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Abstract: This study examined the changes in the number of visitors to regions during periods
of high particulate matter (PM) concentrations in Seoul and analyzed the regional differences of
these changes. Further, it examined the spatial characteristics that affect these regional differences.
This study mapped the regional differences by conducting a spatial cluster analysis using GIS and
examined factors affecting the regional differences using logistic regression analysis. The visiting
population data used in this study were obtained from the Big Data on the de facto population
measured every hour at mobile base stations, and all analyses were conducted in terms of weekdays
and weekends. The results indicated that the visiting population decreases significantly on weekdays
when there are high PM concentrations; however, visits increase on weekends, even during periods
of high PM concentrations. Moreover, there was a huge regional gap in visiting population changes.
Regions with more commercial use, higher bus accessibility, and better pedestrian environment
(pedestrian paths, Walk Score) were more likely to be hotspots, whereas regions with high residential
and industrial use were more likely to be cold spots. These results can be used as the basic data for
PM policies based on regional characteristics.
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1. Introduction

Cities are often sites of massive human movement and agglomeration; thus, various
forms of environmental problems that deteriorate the living environment for urban resi-
dents have received a great amount of attention. Koreans consider particulate matter (PM)
as the most serious environmental problem affecting them, and anxiety over PM is much
higher than that over radioactivity, harmful chemical substances, or climate change [1].
This high anxiety is fueled by frequent advisories and warnings on PM, heightened media
attention, and an increased interest in health among individuals.

Studies on the impact of PM have been conducted in various fields such as environ-
ment, health, and urban planning. Studies focused on PM’s effect on individuals’ health
have found that along with increasing the prevalence of respiratory and cardiovascular
diseases, PM also deteriorates individual health and activity, thereby reducing the activity
of urban residents through behavioral changes and decreased willingness to act due to
its emotional and mental impact [2–6]. Most studies have analyzed PM’s impact on indi-
vidual health or activity by utilizing survey data; few studies have collectively examined
individuals and spatially analyzed the effect of PM using objective data.

The reason for the difficulty in such research is the absence of data and methodology
to measure the activities of urban residents that can be used for spatial analysis. However,
with the recent development of communication, sensor, and data-processing technology, it
has become possible to collect population information by time and purpose through mobile
base stations. Such population information provides an opportunity to conduct various
studies on the space–time distribution and movement of the population; the high-resolution
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floating population Big Data have begun to be utilized in research on the dynamics of
urban residents [7–9]. Spatial exploration using high-resolution population information on
the effects of PM on the activities of urban residents has the advantage of improving the
accuracy of analysis and the utility of the results.

In Korea, the PM warning system has been implemented to reduce damage to the pub-
lic by notifying the occurrence of high PM concentration, and guidelines for national action
and measures are presented depending on the PM concentration. The central and local
governments encourage individuals to stay indoors when there is a high PM concentration;
however, it is impractical for individuals to refrain from going outdoors because of their
work, essential activities such as those for livelihood, or recreational activities. Therefore, it
is necessary to ascertain the effect of concerns over high PM concentrations on people’s
participation in outdoor activities based on objective data. Furthermore, various policy
approaches can be made by identifying regions where citizen activities have decreased due
to high PM concentrations and regions where they have not. This can enable the central
and local governments to concentrate their policy measures and efforts in regions where
people’s activities have not decreased due to high PM concentrations.

Based on this background, this study spatially explores the effect of high PM concen-
tration on the activities of urban residents, using high-resolution space–time population
Big Data measured by recent telecommunication companies, and examines the effect of PM
by statistically verifying it. First, this study examines the changes in the visiting population
in Seoul during periods of high PM concentrations and analyzes the regional differences
in these changes. Second, it examines the spatial characteristics that affect such regional
differences (hotspots, cold spots) by conducting a spatial cluster analysis using GIS to
examine the regional gap and logistic regression analysis to analyze the factors affecting
regional differences.

2. Literature Review

The activities of urban residents interact with the built environment and constitute
the vitality of the neighborhood [10]. Neighborhood vitality is an important factor for
a livable and sustainable neighborhood [11,12]. Active urban residents’ activities are a
source of vitality in the neighborhood, and urban vitality can be created when people move
freely and communicate [13]. Such activities of urban residents also affect their physical
health, and are affected by various factors such as the physical and social conditions of the
neighborhood [14]. Many studies using quantitative data, such as [7,8,15], suggested that
the activities of urban residents are affected by the physical environment of the neighbor-
hood, such as land-use characteristics, roads and traffic, public transport accessibility, and
infrastructure; however, empirical studies on the relationship between air pollution and
environmental pollution are lacking.

