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We provide a detailed description of a gadoteridol-derivatized lysozyme (gadolinium lysozyme) two-colour
serial femtosecond crystallography (SFX) dataset for multiple wavelength anomalous dispersion (MAD)
structure determination. The data was collected at the Spring-8 Angstrom Compact free-electron LAser
(SACLA) facility using a two-colour double-pulse beam to record two diffraction patterns simultaneously in
one diffraction image. Gadolinium lysozyme was chosen as a well-established model system that has a very
strong anomalous signal. Diffraction patterns from gadolinium lysozyme microcrystals were recorded to a
resolution of 1.9 Å in both colours. This dataset is publicly available through the Coherent X-ray Imaging
Data Bank (CXIDB) as a resource for algorithm development.
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Background & Summary
SACLA is one of the two currently operating X-ray free-electron laser (XFEL) facilities in the world (with
several XFELs coming online this year) producing a hard X-ray beam for the investigation of matter, with
various applications in biology1,2, chemistry, physics and material science. In general, XFELs have the
capacity to deliver a pulsed beam that is ten billion times brighter than synchrotron X-ray beams, with
pulses ten thousand times shorter. So far, single wavelength anomalous dispersion (SAD)3–10 and single
or multiple isomorphous replacement (SIR10,11, MIR12) methods have been used for de novo structure
determination with XFELs to solve the phase problem. However, the stochastic nature of the experiment
(randomly oriented crystals, strongly varying pulse intensity and wavelength distribution) demands large
amounts of sample and beam time to average out the stochastic effects. Since 2013, two distinct X-ray
pulses13 that have an unprecedentedly large energy separation can be created simultaneously by the split
undulator operation of the SACLA XFEL. Thus, a large and flexible wavelength separation of the double-
pulse of more than 30% with a precisely controlled time interval down to the attosecond regime can be
realized. This allows targeting of multiple absorption edges of a suitable anomalous scatterer
simultaneously. Using this operation mode of the SACLA XFEL, two distinct datasets can be recorded
from the same sample thereby reducing the costs in both beam time and sample for structure
determination significantly.

Here we describe the deposition of a two-colour serial femtosecond crystallography (SFX) dataset
acquired at SACLA as reported in Gorel et al.14. The two diffraction patterns were first identified and
then processed individually for successful MAD phasing. Analysis of this dataset showed that 5,000
images were required for MAD-based de novo structure determination. Furthermore, it was shown that
phases retrieved by MAD phasing are more accurate than phases retrieved by SAD phasing using the
same number of diffraction images.

Methods
Data acquisition
The two-colour experiment (proposal number 2015B8045) was performed in January 2016 at the SACLA
XFEL in Hyogo, Japan. The photon energies for the two colours were chosen to be above the M-edges
(7 keV) and L-edges (9 keV) of gadolinium, respectively. A High Viscosity Extrusion injector15 (HVE)
mounted in the DAPHNIS16 chamber was used to introduce gadolinium lysozyme microcrystals14

suspended in grease medium17 into the two-colour double-pulsed X-ray beam. X-ray diffraction
data was recorded at beamline 3 at the SACLA facility using the multiport CCD (MPCCD18)
detector. Two diffraction patterns, one for each colour, were acquired simultaneously in one
diffraction image.

Data analysis
Data analysis was performed on the SACLA High Performance Computing Cluster consisting of several
steps of parameter optimization and special data processing for the two-colour data. In the following we
provide a more detailed description of the work published in Gorel et al.14.

Raw data hit files
During a period of 12 h, a dataset of 570,000 diffraction images with consistent experimental parameters
(attenuation, transmission, detector distance etc.) was collected. From this set 208,373 hits were identified
with the programme Cheetah19 (40.6% of the total dataset). The raw data images were obtained using the
Cheetah Dispatcher20 graphical user interface (GUI) from the set of all recorded images as a subset of
images with more than 20 peaks. By default, this data contains only the wavelength of the 7 keV colour
pulse saved in the HDF5 dataset 'photon_energy_ev' and 'photon_wavelength_A' in the diffraction image.
The raw images were written in the multi-event data format and thus had to be split into individual
diffraction images using the split.py module before further data processing was performed.

