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Abstract

Background: It has been widely recognized that the mutations at specific directions are caused by the functional
constraints in protein family and the directional mutations at certain positions control the evolutionary direction of the
protein family. The mutations at different positions, even distantly separated, are mutually coupled and form an
evolutionary network. Finding the controlling mutative positions and the mutative network among residues are firstly
important for protein rational design and enzyme engineering.

Methodology: A computational approach, namely amino acid position conservation-mutation correlation analysis (CMCA),
is developed to predict mutually mutative positions and find the evolutionary network in protein family. The amino acid
position mutative function, which is the foundational equation of CMCA measuring the mutation of a residue at a position,
is derived from the MSA (multiple structure alignment) database of protein evolutionary family. Then the position
conservation correlation matrix and position mutation correlation matrix is constructed from the amino acid position
mutative equation. Unlike traditional SCA (statistical coupling analysis) approach, which is based on the statistical analysis of
position conservations, the CMCA focuses on the correlation analysis of position mutations.

Conclusions: As an example the CMCA approach is used to study the PDZ domain of protein family, and the results well
illustrate the distantly allosteric mechanism in PDZ protein family, and find the functional mutative network among
residues. We expect that the CMCA approach may find applications in protein engineering study, and suggest new strategy
to improve bioactivities and physicochemical properties of enzymes.
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Introduction

Coevolution is a well known phenomenon in biological world.

However, coevolution in families of proteins and genes is still an

open topic [1]. Conservation and mutation are two opposite

aspects of functional evolution of protein family. It is commonly

accepted that the evolution of a protein family is the result of large-

scale random mutagenesis, with selection constraints imposed by

their biological functions. In the studies of statistical analysis for

protein evolutionary family the following two basic hypotheses

were recognized widely, which were derived from the empirical

observation of sequence evolution [2]. (i) The lack of evolutionary

constraint at one position should cause the distribution of observed

amino acids at that position in the MSA (multiple structure

alignment) to approach their mean abundance in all proteins, and

deviances from the mean values should quantitatively represent

conservation. (ii) The functional coupling of two positions, even if

distantly positioned in the structure, should mutually constrain

evolution at the two positions, and these should be represented in

the statistical coupling of the underlying amino acid distributions

[3,4,5].

The protein functions are not only determined by the

interactions between local residues, but also depend on nonlocal,

long-range communication between amino acids [6]. For example,

information transmission between distant functional surfaces on

signaling proteins [7], the distributed dynamics of amino acids

involved in enzyme catalysis [8,9,10], and allosteric regulation in

various proteins [3,11] all represent manifestations of nonlocal

interactions between residues. To the extent that these features

contribute to defining biological properties of protein lineages, it is

expected that the underlying mechanisms represent a long-range

mutative network, consisting of local and nonlocal residues.

Understanding the fundamental basis of long-range communica-

tion represents a major challenge in structural biology, which is

significantly important for enzyme engineering and rational

protein design.
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Over the last ten years, a considerable methodological effort has

been made to detect coevolution in protein and gene families at

molecular level. In the method developed by Dunn et al. [12,13]

information theory was used to reduce the random noise in the

identification of coevolving positions. Dutheil and Galtier reviewed

the literatures about molecular coevolution between or within

residues in gene and protein families [1,14]. A successful

approach, namely statistical coupling analysis (SCA), was devel-

oped by Ranganathan’s group [2,15,16,17], which focused on the

conservations between coupling positions (sectors). However, in

the enzyme engineering [18] what we are more interested is that

how the amino acid mutations at certain positions modify (or

improve) the biological functions (including bioactivity, thermo-

stability, pH tolerance, and other properties) of enzymes. In the

rational protein design we want to know the dominative positions

for functional evolution and the mutually mutative network among

positions in three dimensional structures of proteins.

In this study a computational approach, namely amino acid

position conservation-mutation correlation analysis (CMCA), is

developed to predict mutually mutative positions and find the

evolutionary network in protein family. Unlike traditional SCA

(statistical coupling analysis) approach [2,15,16,17], which is based

on the statistical analysis of position conservations, the CMCA

focuses on the correlations of position mutations in a protein

evolutionary family. We expect that the CMCA approach may

find applications to rational protein design and enzyme engineer-

ing to improve bioactivities and physicochemical properties of

enzymes.

