ~1.2kb predominant band
and lower migrating species. Co-expression of CG42724 re-
sulted in a qualitative distinct pattern. Two main bands
were now observed: a ~ 1.2 kb fragment (long isoform) and
a smaller one of ~800bp (short isoform). The sequencing
of these two major bands revealed that they corresponded
to alternative transcripts of different sizes resulting from
differential usage of polyadenylation sites. Note that we
failed to characterize the intermediate band by sequencing
(asterisk, Fig. 5c). These species could correspond to het-
eroduplexes. To quantify the relative abundance of these
spliced isoforms, we combined 3" RACE PCR amplification
with QMPSF technology. In accordance with what we ob-
served on agarose gel (Fig. 5¢c), we detected three fluores-
cent peaks corresponding to the expected amplicon sizes
(short isoform: ~ 840 bp, intermediates species: ~ 1000 bp,
long isoform: ~ 1225 bp) (Additional file 7: Figure S5C). Ac-
curate quantification of the relative amount of spliced iso-
forms showed that CG42724 expression resulted in an
increased relative amount of the short isoform (from 10.71
+/-1.7% to 28.26 +/-5.17%, n =6, p = 0.0177), with a con-
comitant decrease of the long isoform (from 83.08 + /-
1.32% to 67.47 +/-4.79%, n =6, p = 0.0212) (Fig. 5d, upper
2D-pies). Altogether, these data revealed that CG42724 ex-
pression affected qualitatively and quantitatively the
TDP-43 TDPBR mRNA transcripts pattern.

Because alternative transcripts could display distinct
nucleocytoplasmic export efficiency, we then achieved
3" RACE PCR amplification combined with QMPSF
experiments after nucleocytoplasmic fractionation. If both
TDP-43 mRNA isoforms were similarly distributed be-
tween the nuclear and cytoplasmic fractions, we would ex-
pect similar short/long (S/L) isoforms ratios of TDP-43
mRNA levels, whatever the experiments were performed
using total mRNA or mRNA extracted from the cytoplas-
mic compartment. Quantification of the relative abun-
dance of splice isoforms showed that the S/L ratio in the
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cytoplasmic compartment was significantly higher com-
pared to that quantified in total mRNA (GMR >
TDP-43 TDPBR flies: ~2.7 fold-change, GMR >
TDP-43 TDPBR, UY5237. ~3.3 fold-change) (Fig. 5d,
lower 2D-pies, E), demonstrating that short TDP-43
mRNA isoforms were more prone to be exported to the
cytoplasm than long isoforms.

Thus, in our experimental system, we found that
CG42724 overexpression promotes the production of
transcripts including TDPBR sensor region and ending
at the pAl polyadenylation site, isoforms that can be ef-
ficiently released into the cytoplasm.

Human TCERG1 controls TDP-43 production in
mammalian cells

To validate these findings identified in Drosophila in
mammalian cells, we first developed two hybrid con-
structs containing a GFP:TDP-43 reporter gene fused
(GEP: TDP-43 _TDPBR) or not (GFP:TDP-43) to the
TDPBR region, and compared their expression in
HEK293 cells. As expected, introduction of the TDPBR
sequence into the reporter construct resulted in a sig-
nificant ~ 50% decrease (p = 0.0053) in the GFP::TDP-43
protein expression levels (Fig. 6a, b). Co-transfection of
the GFP::TDP-43_TDPBR reporter construct with a con-
struct encoding the human T7-tagged TCERG1 protein,
resulted in a significant increase of TDP-43::GFP protein
steady-state levels relative to control transfections (p =
0.0278) (Fig. 6a, c). In contrast, no significant increase in
GFP::'TDP-43 production was detected in the context of
the GFP:TDP-43 reporter construct (p=0.6659). To-
gether these results showed that the human TCERG1
protein can regulate TDP-43 protein production in
mammalian cells, and that TCERG1-mediated regulation
of TDP-43 production is also predominantly mediated
by the TDPBR region.

Discussion

TDP-43 is a critical RNA-binding factor that has been
shown to play a central role in RNA metabolism. Cell
functions and survival depend on the strict control of
TDP-43 protein levels. TDP-43 expression is tightly regu-
lated through an autoregulatory negative feedback loop
mediated by the binding of TDP-43 protein in a specific
region of its mRNA 3'UTR called TDPBR [5, 6, 8, 42, 54].
The TDPBR sensor region includes low-affinity binding
sites for TDP-43 and the polyadenylation site pAl, the
most efficient polyadenylation site of the TDP-43 gene. In
steady-state conditions, most TDP-43 production within
cells comes from the transcript that uses the polyadenyla-
tion site pAl. Increase in TDP-43 nuclear levels results in
an increased occupancy of the TDPBR that in turn sup-
presses usage of the pAl site, resulting in elongation of
transcripts beyond pAl. The elongated transcripts present
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Fig. 6 Human TCERG1 influences TDP-43 production in HEK293T cells. a Western blot analysis of HEK293T cells with different combinations of
GFP:TDP-43 and TCERGT expression plasmids. Expression of both proteins were detected using anti-TDP-43 or anti-TCERG1 antibodies. Representative
result from four independent experiments is presented. Proteins were sequentially extracted in RIPA (soluble) and Urea (insoluble) buffers. Total protein
was used as the loading control. b, ¢ The normalized expression of the TDP-43 protein is reported in the graphs (mean + SEM). Protein levels were
compared between both genotypes by using Student’s t-test. ***: p < 0.001, *: p < 0.05