The impact of air pollution varies depending on the period of exposure and activity
type [16]. Various studies have proven that an increase in particulate matter (PM) and high
PM concentrations reduces various urban activities such as outdoor activities, labor, and
consumption. The authors of [4,17,18] discovered that individuals perceiving PM show
negative emotions and physical symptoms, as well as avoidance behavior. According
to [19], when perceived air pollution increased by one unit, 20% of physical activities de-
creased. Ref. [20] applied the theory of planned behavior by classifying PM risk perception
into social, environmental, economic, and physical perception, and examined its effects
on attitude, subjective norms, and perceived behavioral control. It was found that social
and physical perception affected subjective norms, and thereby behavioral intention. The
authors of [21] studied the relationship between PM concentrations and activity by examin-
ing changes in activities with respect to PM concentrations (µg/m3) by individual weight.
They found that higher concentrations led to a greater possibility of reduced physical
activity among people with normal weight and obesity. Moreover, Ref. [22] analyzed the
effects of the Air Quality Index (AQI) and PM2.5 on activities and discovered that a 10-unit
(µg/m3) increase in average PM2.5 concentrations at the regional level led to at least a 10%
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increase in the probability that there would be no activity. Similarly, Ref. [23] found that
PM concentrations negatively affected the number of steps walked daily; however, the
significance was not high. The authors of [24] collected data on the number of passengers
accessing public transportation and air pollutant concentrations to analyze the effect of
PM on human outdoor activities and predicted the decrease in the number of subway
passengers with respect to increases in PM levels using machine learning. Additionally,
Ref. [25] analyzed the relationship between passenger number and PM using the passenger
data of each subway station in Seoul and proved that higher PM concentrations led to a
reduction in the number of subway passengers.

The abovementioned studies proved that an increase in PM increases individual risk
perception and anxiety, and thereby reduces physical or outdoor activities. While many
studies have been conducted at the individual level, few have examined the population
level or spatial differences. Since the impact of PM varies depending on characteristics (age,
social and economic characteristics, etc.) at the individual level, it may also vary at the
spatial level depending on the concentration of people’s activities, regional use, or features.
Therefore, it is necessary to approach the impact of PM from multiple perspectives [16].

Recently, Big Data have been actively used in research on PM. Ref. [26] analyzed
real-time PM exposure level using mobile Big Data, and in [27,28], the PM concentration
and air pollutants were predicted using artificial neural networks. Ref. [29] constructed
Big Data using portable air-quality-measurement equipment and mapped the air quality
in high resolution. Ref. [30] reviewed studies that predicted air quality and suggested
machine-learning methods such as Big Data, artificial intelligence, support vector machine,
and random forest with high usability. Ref. [31] analyzed the effects of natural and so-
cioeconomic factors on the PM concentration using remote sensing and geospatial Big
Data. Ref. [32] analyzed people’s perception of PM using social Big Data and suggested
risks. Using social media and satellite Big Data on the prevalence and mortality by disease,
Refs. [32,33] revealed that PM increases the incidence and mortality of diseases. As such,
many studies related to PM use Big Data, but they are focused on research that predicts
air quality using machine learning, or analyze the relationship between the mortality rate
with PM.

This study is differentiated from previous studies in the following ways: first, this
study expands the contextual scope of previous studies that focused exclusively on individ-
ual activities using survey data. Thus, this study analyzes changes in the number of visitors
as the aggregation of individual outdoor activities. It also spatially analyzes data regarding
visitors to empirically ascertain the regions that demonstrate many changes and regions
that do not. Additionally, the spatial characteristics that affect these regional differences
are also examined. Undertaking such research was hindered in the past by difficulties in
obtaining population data that can examine people’s activities. This study was enabled
by recent developments in smart technology that utilizes sensor-based Big Data on the
floating population; these Big Data are expected to have various implications for urban
environment studies.