Results

In this study the PDZ domain family is selected as a model

system to demonstrate the CMCA approach. The PDZ domain is

a common structural domain found in the signaling proteins [19]

of bacteria, yeast, plants, viruses [20], animals [21,22], and human

[23,24]. PDZ domains consist of 90–100 amino acid modules that

adopt a six-stranded b sandwich configuration with two flanking a
helices (Fig. 1). Target C-terminal ligands bind in a surface groove

formed between the b2 strand and a2 helix and make a number of

interactions that determine both general and sequence specific

recognition [25,26,27]. Both the overall three-dimensional struc-

ture and most details of ligand recognition are highly conserved in

the PDZ family despite considerable sequence divergence [28].

PDZ domains well represent protein binding motifs for which four

high-resolution structures of distantly related members exist

[25,29,30]. These domains help anchor transmembrane proteins

to the cytoskeleton and hold together signaling complexes [31,32].

In this study we use a multiple structure aligned PDZ database

[33] consisting of 240 PDZ proteins. After sequence alignment

there are 129 positions in the PDZ database, and after deletion of

the unnecessary gaps, 27 positions are deleted and the reduced

database contains 102 positions.

Conservation correlation analysis of PDZ
Following the procedure described in Method section, we first

perform the conservation position correlation analysis to the PDZ

protein family. The position conservation correlation matrix

R(con)
L6L of PDZ is graphically shown in Fig. 2. The matrix

R(con)
L6L is symmetric to the diagonal line. For a clear view the

matrix elements r(con)
i,j less than 0.5 are filtered. The matrix

elements on the diagonal line, whose values are 1 (r(con)
i,i = 1), are

not shown, because the diagonal elements are self correlation

coefficients, having no statistical meaning. Fig. 2 A is the relief

map of position conservation correlation matrix R(con)
L6L of PDZ

database. The red bands indicate the region with correlation

coefficients from 0.80 to 0.85. Fig. 2 B is the contour map of

position conservation correlation matrix R(con)
L6L of PDZ

database. The map is colored according to the values: the regions

with value higher than 0.90 are colored in red, higher than 0.80 in

pink, and higher than 0.70 in orange.

In Fig. 2 A most places are high peaks and in Fig. 2 B most areas

are in red color, meaning that in many sequence positions the

residues are highly conserved, consistent to the high conservation

of PDZ family. It is difficult to dig out detailed information from

the position conservation correlation matrix R(con)
L6L of PDZ

database, because too many conservative positions complicate the

analysis.

Mutation correlation analysis of PDZ
Then we perform the mutation position correlation analysis to

the PDZ protein family. The position mutation correlation matrix

R(mut)
L6L of PDZ is graphically shown in Fig. 3.

The matrix R(mut)
L6L is symmetric to the diagonal line. For a

clear view the matrix elements r(mut)
i,j less than 0.5 are filtered, and

the elements on the diagonal line (r(mut)
i,i = 1) are not shown. Fig. 3

A is the relief map of position mutation correlation matrix

R(mut)
L6L of PDZ database. The red bands indicate the region

with correlation coefficients from 0.80 to 0.85. Fig. 3 B is the

contour map of position mutation correlation matrix R(mut)
L6L.

The map is colored in the same manner as in Fig. 2.

After careful observation and comparison we find partially

complementary relationship between the two correlation matrices

R(con)
L6L and R(mut)

L6L: the peaks and valleys are located in

alternate places in Fig. 2 A and Fig. 3 A. And in Fig. 3 B there are

less areas in red color than in Fig. 2 B. Only 12 separated red

regions (R1 to R12) with higher correlation coefficients (ri,j.0.80)

are found in Fig. 3 B. It is easier to find useful information from

the position mutation correlation matrix R(mut)
L6L than that from

the position conservation correlation matrix R(con)
L6L.

Information from CMCA of PDZ
Several studies have highlighted the presence of interaction

networks within single-domain proteins, which are crucial for

allostery, stability, and folding [2,17,34,35,36]. Based on the

statistical coupling analysis (SCA) [2] PDZ domains were proposed

to contain energetically coupled positions between residues located

in the binding site and elsewhere, forming a long-range interaction

network.

Table 1 lists 24 position pairs with higher correlation coefficients

(r(mut)
i,j.0.80) in the mutation correlation matrix R(mut)

L6L, which

distribute in 12 red regions in Fig. 3 B. In Table 1 the 24 position

pairs are numbered according to the PDZ database [33]. The

corresponding position numbers in the PDZ protein 1BE9 [25] are

also listed in Table 1, which is a well investigated PDZ protein.