an acceptor site for normally silent intron that contains
the TDPBR region and the pAl sequence. The exclusion
of this intron forces the system to use suboptimal polyade-
nylation sites. The mRNAs using these alternative polya-
denylation sites show an increased incidence of alternative
splicing, and are partially retained in the nucleus and/or
degraded.

To identify genetic modulators of TDP-43 production
in vivo, we used an autoregulatory TDP-43 Drosophila
model previously developed and characterized by our
group [55]. This Drosophila transgenic model is based
on the expression of the human TDP-43 ¢cDNA under
the control of the TDPBR sensor region. This
TDP-43_TDPBR Drosophila model recapitulates key fea-
tures of the self-regulatory process of the steady-state
levels of TDP-43 proteins described previously in

mammalian and cellular models, namely alternative spli-
cing events, differential usage of polyadenylation sites,
nuclear retention of the transcripts, and a decrease in
steady-state mRNA levels.

In this study, we report the identification of the CG42724
Drosophila gene as a genetic modulator of TDP-43 produc-
tion in vivo. We showed that CG42724 overexpression
caused a drastic increase of TDP-43 protein steady-state
levels, whereas CG42724 down-regulation resulted in a de-
crease of TDP-43 accumulation. The study of the under-
lying molecular mechanisms allowed us to highlight that
the CG42724 protein influences both qualitatively and
quantitatively the TDP-43_TDPBR mRNA transcripts pat-
tern. We found that CG42724 overexpression promotes the
inclusion of the TDPBR sensor region as well as the pro-
duction of transcripts ending at the pAl polyadenylation,
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isoforms that can be efficiently released into the cytoplasm
for protein translation. Of course, additional mechanisms
could also be involved. Notably, we observed that TCERG1
expression resulted in a slight increase of TDP-43 mRNA
steady-state level, which could also contribute to the in-
crease in TDP-43 protein accumulation. Importantly, this
effect predominantly depends on the presence of the
TDPBR region.

To date, very little is known about the Drosophila
CG42724 protein. The protein is composed of 1123 resi-
dues and contains three WW domains at its N-terminus
followed by six FF domains at its C-terminus. The
CG42724 protein was detected in affinity-purified Dros-
ophila spliceosome [31]. On the other hand, CG42724
was identified as an RS-domain containing protein in a
genome-wide survey of RS domain proteins [13]. Inter-
estingly, the RS-domains are frequently found in pro-
teins involved in pre-mRNA splicing.

The CG42724 gene encodes a homolog of the human
TCERGI (Transcription elongation regulator 1) gene.
The CG42724 and TCERG1 proteins share 35% se-
quence identity and 48% sequence similarity. The high-
est homology is observed in the WW and FF domains.
Importantly, our data suggest a significant degree of
functional conservation between flies and mammals re-
garding the regulation of TDP-43 production. Indeed,
we showed that similarly to CG42724, human TCERG1
overexpression also caused an increase of TDP-43 pro-
tein steady-state levels in mammalian cells.

TCERGI, previously named CA150, is a highly con-
served human nuclear protein, localized at the interface
of nuclear speckles and presumed nearby transcription
sites [59, 60]. TCERG1 was originally identified as a
component of an active cellular fraction that supported
Tat activated transcription from the HIV-LTR [67, 68].
Consistent with a role in elongation [21], TCERGLI is
found associated with elongation factors and RNA Poly-
merase II (RNAPII) holoenzyme [16, 30, 68]. Accumulat-
ing evidence also implicates TCERG1 in pre-RNA
splicing regulation. TCERG1 interacts with splicing fac-
tors [30, 43] and has been identified in highly purified
spliceosomes in multiple studies [25, 43, 45, 50, 57].
TCERG1 can affect pre-mRNA splicing of several spli-
cing reporters [43, 48, 53, 60], and of putative cellular
targets identified by microarray analysis following
TCERGI1 knockdown [49, 53]. Based on these data,
TCERG1 has been suggested to couple the transcribing
RNAPII with spliceosome complexes to regulate
co-transcriptional splicing events, a hypothesis that was
supported by the demonstration that TCERG1 regulates
the alternative splicing of the Bclx gene through the
modulation the RNAPII transcription rate [48].