Silicon powder files
Silicon powder patterns were recorded and used for detector distance parameter determination. To this
end, grease was mixed with silicon nanocrystals and attached to the injector capillary tip. To calculate the
detector distance, the radii of the Debye Scherrer diffraction rings had to be retrieved. However, due to
the low concentration of silicon nanocrystals the high resolution powder rings were faint and could not
be distinguished from the background by a threshold approach. This made another pattern recognition
technique necessary. Thus, 300 interest points14 (i.e., points with certain characteristics like signal over
background and signal divided by background exceeding a dynamically calculated value) per CCD (2,400
in total) were calculated for each diffraction image of the silicon powder data and written into the HDF5
dataset 'poi' in the diffraction image container. Using these interest points the detector distance was
calculated to be 51.03 mm as described in the supplementary information of Gorel et al.14.

Spectra files
By default, the raw-images in HDF5 file format contain only the wavelength value for one particular colour
because the energy separation of the two colours exceeds the spectral range of the narrow range inline
spectrometer. Thus, only the 7 keV colour or the 9 keV colour wavelength is available for each shot but not
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both at the same time. Since knowledge of the wavelength values of both colours is required for the two-
colour data processing, the missing wavelength had to be retrieved from the recordings of a wide range
inline spectrometer21. To this end, the measured spectral profiles were recorded into spectra.h5 files for
later use by the write_calib_color.py module to obtain accurate wavelength values and to add these to the
diffraction images. The wide range inline spectrometer images were obtained with the application
programming interface to SACLA metadata database. Spectral profiles were obtained from these
1,024 × 512 pixel images by collapsing them into a 1,024 pixel sized one-dimensional image. These profiles
were recorded into a HDF5 dataset named 'spectrum' within the spectra.h5 files by the write_spectra.py
module. A double Lorentzian model was fitted to these profiles resulting in values for the amplitudes of
both peaks, a constant offset, the positions of both Lorentzians and their widths. These parameters were
written into the HDF5 datasets 'Amp1', 'Amp2', 'Const', 'Peak1', 'Peak2', 'Width1' and 'Width2', respectively,
in the spectra.h5 file by the write_spectra.py module. The HDF5 dataset 'tags' in the spectra.h5 file contains
the tag name of the respective diffraction image and thus identifies the set of parameters of the two-colour
double-pulse that belongs to the respective diffraction event. Two calibration runs are available (run
392,732 for 7 keV and run 392,738 for 9 keV colour) which were used to find the photon energy calibration
functions for the respective energy ranges of the wide range inline spectrometer.

Since the resolving power of the narrow range spectrometer is smaller than that of the wide range
spectrometer, the same energy value is retrieved for different readings of the wide range spectrometer. By
calculating the median values from the wide range spectrometer readings that have the same narrow
range spectrometer reading, calibration points were obtained, which were then used for the photon
energy calibration function estimation as described in Gorel et al.14 supplement.

7 keV and 9 keV indexable files
The respective photon energy calibration function was applied by the write_calib_color.py module to the
double-pulse energy profile fit parameters. This way the photon energy was obtained and written into the
HDF5 datasets 'photon_energy_ev_color1', 'photon_energy_ev_color2', 'photon_wavelength_A_color1'
and 'photon_wavelength_A_color2', where color1 corresponds to the 7 keV and color2 to 9 keV colour.
The raw data was processed by CrystFEL's22 indexamajig with the colour information added, against
given cell parameters (a= b= 78.3 Å, c= 39.1 Å α= β= γ= 90°). All correctly indexed images are
contained in the hits7kev (21,830) and hits9kev (33,297) datasets.