Total 30 different positions are in the 24 position pairs. Among the

30 positions, 3 positions are gaps in the protein 1BE9. The

correlations of four position pairs are shown in Fig. 4, which

possess higher mutative correlation coefficients (R71225 = 0.8388,

R46214 = 0.8522, R83214 = 0.892, and R61256 = 0.9742). The

position 14 is highly correlated to both position 46 and position 83.

Therefore, the three positions form a mutually mutative group (14,

46, 83) in the PDZ family.

The structure alignment of four PDZ proteins (2QKT, 2F5Y,

1G9O, and 1BE9) and results of position mutation correlation

analysis are shown Fig. 1. The 27 residues, shown in stick render in

Fig. 1 A, are located at the positions having higher mutative

correlation coefficients (see Table 1). The surface of a2-b2 groove

of 1BE9 and the peptide ligand is shown in Fig. 1 B. Blue is for

Mutation Analysis
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Figure 1. Structure alignment of four PDZ proteins and results of position conservation-mutation correlation analysis. (A) The 3D
structural alignment of 2QKT, 2F5Y, 1G9O, and 1BE9. The 27 residues, at the positions having higher mutation correlation coefficients (see Table 1),
are shown in stick render. (B) The surface of a2-b2 groove of 1BE9 and the peptide ligand in 1BE9. Blue is for hydrophilic surface and green is for
hydrophobic surface. (C) The residues at the controlling positions for ligand affinity. The sizes of Tyr79 and Leu81 of 2QKT (blue) are much bigger
than the Ala76 and Ala78 of 1BE9 (green). (D) The disulfide bond between Cys37 and Cys78 of 2QKT. (E) Sequence alignment of four PDZ proteins
(2QKT, 2F5Y, 1G9O, and 1BE9). The residues, at the positions having high position mutation correlation coefficients (see Table 1), are indicated by
green frames.
doi:10.1371/journal.pone.0013207.g001
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hydrophilic surface and green is for hydrophobic surface. Fig. 1 C

shows the residues of PDZ proteins 1BE9 and 2QKT at the

positions controlling the ligand affinity. The size of Tyr79 and

Leu81 of 2QKT (blue) are much larger than the corresponding

residues Ala76 and Ala78 of 1BE9 (green). The PDZ protein

2QKT has a disulfide bond between Cys37 and Cys78 shown in

Fig. 1 D, which makes it different from other PDZ proteins

[26,37]. The position 37 and 78 are easily mutative positions based

on CMCA results in Table 1. Fig. 1 E shows the sequence

alignment of four PDZ proteins (2QKT, 2F5Y, 1G9O, and 1BE9).

The residues, at the positions having higher position mutation

correlation coefficients (see Table 1), are indicated by green

frames.

The 27 mutative positions with higher mutation correlation

coefficients distribute in two a-helices, all 6 b-strands, and some

loops, including the easily mutative positions and some very

conservative positions [33]. In Fig. 1 E among the 27 positions

there are two larger sectors, each of them consists of four adjacent

positions: 36–39 (in b3) and 41–44. Some interesting findings are

summarized as follows.

Controlling positions for ligand affinity
The groove between a2 helix and b2 strand is the binding

location for ligand peptide [2,38] and the residues at these

positions are highly conservative. However, mutations at these

highly conservative positions may have more important signifi-

cance to biological functions. Four easily mutative positions are

found in the a2-b2 groove: Asn26 and Ile27 in b2, Ala76 and

Ala78 in a2 (1BE9 numbering), which determine the ligand

binding affinity and control the peptide shape and specificity. In

Fig. 1 C the small residues Ala76 and Ala78 (in green) of 1BE9 are

replaced by Tyr79 and Leu81 (in blue) of 2QKT. The size of

Tyr79 and Leu81 of 2QKT are much larger than the Ala76 and

Ala78 of 1BE9. Therefore 1BE9 and 2QKT must have very

different preferences of peptide ligand.