3. Materials and Methods
3.1. Research Sites and Research Scope

This study selected Seoul, a highly dense city (16,185 persons/km2) with a population
of about 9.795 million people (approximately 19% of the entire South Korean population) as
of 2021, as the research site [34]. Seoul was selected because labor, leisure, and consumption-
related activities can be widely observed there; thus, it is possible to examine changes in the
activities of urban residents with regard to PM. Additionally, data collection is facilitated
because the city is equipped with sensor-based facilities to collect the floating population’s
Big Data. The spatial scope of this study includes all areas of Seoul, and the research was
conducted using “dong,” which is generally perceived as the neighborhood unit, as the
unit of analysis. Seoul is comprised of 25 “gu” districts, each of which is comprised of
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multiple dongs. Overall, there are 424 dongs in Seoul, with an average of 23,048 people
living in each dong.

The temporal scope of this study was 6 months between 1 November 2018 and
30 April 2019, since PM mostly occurs in fall, winter, and spring in Korea. Additionally, the
pre-COVID-19 period is selected to ensure the generalizability of the results. The daily and
hourly data on the visiting population in the city were collected and used in the analysis.
The analysis was conducted by dividing the days into weekdays and weekends, as the
activities of urban residents tended to vary depending on the day of the week—mandatory
activities such as studying and learning predominantly took place on weekdays, while
outdoor activities such as those for leisure took place on weekends.

3.2. Using Big Data of the de Facto Population to Identify Visitor Activity

Most studies examining changes in the activities of urban residents with PM used
survey data. However, the emergence of Big Data that can check the hourly de facto
population from mobile base stations due to recent innovations in information and commu-
nications technology (ICT) and sensors has enabled scholars to overcome the limitations
of survey data on samples. The data used in this study were based on the de facto pop-
ulation measured every hour at the base stations of a Korean mobile carrier (SKT). The
de facto population includes all individuals present within the area at a specified time
and comprises of the resident, working, and visiting populations. This study used the
visiting population as the variable representing the outdoor movement and outdoor activity
of urban residents and excluded resident and working populations who mostly conduct
indoor activities. The raw data were built by the hour, but 6:00 to 21:00 h was set as the
activity time after considering the citizens’ living patterns, as this is when most residents
carry out their daily routines. Based on the hourly visiting population data of that time
zone, the average hourly visiting population for each day was calculated. These data
divided Seoul into 200,515 50 × 50 m cells, derived through geocoding and GIS spatial
operations, for the analysis. The visiting population was divided by area to calculate the
average hourly visiting population density per dong, because of the difference in area per
administrative dong. The average hourly visiting population density per administrative
dong (person/km2) was used as the key data for spatial and statistical analysis models by
calculating the difference between high concentration and control days.

3.3. Days with High PM Concentrations and Control Days

Particulate matter (PM) in the air with diameters of 10 µm or less and 2.5 µm or less
are classified into PM10 and PM2.5, respectively. In Korea, PM warnings are issued when
the PM concentration increases to levels harmful to public health. For PM10, a watch
is issued when the average hourly concentration at the air-quality-monitoring station is
150 µg/m3 or higher for at least 2 h, and a warning is issued when the average hourly
concentration is 300 µg/m3 for at least 2 h. For PM2.5, a watch is issued when the average
hourly concentration is 75 µg/m3 or higher for at least 2 h, and a warning is issued when
the average hourly concentration is 150 µg/m3 for at least 2 h [35]. This study selected the
days on which the watch and warning for PM10 and PM2.5 were issued as the days with
high PM concentrations.

This study first identified the days with high PM concentrations, since the key variable
is the difference in the average hourly visiting population between days with high PM
concentrations and control days. During the research period from November 2018 to April
2019, there were 35 days (24 weekdays, 11 weekends) with high PM concentrations, as
shown in Table 1. While all days excluding the ones with high PM concentrations can be
regarded as control days, this study excluded public holidays and days with fresh snow
cover, as they are outliers in visit activity compared to the control days. The excluded days
are presented in Table 1.
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Table 1. Days with high PM concentrations and days excluded due to outliers.

Classification Weekdays Weekends

Days with high PM concentrations
(warning days)

November 6, November 7, November 27,
November 28, December 21, January 14,

January 15, January 23, February 7,
February 22, February 25, February 28,

March 4, March 5, March 6, March 7, March 12,
March 20, March 21,

March 27, March 28, April 5,
April 22, April 23

December 22, December 23,
January 5, January 12, January 13,

January 19, January 20, February 23,
February 24, March 2, March 3

Excluded

Days with fresh
snow cover

December 13, February 1, February 15,
February 19

November 24, December 16,
February 16

Public holidays December 25, January 1, February 4–6,
March 1 -

HDVMi =
∑ HDVi

HDN
(1)

HDVMi = Average visiting population density on high-concentration days in i admin-
istrative dong.