Two-colour indexable files
Due to an anti-correlation of the double-pulse intensities and thus of the respective diffraction pattern
intensities, the two-colour images typically contain one strong and one weak diffraction pattern. Because

Figure 1. Diffraction Patterns. (a) The two similar diffraction patterns in this image likely belong to a

twinned crystal. Indexing in a second colour was not possible. (b) The diffraction patterns from 7 keV (red)

and 9 keV (blue) strongly differ since very different areas in reciprocal space are probed by the two-colour

double-pulse.
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two completely different diffraction patterns are present in the diffraction image (see Fig. 1) and since the
processing programme can deal with only one pattern at a time, processing of the two-colour diffraction
data is not straightforward and was achieved by the following three steps: Firstly, the diffraction images
were processed with CrystFEL's indexamajig module for the brighter colour identifying the stronger
diffraction pattern in the diffraction image (threshold 200, signal-to-noise ratio 5). Secondly, before the
other diffraction pattern of the weaker colour could be processed, the peak search parameters, i.e.,
threshold and signal-to-noise ratio, were lowered to select a broader set of diffraction peaks by
thresholding (threshold 150, signal-to-noise ratio 3). Then, all peaks of the stronger diffraction pattern
were removed with the write_subtract.py module from this set such that the residual peaks possibly
constituted the weaker diffraction pattern. Subsequently, in the third step these peaks were processed with
indexamajig. To compensate for the residual error in peak position prediction, large integration radii
were applied with indexamajig (--int-radius= 6,6,8).

For two-colour indexing all 9 keV indexable images from the hits9kev dataset were reprocessed to
identify the second (weak) diffraction pattern. These points were saved in the HDF5 dataset
'residual_points_7keV' in the diffraction images and were processed with CrystFEL’s indexamajig
module. Thus, 14,782 two-colour indexable images were found from the 33,297 images of the hits9kev
data subset (44.4%). An overview of all HDF5 data fields used in data processing is provided in Table 1. A
summary of all parameters used in data processing is given in Table 2 as well as an overview of the

Dataset Name HDF5 Data Field Name Data Type

silicon-powder-poi data Dataset {8192, 512}

photon_energy_ev Dataset {SCALAR}

photon_wavelength_A Dataset {SCALAR}

poi Dataset {2400, 3}

Spectra Amp1 Dataset {5150}

Amp2 Dataset {5150}

Const Dataset {5150}

Peak1 Dataset {5150}

Peak2 Dataset {5150}

Width1 Dataset {5150}

Width2 Dataset {5150}

spectrum Dataset {5150,1024}

tags Dataset {5150}

Hitsrawdata data Dataset {8192, 512}

photon_energy_ev Dataset {SCALAR}

photon_wavelength_A Dataset {SCALAR}

hits7kev data Dataset {8192, 512}

hits9kev pca_peaks Group

two-color pca_peaks/100 Dataset {800, 3}

photon_energy_ev_color1 Dataset {SCALAR}

photon_energy_ev_color2 Dataset {SCALAR}

photon_wavelength_A_color1
Dataset {SCALAR}

photon_wavelength_A_color2
Dataset {SCALAR}

residual_points_7keV Dataset {n, 3}

residual_points_9keV Dataset {n, 3}

Table 1. Overview of the data fields. (silicon-powder-poi) ‘data’ contains the diffraction image of the Debye
Scherrer powder ring patterns while ‘poi’ contains the calculated interest points, 300 per CCD. (spectra)
‘Amp1’, ‘Amp2’, ‘Const’, ‘Peak1’, ‘Peak2’ contain the fit parameters for the double-Lorentzian beam energy
profile; ‘spectrum’ contains the energy profile as a 1,024 pixel image. ‘tags’ contains the name of the respective
diffraction image. (hitsrawdata) ‘data’ contains the diffraction image. (hits7kev, hits9kev, two-color) ‘data’
contains the diffraction image. ‘pca_peaks/100’ contains the calculated interest points, 100 per CCD.
‘photon_energy_ev_color1’ contains the photon energy of the 7 keV colour while ‘photon_energy_ev_color2’
contains the photon energy of the 9 keV colour. The weak n diffraction pattern points are saved in
‘residual_points_7keV’ or ‘residual_points_9keV’, respectively if they belong to the 7 keV or the 9 keV colour.
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indexing rates at the various stages of data analysis in Table 3.

