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ABSTRACT: We report the development of ureas as sterically undemanding pro-ligands for Pd catalysis. N-Arylureas outperform
phosphine ligands for the Pd-catalyzed heteroannulation of N-tosyl-o-bromoanilines and 1,3-dienes, engaging diverse coupling
partners for the preparation of 2-subsituted indolines, including sterically demanding substrates that have not previously been
tolerated. Experimental and computational studies on model Pd-urea and Pd-ureate complexes are consistent with monodentate
binding through the nonsubstituted nitrogen, which is uncommon for metal-ureate complexes.

he development of ligand platforms is a key driver of

innovation in homogeneous transition metal catalysis.
This arises from the invaluable feature of transition metal-
catalyzed reactions: the ability to effectively control the
reactivity of a transition metal by modulating the properties
of the ligand bound to the metal center. While ligand
characteristics such as solubility or ligand rigidity are
important, the two main influences controlling the reactivity
of the metal center are the steric and electronic properties of
the ligand. In palladium catalysis, significant reactivity
breakthroughs have been achieved with sterically demanding,
electron-rich ligands such as dialkylbiaryl phosphines and N-
heterocyclic carbenes (NHCs)."

The privileged status of these ligands, however, has
narrowed the focus of ligand discovery, with most modern
development of ligands for Pd-catalyzed transformations falling
within this space,” leaving other areas along the steric-
electronic ligand map largely neglected (Figure 1a). Sterically
demanding, electron-deficient ligands have also seen sub-
stantial development,” while the ligand space of small organic
ligands is currently the most underdeveloped.” We hypothe-
sized that sterically undemanding ligands could be advanta-
geous in reactions where the steric demands of key
intermediates are high. However, such ligand space cannot
be accessed with phosphines or NHCs. Since it has been
shown that primary amine ligands are sterically undemanding,
we decided to focus on ureas as pro-ligands for ureates to fill
this steric-electronic ligand space gap (Figure 1b). In addition
to their steric and electronic properties, ureas have practical
advantages that make them attractive as an alternative ligand
class; they are readily prepared from widely available amine
precursors, are bench stable, and are robust to a variety of
reaction conditions. Despite this, urea derivatives have
remained virtually unexplored as ligands for late transition
metals,”” even with a key precedent demonstrating their
compatibility with Pd catalysis.*” Moreover, the few reports
using amines or ureas as ligands for Pd catalysis make no
reactivity comparison to traditional ligands,**’ leaving it an
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open question whether complementary reactivity is possible by
exploring this steric-electronic region of ligand space.

We identified Pd-catalyzed heteroannulation of haloanilines
and 1,3-dienes as an ideal transformation to test our ligand
design hypothesis (Figure 1lc). This convergent approach to
indolic azaheterocycles, which are a privileged structural motif
in drug discovery owing to their ubiquity in alkaloids,'’ has
received considerable interest. Despite important advances in
both reactivity and enantioselectivity,'' ~'* two key limitations
remain: (1) the only examples using bromoanilines (rather
than iodoanilines) require strained olefins,"> and (2) existing
methodologies demonstrate limited tolerance for steric bulk in
either substrate. Additionally, when dienes are used as
substrates, phosphine ligands are sometimes inhibitory in
these reactions.''” Although detailed mechanistic analysis is
lacking, one possible reason for this inhibition is the increased
coordination and steric requirements with dienes, which are
thought to generate an 7’-allyl complex upon migratory
insertion,llb relative to isolated olefins.

Herein, we present ureas as pro-ligands for ureates, sterically
undemanding ligands for Pd-mediated reactions, while
demonstrating their utility in the heteroannulation of
structurally diverse N-tosylbromoanilines and 1,3-dienes. We
also provide evidence that ureate binding to Pd(II) occurs
preferentially through the nonsubstituted nitrogen, which is
rare for transition metal—urea complexes;'® this provides
preliminary insight into the function of these ligands.

Using N-tosyl o-bromoaniline (1a) and myrcene (2a) as
model substrates, we investigated the competence of various
ligands in the heteroannulation reaction (Table 1).!718
Without exogenous ligand, product yield was modest (32%
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Figure 1. Accessing new regions of ligand space for Pd catalysis. (A) Organic ligands for late transition metal catalysis. (B) Ureas as a ligand
platform for Pd catalysis. (C) This work: urea-enabled heteroannulation of bromoanilines and dienes.