HDVi = Visiting population density on high-concentration days in i administrative
dong.

HDN = Number of high concentration days.

NDVMi =
∑ NDVi

NDN
(2)

NDVMi = Average visiting population density on control days in i administrative dong.
NDVi = Visiting population density on control days in i administrative dong.
NDN = Number of control days.

3.4. Spatial Analysis and Logistic Regression Model

This study conducted a spatial cluster analysis using local indicators of spatial associa-
tion (LISA) to spatially analyze the difference in the average hourly visiting population
between days with high PM concentrations and control days. This methodology was
developed by [36] and is used in various exploratory spatial data analyses (ESDAs). LISA
gives weights between neighboring regions using Local Moran’s I statistic and calculates
the intensity of the clusters based on the similarity of the weighted attribute values to
identify similar cluster areas and distinct surrounding areas [37].

Clusters are classified into four types depending on the relationship between a specific
region and its neighbors: H-H (High–High), H-L (High–Low), L-H (Low–High), and L-L
(Low–Low). The H-H cluster represents a specific region and its neighbors that saw a
significant increase in the density of the visiting population, despite having high PM
concentrations, and is thus classified as a hotspot. The H-L cluster represents a condition
where the specific exhibits show an increase in the density of the visiting population despite
high PM concentrations, while the neighboring regions show a decrease. Conversely, the
L-H cluster represents a situation where the central region shows a relatively greater
decrease than its neighbors. The L-L cluster represents a situation where a specific region
and its neighbors show a significant decrease in the visiting population, and thus, the
region is classified as a cold spot.

This study used the binomial logistic regression model to analyze the spatial char-
acteristics affecting the regions (dependent variables) that were hotspots or cold spots in
the cluster analysis. The independent variables of the logistic regression model were land
use [8,9,38,39], public transport accessibility [40,41], pedestrian environment [15,42,43], and
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living infrastructure [42,44,45]; these were selected based on previous studies that analyzed
spatial characteristics affecting outdoor activities.

Land-use characteristics are variables to determine the primary use of a specific
region and the ratio of the area used by residential, commercial, business and industrial
facilities were selected as variables. Land-use mix was also included as a variable based
on previous studies [46–48], which emphasized it as a key variable that increases the
walking and outdoor activities of urban residents. Since public transport accessibility is
a key factor affecting outdoor activities, this study included the number of bus stops and
subway stations as variables. The length of the pedestrian path and Walk Score [49] were
also included as variables of the pedestrian environment that have a significant effect on
walking and outdoor activities. Walk Score measures the walkability of an environment
and is calculated based on the accessibility of destinations such as cafes, libraries, and
restaurants that induce walking, block length, and street connectivity. Finally, this study
included the living infrastructure that affects people’s visit activity, such as park area ratio
and the number of schools, hospitals, welfare facilities, markets, and public facilities per
unit area.

The binomial logistic regression model measures the probability of an event’s occur-
rence depending on the conditions of the independent variables (X), by classifying the
outcomes as maximum one or minimum zero in an S-curve logistic function. The odds ratio
is used to interpret the logistic regression model, where the odds refer to the likelihood of a
certain event occurring, and the odds ratio represents the ratio of odds that increase when
the explanatory variable x increases by one unit. The details are provided in Table 2.

Table 2. Variables of the logistic regression model.

Classification Variable Description Source

Dependent
variable

Hotspot = 1,
Cold spot = 0

Hotspot: cluster of regions showing an
increase in the visiting population

when there are high PM concentrations
Cold spot: cluster of regions showing a

decrease in the visiting population
when there are high PM concentrations

Derived from this study, based on
the visiting population of the de

facto population (SKT) data

Independent
variable

Land use

Residential use Area ratio of residential facilities

Building space information by use
(Ministry of Land, Infrastructure,

and Transport)

Commercial use Area ratio of commercial facilities

Business use Area ratio of business facilities

Industrial use Area ratio of industrial facilities

Land use mix
(Quasi-residential district +commercial

district)/(Area of residential +
commercial + industrial districts)

Land-use planning spatial data
(Ministry of Land, Infrastructure,

and Transport)

Public transport
accessibility Bus accessibility Number of bus stops per unit area Seoul bus-stop location

information (Seoul)