The biological relevance of long-range allosteric effects in PDZ

domains has attracted considerable attention [7,39,40]. The PDZ

domain of the cell polarity protein Par6 was shown to be

allosterically regulated by its adjacent Crib domain in response to

binding of CdC42 [39]. Structural analysis showed the b1-a1

interface of the Par6 PDZ domain to be in direct contact with the

Crib domain and responsible for transmission to the structurally

distinct peptide binding pocket [41]. The results of CMCA fully

support above observations. Two easily mutative positions (Ala47

and Asp48, in 1BE9 numbering) are found in a1 helix, and two

positions Pro11 and Ile16 (in 1BE9 numbering) are found in b1

strand. These easily mutative positions are connected through

peptide ligand and define an allosteric mechanism for regulating

binding affinity at the a2-b2 groove through molecular interac-

tions at a distant surface site on the a1 helix [39].

Disulfide bond in INAD PDZ5
In the alignment of four PDZ proteins in Fig. 1 E the 2QKT

[37] is an INAD PDZ [42] domain and belongs to type 5 PDZ.

The INAD PDZ domain (PDZ5) exists in a redox-dependent

equilibrium [43,44] between two conformations—a reduced form

that is similar to the structure of other PDZ domains, and an

oxidized form. In INAD PDZ an intramolecular disulfide bond

covalently links a pair of buried cysteine residues located

underneath the floor of the ligand-binding pocket [26,37]. In

2QKT the disulfide bond is formed between Cys37 in b3 and

Cys78 in a2 (in Fig. 1 E numbering). The positions of Cys37 and

Cys78 are corresponding to the positions of residues Ile36 and

Ala75 of 1BE9, respectively. The position 36 (in 1BE9 numbering)

is an easily mutative position according to results of CMCA

calculations (see Table 1), and the position 75 (in 1BE9

numbering) is adjacent to the easily mutative position 76 (see

Table 1) falling into the mutative region R7 (see Fig. 3 B). The

strong intramolecular disulfide bond connects the b3 strand with

the a2 helix, suggesting that this interaction may be responsible for

the equilibrium between the reduced conformation and the

oxidized conformation in INAD PDZ5.

Distantly allosteric network in PDZ proteins
The functional coupling of two positions, even if distantly

positioned in the structure, could mutually constrain evolution at

the two positions, and these should be represented in the statistical

coupling of the underlying amino acid distributions [2,4,23]. In

some cases the functional coupling is not limited only between two

positions, but could be among several distant positions, which

form a mutually evolutionary network.

Long-range allosteric effects that cause the preference change of

ligand peptide in the PDZ binding groove happen in several

distant positions. The results of CMCA study reveal the mutually

multi coupling positions in the PDZ family. Table 1 lists the couple

pairs of easily mutative positions. Actually, these positions can be

reorganized into three groups according to the mutual couple pairs

(in 1BE9 numbering): (30, 44, 51, 56, 64), (16, 41, 78), and (60, 81,

86). In the group 2 the three positions are at distantly separated b1

(position 16), b3 (position 41), and a2 (position 78) that may form a

mutually mutative network and may affect the binding sites in a2-

b2 groove. These findings could provide an explanation to distant

allosteric interaction network in PDZ proteins.

Discussion

Conservation and mutation are two opposite aspects of

functional evolution of protein family. In the studies for protein

evolutionary family the conversation statistical analysis can

provide useful information, and several successful tools are

developed based on the position conversations, such as SCA

(statistical coupling analysis) [2,15] and MI (mutual information)

[12,13]. In this study we prove that correlation analysis based on

position mutations of amino acids also can reveal very useful

information for study of functional evolution of protein family.

The position mutations are equally important to the position

conservations for study of functional evolution of protein family.

In the conservation-based statistical methods the ‘‘phylogenetic

relationship’’ in a protein family causes the ‘‘coherent correlation’’

Figure 2. Graphical representation of position conservation correlation matrix R(con)
L6L of PDZ. (A) The relief map of position

conservation correlation matrix R(con)
L6L of PDZ database. The red bands indicate the region with correlation coefficients between 0.80 to 0.85. The

relief map of R(con)
L6L is complementary to the relief map of position mutation correlation matrix R(mut)

L6L (Fig. 3). (B) The contour map of position
conservation correlation matrix R(con)

L6L of PDZ database. For a clear view the matrix elements r(con)
i,j less than 0.5 are filtered, and the elements

(r(con)
i,i = 1) on diagonal line are not shown. In the primer PDZ database the sequence length is 129, including gaps, which are inserted in the multiple

alignment. After deletion of the unnecessary gaps, the length is reduced to L = 102. The position conservation correlation matrix R(con)
L6L is

symmetric to the diagonal line. The map is colored according to the values: the regions with value higher than 0.90 are colored in red, higher than
0.80 in pink, and higher than 0.70 in orange.
doi:10.1371/journal.pone.0013207.g002
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of all positions [33], which is raised by sharing common ancestry.