Mean phase error
A reference structure was built using data from all 14,782 9 keV indexable images. The cosine difference
defined as Cos[phase(model_obtained_with_all_images)]-Cos[phase(model_obtained_with_subset_of_i-
mages)] was calculated to assess the quality of the phases. This is a comparison between a well-defined
reference structure and the structure obtained with fewer images. By contrast, the figure of merit is an
intrinsic measure without reference. The calculated figure of merit and the cosine differences are
tabulated in Table 4 along with the number of correctly built residues by ARP/wARP.

Code availability
For data processing CrystFEL 0.6.2 and newly implemented python modules were employed. CrystFEL
0.6.2 is a free open source software under the GNU Public License version 3 and can be downloaded from
http://www.desy.de/ ~ twhite/crystfel/. stream2h5.py, write_calib_color.py, write_pca_peaks.py, write_-
spectra.py, split.py and write_subtract_peaks.py are free open source software under the GNU
Public License version 3 and can be downloaded from https://github.com/AlexanderGorel/
crystallography.

Detector distance 51.03 mm

Calibration function 7 keV colour (6.58984+0.00298 x) keV

Calibration function 9 keV colour (5.72503+0.00381 x) keV

Cell parameters a= b= 78.3 Å, c= 39.1 Å, α= β= γ= 90°

Processing parameters for strong diffraction pattern threshold 200, signal-to-noise ratio 5

Processing parameters for weak diffraction pattern threshold 150, signal-to-noise ratio 3

Integration radii parameters 6,6,8

Table 2. Summary of the processing parameters. The detector distance was optimized using the Debye
Scherrer ring diffraction patterns from silicon nanopowder. The calibration functions for the wide range inline
spectrometer were obtained from calibration runs. The x argument is for the position (in pixels) of the
Lorentzians in the double pulse energy profile image to obtain the precise energies of the two colours (7 and 9
keV). Processing parameters were varied to obtain the strong and the weak diffraction patterns. Large
integration parameters were chosen to compensate the prediction uncertainty of the diffraction patterns due to
residual uncertainties in wavelength and detector distance.

Processing step Number of indexed images

7 keV 9 keV 7 and 9 keV

No optimization 8,322 (4%) 10,374 (5%) 684 (0.3%)

Distance, wavelengths optimized 21,830 (10.5%) 33,297 (16.0%) 2,129 (1%)

Peaks of dominant pattern removed from search list 21,830 (10.5%) 33,297 (16.0%) 23,144 (11.1%)

Table 3. Indexing rate of the 208,373 hits at the various stages of the analysis.

No. of images Phasing Method FOM* No. residues in first round (sequenced) No. residues in second round (sequenced) Mean Cosine Difference

9,000 MAD 0.529 127 (115) 127 (127) 0.372

SAD 0.511 125 (104) 127 (127) 0.744

6,000 MAD 0.493 123 (112) 126 (126) 0.398

SAD 0.475 124 (95) 124 (124) 0.753

5,000 MAD 0.473 115 (81) 127(127) 0.435

SAD 0.457 49 (0) 120 (120) 0.759

Table 4. Final phasing statistics. Comparison of SAD phasing using only 9 keV data and MAD phasing
using 9 and 7 keV data. *FOM: figure of merit: cosine of the phase error as estimated by AutoSHARP.
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Data Records
Due to the large size of the raw data we only deposited the hit images (hitsrawdata.tar) in the Coherent
X-ray Imaging Data Bank website (CXIDB) with the CXIDB ID 66 (Data Citation 1). Furthermore, we
deposited the spectra.h5 files (spectra.tar.gz) with spectrum information, the silicon powder files (silicon-
powder-poi.tar.gz) with the calculated interest points, the 7 and 9 keV indexable data (hits7kev.tar and
hits9kev.tar) and the two-colour indexable data (two-color.tar) with residual points from the weak
diffraction pattern in HDF5 file format as well as the geometry file and the cell file (supplement-files.tar.
gz) at CXIDB (Data Citation 1).