Subway accessibility Number of subway stations per unit
area

Road-name address digital map
(Ministry of the Interior

and Safety)

Pedestrian
environment

Length of pedestrian
path

Length of pedestrian
path per unit area

Sidewalk/walkway (National
Geographic Information Institute)

Walk Score Walkability index [49]

Living
infrastructure

Park area ratio (Park area/total area) × 100

Land-use zoning data/national
land planning and spatial

facilities/building space data
(Ministry of Land, Infrastructure,

and Transport)

Schools Number of facilities per unit area

Hospitals Number of facilities per unit area

Welfare facilities Number of facilities per unit area

Market Number of facilities per unit area

Public facilities Number of facilities per unit area
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4. Results
4.1. Changes in Visiting Population during High PM Concentrations

The average hourly visiting population in Seoul was approximately 4804.94 per km2

on weekdays with high PM concentrations and 4871.65 per km2 on control days, thus
showing a decrease of 66.71 due to high PM concentrations. A two-dependent-samples
t-test was conducted to verify whether this change is statistically significant. The results in
Table 3 indicate that there was a statistically significant difference in the visiting population
between days of high PM concentrations and control days, proving that the visiting popu-
lation decreases on days with PM. Since people mostly go to work or school on weekdays,
with a focus on essential activities, they tend to reduce visits or outdoor activities other
than essential activities when PM concentrations are high.

Table 3. t-test results of visiting population changes on weekdays with high PM concentrations and
control days.

Weekday
Average Hourly Visiting Population

Density on Days with High PM
Concentrations

Average Hourly Visiting Population
Density on Days without High PM

Concentrations

Mean 4804.94 4871.65

Standard deviation 3195.98 3203.82

N 424 424

t −6.12

p value 0.000

Visit activity was found to be higher on weekends than weekdays. The average
hourly visiting population was approximately 5752.57 per km2, which is greater than the
5608.10 per km2 on control days, and showed a statistical significance on weekends with
high PM concentrations (Table 4). This result contrasts with the hypothesis that high PM
concentrations reduce visit activity, which can be interpreted in two ways. First, since
people are actively engaged in various outdoor activities on the weekends despite high
PM, which implies that outdoor activities on weekends are critical to livelihood, the central
and local governments must take active measures to help people safely engage in outdoor
activities instead of simple and passive measures such as urging restraint. Second, while
weekends with high PM concentrations were mostly concentrated in January (when it was
cold), there were almost no weekends with high PM concentrations in March and April
(when it was relatively warm), implying that the increase in outdoor activities on warm
spring weekends may have had an effect overall.

Table 4. t-test results of visiting population changes on weekends with high PM concentrations and
control days.

Weekend
Average Hourly Visiting Population

Density on Days with High PM
Concentrations

Average Hourly Visiting Population
Density on Days without High PM

Concentrations

Mean 5752.57 5608.10

Standard deviation 3851.90 3706.68

N 424 424

t 6.333

p value 0.000
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4.2. Spatial Pattern of Visiting Population Changes in High PM Concentrations

Figure 1 shows a heat map of the differences in the average hourly visiting population
density (person/km2) between weekdays with high PM concentrations and control days in
Seoul. Out of the 424 administrative dongs, 246 dongs showed a decrease in the visiting
population, and the pattern was especially evident in Songpa-gu (Songpa 1-dong, Jamsil
3-dong, Jamsil 6-dong, Garak 1-dong), and Gangseo-gu (Gayang 3-dong). The visiting
population showed a clear decrease in regions with concentrations of residential areas.
However, despite the PM, 178 administrative dongs showed an increase in the visiting
population, especially in the central parts of Seoul such as Jongno-gu (Jongno 5·6-ga-dong,
Sungin 1-dong, Sungin 2-dong, Hyehwa-dong), and Jung-gu (Cheonggu-dong, Hoehyeon-
dong). These regions have a low ratio of residential areas and a high concentration of
business and commercial facilities. Previously, a review of the quantitative differences
based on the density of the visiting population on weekdays proved that there was a
statistically significant decrease; however, the actual spatial pattern shows that regions
with decreases and increases appear simultaneously.
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The visiting population’s pattern on weekends with high PM concentrations and
control days was different from that on weekdays. As shown in Figure 2, 333 administrative
dongs showed an increase in the visiting population on high-concentration days, while
91 administrative dongs showed a decrease. Regions showing a clear increase in the visiting
population were those including the central areas and sub-central areas such as Jongno-gu
(Sungin 2-dong, Jongno 1·2·3·4·5·6-ga-dong), Jung-gu (Myeong-dong, Cheonggu-dong),
and Mapo-gu (Seogyo-dong). In addition, the typical commercial and business area,
Gangnam-gu, and the adjacent Seocho-gu also showed a significant increase in the visiting
population. The region showing the greatest decrease in visiting population was Songpa-gu
(Jamsil 6-dong, Songpa 1-dong, Bangi 1-dong, Jamsil 2-dong, Bangi 2-dong, Jamsilbon-
dong). This could be because Songpa-gu is known to be a residential area for the middle
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or upper class in Seoul, and commercial and business facilities are concentrated in the
surrounding Gangnam-gu and Seocho-gu regions.
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concentrations and control days.