Great efforts have been made to solve the ‘‘coherent correlation’’

problem [12,13]. In this study the foundational equation is the

amino acid position mutative function (Eq.7), based on which the

amino acid position mutation matrix TM6L is constructed, and the

CMCA approach is developed. Unlike the conservation-based

methods, the ‘‘coherent correlation’’ problem may be avoided in

the mutation-based method. The theoretical implications of Eq.7

and CMCA approach are summarized as follows. (i) The actual

mutations at specific directions are caused by the functional

constraints in the protein evolutionary family. The directional

mutations at some key positions control the functional evolution of

the protein family. (ii) The functional coupling of two or more

positions, even if distantly positioned in the structure, mutually

constrains mutations at these positions, which form a communi-

cative and evolutionary network in the protein family.

The computation results of CMCA application to the PDZ

protein database show that generalizing the principle of

mutations to account for correlations between positions reveals

a novel structural organization for PDZ proteins that is distinct

from traditional structural descriptions and the SCA approach.

The CMCA approach and the SCA approach describe the

distant allostery and mutative network in protein evolutionary

family from different aspects (mutations and conservations),

therefore both methods can provide useful information comple-

mentally.

Because the conservation-mutation correlation analysis is based

on the correlation analysis of amino acid mutations, the CMCA

approach may find applications in rational protein design and

enzyme engineering by means of artificial residue mutations, and

provide suggestion to improve the bioactivities and physicochem-

ical properties of enzymes.

Table 1. Mutation couple pairs with higher correlation coefficients in position mutation correlation matrix of PDZ database.

Mutation regiona Couple pairb Correlation coefficient 1BE9 numbering

i j Ri,j i j

R1 41 44 0.826708 36 39

42 38c 0.847115 37 –c

R2 46 14 0.852198 41 16

48 9 0.827886 43 11

R3 49 29 0.852867 44 30

56 29 0.850957 51 30

R4 53 52 0.857384 48 47

R5 61 56 0.974221 56 51

67 43 0.868664 62 38

69 49 0.934357 64 44

69 56 0.813315 64 51

74 47 0.820122 69 42

R6 64 26 0.813597 59 27

65 34c 0.896786 60 –c

69 29 0.926572 64 30

71 25 0.838772 66 26

R7 81 67 0.871094 76 62

R8 83 14 0.892220 78 16

R9 83 46 0.865799 78 41

R10 86 34c 0.809981 81 –c

92 34c 0.959904 86 –c

R11 86 65 0.800912 81 60

92 65 0.934498 86 60

R12 92 86 0.844610 86 81

aThe regions (R1 to R12) are shown in Fig. 3 (the contour map of position mutation correlation matrix).
bThe position numbers are from PDZ database of ref [33].
cThe positions indicated by superscript ‘c’ are the gaps in the 1BE9, which are inserted in multiple alignment.
doi:10.1371/journal.pone.0013207.t001

Figure 3. Graphical representation of position mutation correlation matrix R(mut)
L6L of PDZ. (A) The relief map of position mutation

correlation matrix R(mut)
L6L of PDZ database. The red bands indicate the region with correlation coefficients between 0.80 to 0.85. The relief map of

R(mut)
L6L is complementary to the relief map of position conservation correlation matrix R(con)

L6L (Fig. 2). (B) The contour map of position mutation
correlation matrix R(mut)

L6L of PDZ database. For a clear view the matrix elements r(mut)
i,j less than 0.5 are filtered, and the elements (r(mut)

i,i = 1) on
diagonal line are not shown. The position mutation correlation matrix R(mut)

L6L is symmetric to the diagonal line. The map is colored according to the
values: the regions with value higher than 0.90 are colored in red, higher than 0.80 in pink, and higher than 0.70 in orange. In the map there are 12
regions (R1 to R12), where the correlation coefficients r(mut)

i,j are higher than 0.80.
doi:10.1371/journal.pone.0013207.g003
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Materials and Methods

Evolutionarily related proteins have similar sequences and

naturally occurring homologous proteins have similar protein

structures. It has been shown that three-dimensional protein

structure is evolutionarily more conserved than expected due to

sequence conservation [45,46]. However, the evolution of protein

family mainly depends on the mutations happening on the key

positions in the 3D structures. Statistical analysis for a protein

evolutionary family starts from a multiple 3D structural alignment

(MSA) of a homologous protein group.