Interestingly, TCERG1 and TDP-43 proteins have been
linked to common aspects of mRNA life cycle, namely
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transcription, pre-mRNA alternative splicing and polya-
denylation site selection. Uncovering the mechanism of
action of TCERG1 on TDP-43 production is complicated
by their multifaceted functions, but also by the fact that
RNAPII transcription, alternative splicing and alternative
polyadenylation can be influenced reciprocally. All these
processes are tightly coupled and coordinated.

We showed in this study that these processes of regu-
lation predominantly depend on the presence of the
TDPBR region. We demonstrated previously that the
negative regulatory activity of the TDPBR region is spe-
cifically dependent on TDP-43 expression [55], suggest-
ing that the TDP-43 protein itself could be implicated in
the TCERG1-mediated regulation of TDP-43 production.
One hypothesis would be that TCERG1 protein inter-
feres with the binding of TDP-43 on the TDPBR region,
possibly by competition through binding the same
mRNA site. Indeed, even if TCERG1 has not been de-
scribed as an RNA-binding protein, it has been shown
that the protein associates in vitro with the Bcl-x
pre-mRNA [48]. Alternatively, it could act by “sequestra-
tion” of TDP-43 out of the transcripts. However, to our
knowledge, proteomic studies performed in several cell
lines did not identify TCERG1 as a potential TDP-43
interacting partner [11, 27, 63, 75]. In contrast, they
share several common interacting partners, such as the
SRSF1, SRSF3, SRSF7, and SE3B splicing factors.

As a component of the splicing machinery, TCERG1
could also modulate the spliceosome assembly and activ-
ity. Consistent with this possibility, it has been shown
that spliceosome assembly across the 3’'UTR region in-
duced by TDP-43 is a key event in the reduction of the
amount of TDP-43 [8]. The 3'UTR intron 7 recognition
by the splicing machinery somehow marks the bulk of
the transcript for nuclear retention and degradation.
Therefore, TCERG1 overexpression could alter the rec-
ognition of the intron 7 splicing sites, and consequently
favor the recognition of pAl.

Otherwise, it has been shown that TDP-43 overexpres-
sion causes a rise in RNAPII density from the TDPBR
sequence to the downstream region [5]. Such a pausing
of RNAPII could influence polyA site usage [28] and the
more efficient recognition of weaker splice sites [15, 40].
Thus, the pausing of RNAPII in the TDPBR region could
interfere with the recognition of pAl, forcing the use of
suboptimal polyadenylation sites. As mentioned above,
TCERG1 modulates the rate of RNAPII transcription by
increasing its elongation rate [21]. Therefore, in our ex-
perimental model, TCERG1 overexpression could release
paused polymerase, and therefore allow the use of pAl
and the production of transcripts that can be trans-
ported into the cytoplasm for protein synthesis. It is also
possible that TCERG1 works at the interface of RNAPII
and the splicing machinery. Indeed, as mentioned above,
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. . . primer (AUAP). The diagrams shown were obtained from GMR > + (control,
TCERG1-associated neurological disorders [49]. blue), GMR > TDP-43_TDPBR (red) or GMR > TDP-43_TDPBR, UY5237 (green)

flies. CypT cDNAs was amplified as internal reference. The electropherograms

Conclusions were superimposed by adjusting the peaks obtained for the control

. ) . amplicons to the same level. Note that the "mis-alignement » of the
To conclude, using a DI"OSOphllﬂ model that recapitu- longest pics is due to the imprecise sizing of the fragment > 1 kb.
lates key features of the TDP-43 auto-regulatory feed- (TIF 1151 kb)

back loop, we have identified TCERG1 as a modulator of Additional file 8: Figure S6.. Purity of subcellular fractions. Cytoplasmic/
TDP-43 production in vivo. Further studies will be ne- nuclear fractionation was performed on GMR > + (control), GMR-Gal4 > UAS-

. K TDP-43_TDPBR or GMR-Gal4 > UAS-TDP-43_TDPBR, UY5237 transgenic flies.
cessary to unravel the exact mechanisms through which Nuclear (N) and cytoplasmic (C) fractions were qualified by performing

TCERG1 modulates TDP-43 production. Nevertheless, Western blot experiments. Results shown are representative of 3
regardless of underlying mechanisms, our data suggest independent biological replicates. B-tubulin was used as a cytosolic

. K marker, while histone H3 was used as a nuclear marker. Total protein
the pOSSlblllty that targeting TCERGL1 could be thera- was used as the loading control by Stain-free technology. (TIF 683 kb)
peutic in TDP-43 proteinopathies.
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