LISA analysis was conducted to analyze the clustering patterns of the changes in the
visiting population during high PM concentrations. The regions were classified into the
H-H cluster (hotspots), where a specific region and its neighbors show an increase in the
visiting population despite high PM concentrations, thus needing intensive management;
the L-L cluster (cold spots) where a specific region and its neighbors show a clear decrease
in the visiting population despite high PM concentrations; the H-L cluster, where a specific
region shows an increase in visitors but its neighbors show a decrease; and the L-H cluster,
where a specific region shows a decrease in visitors but its neighbors show an increase.

Figure 3 presents the results of the cluster analysis on changes in the visiting
population on weekdays with high PM concentrations. There are two typical hotspots.
The first is the cluster throughout Seoul’s main central area, Jung-gu (Euljiro-dong, Pil-
dong, Jangchung-dong, Hwanghak-dong, Donghwa-dong) and Jongno-gu (Gahoe-dong,
Jongno 1·2·3·4·5·6-ga-dong, Ihwa-dong, Changsin 1-dong, Sungin 1, 2-dong) and the
neighboring areas of Seongbuk-gu, Dongdaemun-gu, and Seongdong-gu. The other is
the cluster throughout Mapo-gu (Sangam-dong) and Gangseo-gu (Gayang 2-dong) in the
west of Seoul. Cold spots where the visiting population clearly decreases on weekdays
with high PM concentrations are mostly in Songpa-gu (Jamsil-dong, Seokchon-dong,
Oryun-dong, Bangi-dong, Songpa-dong, Garak-dong, Samjeon-dong, Munjeong-dong),
and partially in 1–2 dongs of Nowon-gu, Gangseo-gu, and Yangcheon-gu.
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Figure 3. Clusters of visiting population changes on weekdays.

Although the clusters of changes to the visiting population on weekends are similar
to weekdays, there is a slight difference (see Figure 4). The hotspots are widely dis-
tributed throughout Jung-gu, Jongno-gu, Seongbuk-gu, Dongdaemun-gu, and Seongdong-
gu. Cheongdam-dong, Samseong 2-dong, and Nonhyeon 2-dong of Gangnam-gu were
observed to be clear hotspots on weekends. The 1–2 dongs of Gangseo-gu and Mapo-gu
were partial hotspots. Cold spots or regions where the visiting population clearly decreases
on weekends due to high PM concentrations were found in Songpa-gu, and some neigh-
boring areas of Gangdong-gu and Gangnam-gu; thereby forming a bigger cluster. The
transition patterns such as H-L and L-H were found in regions adjacent to hotspots and
cold spots on both weekends and weekdays.

Jongno-gu and Jung-gu—hotspots that require policy interventions due to the clear
increase in the visiting population despite high PM concentrations—are located at the very
heart of Seoul, between the three urban centers of Seoul’s Master Plan [50]. Historical and
cultural resources such as historical buildings, traditional streets, and hanoks (traditional
houses) as well as commercial and business districts are concentrated in these regions; thus,
there is high population mobility and activity in these regions from morning until the late
hours. Gangnam, which is a hotspot on weekends, is also one of the three urban centers
where commercial functions are highly concentrated. Furthermore, many young people
gather in this region on weekends to access its commercial facilities and amenities.
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Songpa-gu is a typical cold spot where people’s activities decrease the most on both
weekdays and weekends. The residential area accounts for 62% of all areas, and it has
the largest resident population (658,841) in a single gu. This region conforms to the
characteristics of a residential area with a high resident population, owing to which outdoor
activities reduce during periods of high PM concentrations.