Table 1. Ligand Structure—Reactivity Relationship Studies'®
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yield). Diverse phosphine ligands all inhibited the reaction
(<20% yield), consistent with previous reports.''” In contrast,
we observed a significant improvement in product yield with
urea (4a) and monosubstituted urea 4b, affording indolines
3a/3a’ in ~60% yield (3a/3a’ = 90:10). While comparable
yield could be achieved with further substitution as long as the
urea bore a free —NH, (e.g,, 4c), only a modest ligand effect
was observed with N,N’-disubstituted urea 4d and none with
tri- and tetrasubstituted ureas (4e,f). We also systematically
investigated related compounds bearing an —NH, group.
Amides (Sa—c), thioureas (Sd,e), and phenylguanidine (5f),
although structurally similar to ureas, all inhibited the reaction,
and no ligand effect was observed with carbamimidate Sg,
amines (Sh—j), or pyridine,'” further highlighting the unique
efficacy of ureas in these reactions. Only O-substituted
carbamates bearing an —NH, group showed a ligand effect
(5k,1), though inferior to ureas 4a—c. Similar to ureas, the
ligand effect was lost with the introduction of N-substitution
(5m).
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Among the substituted ureas, 4b afforded the best product
yields and so was selected for further structure—reactivity
studies. The electronic properties of the aryl group did not
affect product yield; ureas bearing unhindered alkyl groups
(4gh) and electronically modified phenyl ureas (4jk) all
afforded similar yields to 4b. While added steric bulk was
detrimental in some cases (4i, 41), product yield improved
when the ortho substituent was phenyl (4m) or was combined
with an electron-donating para substituent (4n—p), with urea
ligand 4p being optimal. The site selectivity was not affected by
the urea ligand structure, but rather the countercation of the
base, with potassium being the most site selective.'”

Next, we explored the generality of our urea-enabled method
with various o-bromoanilines and 1,3-dienes (Figure 2)."* The
reaction is insensitive to the electronic properties of the o-
bromoaniline; substrates bearing electron-withdrawing or
electron-donating groups para to either the nitrogen (3a—g)
or bromide (3h—j) are all effective in the reaction, with yields
ranging from 49% to 76%. Remarkably, while prior related

https://doi.org/10.1021/jacs.2c01019
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Figure 2. Reaction scope.18

Legend: (a) Product ratios of 3/3’ generally 88:12—93:7."% (b) 82:18 r.r. (c) > 99:1 r.r. (d) 5 mol % Pd(OAc), and 10

mol % 4p used. (e) Diene scope was run with 1.3 equiv of diene. (f) 1.5 mol % Pd(OAc), and 3 mol % 4p used. (g) 21 added in 2 portions. (h)

97:3 r.r. (i) 1.8:1 E/Z. (j) 1.0 equiv of n-Bu,NCl added .

heteroannulation methods for the synthesis of indolines have
generally not been compatible with substrates bearing
substitution adjacent to the halide or nitrogen,”” both types
of substrates are well-tolerated under our reaction conditions
(~50%, 3k,]). Substitution in these positions has been shown
to enhance the biological activity of several indolic therapeutics
(e.g, antimalarials, antituberculars).”’ Substrates bearing
various carbonyl functionalities (3m—o), including tertiary
amides, reacted smoothly to afford indolines that closely
resemble bioactive alkaloids such as benzastatins.””
Our urea-enabled heteroannulation methodology also shows
a broad scope with respect to the diene. In contrast to prior
"7 our method effectively engages structurally and
functionally diverse z-coupling partners. Conjugated linear
dienes bearing electron-rich aryl groups afford excellent yields
of product (3ab—ad) with just 1.5 mol % Pd. While the yield is
lower with electron-deficient groups, reactivity is still good
(66%, 3ae). Conjugated dienes bearing a variety of hetero-
cycles are effective in the reaction (3af—ah), including
potentially coordinating groups such as thiophene (3ag).
Nonconjugated, heteroatom-containing linear dienes, includ-
ing unprotected alcohols, also afford indoline products in good
yields (3ai—al).”’ Likewise, branched dienes, including those
bearing sensitive groups such as epoxides, are good substrates
under our reaction conditions (3am—ao). Particularly notable
is our method’s tolerance for sterically demanding 2- and 3-
substituted dienes (3ap—ar); such branching in the 7-coupling
partner has not previously been demonstrated in related
transformations.' "> The primary limitation of our method is
with internal dienes, which are unreactive under our current
conditions."” The reaction scales readily; in fact, when
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performed at a 10-fold increase in scale, the product yield
improved (77% at S mmol vs 68% at 0.5 mmol), allowing us to
isolate ~1.5 g of indoline products (3a/3a’ = 85:15).