Technical Validation
We have successfully phased the deposited data by MAD and solved the structure of the lysozyme
gadoteridol complex using AutoSHARP23 with data to 1.9 Å resolution. The final structure built by
ARP/wARP24 was refined against 5,000 9 keV diffraction images. It is available from the Protein Data
Bank (Data Citation 2).

Usage Notes
Our complete data processing scheme is shown in the data flow diagram published in Gorel et al.14

supplement. Each data processing step can be repeated with the provided command line tools. It would
be interesting to see a comparison between our processing strategy and others, such as the recently
published FELIX25 algorithm which is capable of indexing more than ten different diffraction patterns per
diffraction image. Moreover, the two-colour data set can be used for further software development.
Indexing the reflections belonging to one colour yields the orientation matrix of the unit cell relative to
the laboratory system. Future software may then use this matrix as a starting point for the initial indexing
of the Bragg reflections of the second colour. Since they provide a different set of diffraction conditions,
the matrix can be optimized for the second colour and through iterative refinement using the two sets of
reflections, an extremely accurate orientation matrix can be obtained, in particular for the weak high
resolution reflections. Ideally, a global refinement including both colours should be performed. We expect
that such new analysis algorithms will greatly improve serial femtosecond crystallography (SFX) data
processing in general and facilitate MAD phasing at XFELs in particular.

References
1. Schlichting, I. Serial femtosecond crystallography: the first five years. IUCrJ 2, 246–255 (2015).
2. Spence, J. XFELs for structure and dynamics in biology. IUCrJ 4, 322–339 (2017).
3. Barends, T. R. et al. De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505,
244–247 (2014).

4. Nakane, T. et al. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr. Section D Biol.
Crystallogr 71, 2519–2525 (2015).

5. Nakane, T. et al.Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography
using an iododetergent. Proc. Nat. Acad. of Sci. USA 113, 13039–13044 (2016).

6. Nass, K. et al. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron
laser data. IUCrJ 3, 180–191 (2016).

7. Batyuk, A. et al. Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Sci Adv 2, e1600292 (2016).
8. Fukuda, Y. et al. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc.
Nat. Acad. Sci. USA 113, 2928–2933 (2016).

9. Hunter, M. S. et al. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nat.
Commun. 7, 13388 (2016).

10. Yamashita, K. et al. Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond
crystallography. IUCrJ 4 (2017).

11. Yamashita, K. et al. An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography.
Nat. Sci. Rep 5, 14017 (2015).

12. Colletier, J. P. et al. De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature 539, 43–47 (2016).
13. Hara, T. et al. Two-colour hard X-ray free-electron laser with wide tunability. Nat. Commun. 4, 2919 (2013).
14. Gorel, A. et al. Multi-wavelength anomalous diffraction de-novo phasing using a two-colour X-ray free-electron laser with wide

tunability. Nat. Commun. 4, 1170 (2017).
15. Botha, S. et al. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-

viscosity microstreams. Acta Crystallogr. Section D Biol. Crystallogr 71, 387–397 (2015).
16. Tono, K. et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein

crystallography using an X-ray free-electron laser. J. Synch. Rad 22, 532–537 (2015).
17. Sugahara, M. et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat. Meth 12, 61–63 (2015).
18. Kameshima, T. et al. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser

experiments. Review of Scientific Instruments 85, 033110 (2014).
19. Barty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl.

Cryst. 47, 1118–1131 (2014).
20. Nakane, T. et al. Data processing pipeline for serial femtosecond crystallography at SACLA. J. Appl. Cryst 49, 1035–1041 (2016).
21. Tamasaku, K. et al. Inline spectrometer for shot-by-shot determination of pulse energies of a two-color X-ray free-electron laser. J.