Multiple structure alignment of protein family
In this study, the multiple structure alignment procedure is used.

Chains that possess coordinates for all their alpha carbons can be

realigned taking into account their structure. From an initial

estimate of the alignment, a new similarity matrix is generated using

the relative alpha carbon coordinates that result from a multi-body

superposition. This matrix is used to realign just these alpha carbon

populated chains. This procedure is then repeated until the Root

Mean Square Distance (RMSD) of the superposition fails to

improve. The multiple structural alignment of a protein family has

to reveal the structural features: all key functional residues are

aligned in same sequence columns, and all key secondary structures

(a-helices, b-sheets, and loops) are positioned in the same sectors.

After multiple sequence alignment the protein family is represented

by a three dimensional primer data matrix X(0)
N6M6L. N is the

number of protein structures in the database, M is the types of amino

acids (M = 21, including 20 natural amino acids and the gap, which

are inserted during the multiple alignment), and L is the length of

amino acid sequences (including gaps). The database matrix

X(0)
N6M6L is a binary matrix, in which the element x(0)

i,k,l of

sequence i at position l is 1 when the amino acid is ak, otherwise, it is 0,

x
(0)
i,k,l~

1 (al~k)

0 (al=k)

�
ð1Þ

Amino acid position frequency matrix
From the primer data matrix X(0)

N6M6L the primer amino acid

position frequency matrix F(0)
M6L is constructed as follows,

f (0)
k,l~

XN

i~1

xi,k,l (k~0,1,2,:::,M; l~1,2,:::,L) ð2Þ

The value of f (0)
k,l is an integer in region [0,N], equals the times of

amino acid ak appearing at position l in all N protein sequences.

The higher value of f (0)
k,l means the higher frequency of amino acid

ak at position l. In this study the gaps are treated as a special amino

acid type numbered by 0, and the 20 natural amino acids are

numbered from 1 to 20. The summation of f (0)
k,l from k = 0 to M is

N. The F(0)
M6L is integer frequency matrix of amino acids. It can be

transformed to decimal frequency after dividing by N.

Reducing unnecessary gaps
The position correlation analysis is complicated by the presence

of alignment gaps, commonly called indels, indicating the

Figure 4. Amino acid mutation correlation relationships of 4 couple position pairs. The 4 position pairs have high mutation correlation
coefficients (R71225 = 0.8388, R46214 = 0.8522, R83214 = 0.892, and R61256 = 0.9742), and the position mutation factors (tk,l) of 20 amino acid types at the
couple position pairs show higher correlation relationship.
doi:10.1371/journal.pone.0013207.g004
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structural region present in some proteins but not in others. The

gaps (space positions) in the primer data matrix X(0)
N6M6L may

interfere with the results of statistical analysis badly. Before

performing the correlation analysis we have to reduce the

unnecessary gaps. To do so, the total amino acid frequencies of

20 natural amino acids at each position l are computed as follows.

q
(0)
l ~

1

N

XM
k~1

f
(0)
k,l (l~1,2,:::,L) ð3Þ

In Eq.3 the index k for amino acid types is from 1 to M = 20, not

including the gap. If the total amino acid position frequencies of 20

natural amino acids q(0)
l is less than 20%, the position l is deleted

from the primer sequences. Because it means that at the position l

more than 80% ‘amino acids’ are gaps, and this position is less

important for the biological function of the protein family. After

unnecessary gaps are deleted, we get the reduced data matrix

XN6M6L and amino acid position frequency matrix FM6L, in

which the sequence length L is smaller than in the primer data

matrix. For simplicity, we still use L for the reduced sequence

length.