Having established the beneficial effect of urea pro-ligands in
the heteroannulation reaction, we next focused our inves-
tigations on the nature of Pd—urea coordination, as
experimental data on binding of urea ligands to Pd is limited.”*
Specifically, to the best of our knowledge, Pd—urea binding
under basic conditions or binding of monosubstituted ureas to
Pd has not been investigated. It is essential to bridge this gap
to better guide the future design of ureate ligands for late
transition metal catalysis. With most known coordination
complexes of urea/ureate with transition metals, urea
coordinates through oxygen; examples of monodentate, N-
bound urea complexes are rare.'®** In the only examples of
Pd—urea catalysis under basic conditions, it was hypothesized
that upon urea deprotonation, the resulting ureate coordinates
through both N and O, similar to ureate complexes with early
transition metals,’ although no studies were undertaken to test
this hypothesis.”” On the basis of our empirical ligand
structure—reactivity studies, we proposed an alternative
model where the ureate binds in a monodentate fashion
through N. We undertook a series of experimental and
computational studies to distinguish between these and other
potential ureate binding modes.

First, we investigated the binding of monosubstituted ureas
to Pd. We prepared stable coordination complex 6 from
phenylurea 4b and PdCl,, which was isolated as an analytically
pure yellow solid in 77% yield (Figure 3a). Complex 6 is a
competent precatalyst for the reaction, affording 3a/3a’ in 56%
yield; likewise, PdCl, in the presence of 4b gave 45% yield.

https://doi.org/10.1021/jacs.2c01019
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Since no crystals suitable for X-ray analysis could be obtained,
we assigned the structure of 6 using infrared (IR) and Raman
spectroscopy. The IR spectrum showed significant lowering of
vibrational frequencies associated with the —NH, relative to
free 4b, with negligible changes to the —NHPh frequencies,
and an increase in the C=O stretching frequency (+50
em™)." Through 'H NMR, we observed rapid deuterium
exchange preferentially at the —NH, group upon coordination
to Pd, with complete loss of the peak corresponding to those
protons (Figure 3a). These data are consistent with
monodentate Pd—urea binding through the —NH, group.
Next, we examined Pd—urea binding in solution to better
reflect the potential coordination dynamics that may be
operative under the reaction conditions. *C NMR solution
spectroscopy and computational studies were used to ascertain
the nature of Pd—urea and Pd—ureate coordination (Figure
3b). A prior solution-state study showed binding of urea to
Pd(en)(H,0)*" cation through either O or N in acetone, with
slight preference for the former (1.6 kcal/ mol).>** This
experimentally measured ratio was used to identify an
appropriate functional and basis set for our calculations (see
below).”> While the '*C NMR spectrum of '*C-urea in a D,0
solution of K,PdCl, showed two new resonances correspond-
ing to O-bound urea and N-bound urea in 1:2 ratio,"” no O-
bound urea species were detected in an acetone-dy/
dimethylformamide (DMF) (1:2) solution of PdCl,. When
K,CO; was added as a base, a new species was detected at
169.0 ppm (cf. 162.7 ppm for free urea). Under neutral
conditions, the downfield NMR shift of the carbonyl peak has
been assigned to the O-bound urea.”*® Equivalent data are not
available for the deprotonated ureate ligand, so we used the
gauge-independent atomic orbital method to calculate NMR
shielding tensors for the plausible ureate-PdCl, complexes.”®

Since an equivalent downfield shift was predicted for both N-
and O-bound ureate, we could not determine the binding
mode of the downfield species observed under basic conditions
using NMR. However, our calculations show that monodentate
binding of two ureate ligands through N is strongly favored
relative to both O-binding and bidentate N,O-binding (+24
and +17 kcal/mol, respectively) (Figure 3c).

These results, taken together with our empirical observations
of the need for a free —NH, in the urea pro-ligand, are
consistent with our hypothesis that N-arylureas act as
monodentate N-bound ureate ligands under our reaction
conditions, coordinating through the nonsubstituted nitrogen
(Figure 3d).”” Buried volume calculations on both the model
Pd-ureate complex and the proposed catalytic intermediate
indicate that the steric demand of ureates is considerably lower
than that of phosphines (%Vj,, = 17 vs 24 to >50).”® Future
mechanistic studies will investigate potential changes in
coordination during catalysis and further elucidate the origin
of the observed ligand effect.

The development of ureas as sterically undemanding pro-
ligands for Pd has enabled a general method for the
heteroannulation of N-tosyl-o-bromoanilines and 1,3-dienes.
Our method displays a broad substrate scope in both coupling
partners, including sterically demanding substrates and those
bearing sensitive functionality. Moreover, by using low
loadings of reagents, only a slight excess of diene, and
environmentally benign anisole as the predominant solvent, we
reduce the environmental impact of this transformation.”” The
general reactivity, combined with the ready scalability of the
reaction and the attractive practical features of ureate ligands,
makes this method amenable for the convergent synthesis of 2-
substituted indolines. We anticipate that the reactivity
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enhancement achieved with ureate ligands will be applicable to
a broader range of late transition metal-catalyzed reactions.
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