Synch. Rad 23, 331–333 (2016).
22. White, T. A. et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Cryst. 45, 335–341 (2012).
23. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364,

215–230 (2007).
24. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using

ARP/wARP version 7. Nat. Protocols 3, 1171–1179 (2008).
25. Beyerlein, K. R. et al. FELIX: an algorithm for indexing multiple crystallites in X-ray free-electron laser snapshot

diffraction images. J. Appl. Cryst. 50, 1075–1083 (2017).

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170188 | DOI: 10.1038/sdata.2017.188 6



Data Citations
1. Gorel, A. & Foucar, L. Coherent X-ray Imaging Data Bank http://dx.doi.org/10.11577/1369634 (2017).
2. Gorel, A. Protein Data Bank 5OER (2017).

Acknowledgements
This work was supported by the X-ray Free-Electron Laser Priority Strategy Program (Ministry of
Education, Culture, Sports, Science and Technology of Japan) and partially by the Strategic Basic
Research Program (JST) and RIKEN Pioneering Project Dynamic Structural Biology. We acknowledge
computational support from the SACLA High Performance Computing system. The research was
supported by the Max Planck Society and Dynamic Alliance for Open Innovation Bridging Human,
Environment and Materials and TAGEN project of Tohoku University. We thank Dr Roland van Gessel,
Bracco Imaging Deutschland, Konstanz, Germany, for the very generous sample of gadoteridol.

Author Contributions
I.S., M.K., G.N.K. prepared and characterized samples, R.B.D., R.L.S., G.N.K., M.L.G., M.K. designed and
operated sample injection hardware, M.Y., Y.J, S.I. were involved in preparations for the experiment, R.B.
D., R.L.S, G.N.K., M.L.G., M.K., I.S., M.H., C.M.R., K.N., T.R.M.B., K.M., H.F., K.U., I.I., K.T., E.N., R.T,
performed the experiment, C.M.R., M.H., K.N., T.R.M.B, and L.F. performed online processing, A.G.
performed off-line processing, T.R.M.B., A.G. phased the data, I.S. designed and coordinated the project,
A.G. and I.S. wrote the manuscript with input from all the authors.

Additional Information
Competing interests: The authors declare no competing financial interests.

How to cite this article: Gorel, A. et al. Two-colour serial femtosecond crystallography dataset from
gadoteridol-derivatized lysozyme for MAD phasing. Sci. Data 4:170188 doi: 10.1038/sdata.2017.188
(2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/
zero/1.0/ applies to the metadata files made available in this article.

© The Author(s) 2017

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170188 | DOI: 10.1038/sdata.2017.188 7

http://dx.doi.org/10.11577/1369634
https://www.rcsb.org/pdb/explore/explore.do?structureId=5oer
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Two-colour serial femtosecond crystallography dataset from gadoteridol-derivatized lysozyme for MAD phasing
	Background & Summary
	Methods
	Data acquisition
	Data analysis
	Raw data hit files
	Silicon powder files
	Spectra files
	7 keV and 9 keV indexable files
	Two-colour indexable files

	Figure 1 Diffraction Patterns.(a) The two similar diffraction patterns in this image likely belong to a twinned crystal.
	Table 1 
	Mean phase error
	Code availability

	Table 2 
	Table 3 
	Table 4 
	Data Records
	Technical Validation
	Usage Notes
	REFERENCES
	REFERENCES
	This work was supported by the X-�ray Free-Electron Laser Priority Strategy Program (Ministry of Education, Culture, Sports, Science and Technology of Japan) and partially by the Strategic Basic Research Program (JST) and RIKEN Pioneering Project Dynamic 
	ACKNOWLEDGEMENTS
	Design Type(s)protocol testing objectiveMeasurement Type(s)X-ray diffraction�dataTechnology Type(s)X-ray free electron�laserFactor Type(s)&#x02003;Sample Characteristic(s)Gallus�gallusAdditional Information
	Additional Information