Position conservation correlation matrix
The position conservation correlation matrix can be derived

from the reduced position frequency matrix FM6L. Because the

conservation is directly correlated to the amino acid position

frequency, the higher frequency fk,l of amino acid k at position l,

the more conservation of amino acid k at this position. For position

conservation correlation analysis the position frequency covari-

ance matrix C(con)
L6L is constructed firstly from the reduced

position frequency matrix FM6L,

c
(con)
i,j ~

1

M{1

XM
k~1

(f k,i{f i)(f k,j{f j) (i,j~1,2,:::,L) ð4Þ

where f i and f j are the average frequencies at position i and j,

respectively,

f i~
1

M

XM
k~1

f k,i (i~1,2,:::,L) ð5Þ

Hereby we get the position conservation correlation matrix

R(con)
L6L from the position covariance matrix C(con)

L6L as follows.

r(con)
i,j ~

c(con)
i,jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c(con)
i,i c(con)

j,j

q (i,j~1,2,:::,L) ð6Þ

where the superscript ‘con’ indicates the ‘conservation’, and r(con)
i,j

is the position conservation correlation coefficient between

position i and j.

Position mutation correlation matrix
Before computing the amino acid position mutation correlation

matrix, we have to build the amino acid position mutative

equation, which measures the mutation of amino acid k at position

l in protein family. For this purpose the amino acid types nl

(including gap) at each position l in the protein family is very

useful, which describes the diversification of amino acids at

position l. The larger value of nl, the more mutations at position l.

The amino acid position mutation matrix TM6L is constructed as

follows.

tk,l~
nl{1

Df k,l{
N
nl
Dz1

ð7Þ

The value tk,l is the measurement of mutation of amino acid k at

position l in protein family, which is directly proportional to the

amino acid types nl at position l and inversely proportional to the

integer frequency fk,l of amino acid k at position l. The term N/nl

in denominator is the average frequency at position l. The ‘1’ in

denominator is added to avoid the infinite value when the

Figure 5. The mutative factor function (Eq.7) used in conservation-mutation correlation analysis (CMCA). The curves are computed
according to Eq.7. The horizontal coordinates are the integer position frequencies fk,l of amino acids in protein database, and the vertical coordinates
are the mutative factors. The nl is the amino acid types at position l. In calculations the protein sample number N is 100. When the frequency of amino
acid k takes the average value fk,l = N/nl, all curves have the maximum values, and when the amino acid types at position l has the largest value
(nl = 20), the mutative factor gets the largest value 19.
doi:10.1371/journal.pone.0013207.g005
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frequency of amino acid k at position l equals to the average

frequency fk,l = N/nl. The ‘1’ in numerator makes the value of tk,l is

0 for all amino acid types when nl is 1 (no mutation at position l).

Fig. 5 shows the curve shapes of amino acid position mutative

equation (Eq.7). When the frequency of amino acid k takes the

average value at position l (fk,l = N/nl) all curves have the

maximum values, and when the amino acid type at position l

has the largest value (nl = 20), the mutative factor gets the largest

value.

Following the same procedure described in sector 2.4, we can

construct the position mutation covariance matrix C(mut)
L6L from

amino acid position mutation matrix TM6L,

C
(mut)
i,j ~

1

M{1

XM
k~1

(tk,i{ti)(tk,j{tj) (i,j~1,2,:::,L) ð8Þ

where ti and tj are the average mutations at position i and j,

respectively,

ti~
1

M

XM
k~1

tk,i (i~1,2,:::,L) ð9Þ

Hereby we get the position mutation correlation matrix R(mut)
L6L

Figure 6. The flowchart of conservation-mutation correlation analysis (CMCA). The binary matrix X(0)
N6M6L is the primer database of

protein evolutionary family, and F(0)
M6L is the primer amino acid position frequency matrix. Integer N is the number of protein samples, M = 21 is the

types of amino acids (including the gaps), and L is the length of protein sequences. After the unnecessary gaps are deleted, the above two matrices
are denoted as XN6M6L and FM6L. From the frequency matrix FM6L the amino acid position conservation correlation matrix R(con)

L6L is constructed,
and from the amino acid position mutation matrix TM6L the amino acid position mutation correlation matrix R(mut)

L6L is constructed.
doi:10.1371/journal.pone.0013207.g006
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from the position mutation covariance matrix C(mut)
L6L as follows.

r(mut)
i,j ~

c(mut)
i,jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c(mut)
i,i c(mut)

j,j

q (i,j~1,2,:::,L) ð10Þ

where r(mut)
i,j is the position mutation correlation coefficient

between position i and j. The computational procedure is

graphically illustrated in Fig. 6, the flowchart of conservation-

mutation correlation analysis (CMCA).
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