The cluster analysis helped reveal that spatial characteristics such as land use and
facilities affect visiting population changes during periods of high PM concentrations. The
following section used a statistical analysis to empirically examine this observation.

4.3. Analysis of Factors Affecting Clusters Showing Visiting Population Changes

This study examined the effects of land use, public transport accessibility, pedestrian
environment, and living infrastructure in hotspots (regional clusters where the visiting
population increases despite high PM concentrations) and cold spots using binomial lo-
gistic regression analysis of the spatial clustering. The model’s validity was tested using
the Hosmer–Lemeshow test, pseudo-R-squared test, predictive value classification, and
receiver operating characteristic (ROC) curve before examining the results of the weekday
and weekend logistics regression models. The Hosmer–Lemeshow test indicated that there
was no statistically significant difference in the estimated probability and actual measured
values of the models. The p-values of the weekday and weekend models were 0.159 and
0.887, respectively, thereby indicating that the estimated and measured values are similar.
The pseudo-R-squared is verified by Cox–Snell R-squared and Nagelkerke R-squared. The
result of Cox–Snell was 0.401 and Nagelkerke was 0.537 on weekdays, while on weekends,
Cox–Snell was 0.424 and Nagelkerke was 0.569. The predictive value classification table
shows the accuracy of the classification by comparing the predicted and measured values
of the hotspots based on the model. Weekdays and weekends had a classification accuracy
of 79.7% and 81.4%, respectively. Finally, the ROC curve derived the accuracy of the model
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using the area under the curve. Weekdays were 0.833 and weekends were 0.887, both of
which were higher than 0.8, thus proving the model’s validity.

As indicated in Table 5, residential use, bus accessibility, length of pedestrian path,
and the number of hospitals had a statistically significant effect as variables that affect
hotspots. The results analyzed based on the odds ratio (Exp(B)) show that bus accessibility,
length of pedestrian path, and the number of hospitals (with odds ratio greater than 1) are
factors that increase the likelihood of a region being a hotspot. That is, regions with higher
bus accessibility, better pedestrian paths, and more hospitals are likely to show an increase
in the visiting population, even on weekdays with high PM concentrations. This could
be attributed to how visiting the hospital is inevitable in many cases, although the use of
other facilities in the living infrastructure tended to be optional. Conversely, the odds ratio
of residential regions was smaller than one, indicating that it is a factor that increases the
likelihood of a region being a cold spot. Regions with a high area ratio of residential use
were more likely to exhibit a significant decrease in the visiting population on weekdays
during periods of high PM.

Table 5. Results of logistic regression analysis (weekdays).

Variable B S.E. Wald Degree of
Freedom p-Value Exp(B)

Land use

Residential use −0.130 0.079 2.746 1 0.097 * 0.878

Commercial use 0.138 0.179 0.593 1 0.441 1.148

Business use −0.415 0.518 0.642 1 0.423 0.660

Industrial use −0.538 1.051 0.262 1 0.609 0.584

Land use mix 0.016 0.023 0.520 1 0.471 1.016

Public transport
accessibility

Bus accessibility 0.063 0.036 3.146 1 0.076 * 1.065

Subway
accessibility 0.067 0.132 0.258 1 0.612 1.069

Pedestrian
environment

Length of
pedestrian path 0.001 0.000 4.084 1 0.043 ** 1.001

Walk Score −0.057 0.058 0.990 1 0.320 0.944

Living
infrastructure

Park area ratio −0.025 0.024 1.119 1 0.290 0.975

Number of schools −0.039 0.048 0.643 1 0.423 0.962

Number of
hospitals 0.436 0.232 3.527 1 0.060 * 1.547

Number of welfare
facilities −0.167 0.167 1.003 1 0.317 0.846

Number of
markets 0.124 0.141 0.776 1 0.378 1.132

Number of public
facilities 0.210 0.619 0.115 1 0.734 1.234

Constant term 4.073 3.368 1.463 1 0.226 58.747

**, * are 1% and 5% significance levels, respectively.

The results of the logistic regression analysis on weekends are shown in Table 6. The
residential use, commercial use, industrial use, bus accessibility, length of pedestrian path,
and Walk-Score variables had a statistically significant effect on hotspots. The odds ratio
(Exp(B)) shows that commercial use with an odds ratio greater than one is a factor that
increases the likelihood of a specific region being a hotspot. This indicates that when the
area ratio of commercial use increases by a unit, the probability that the region is a hotspot
increases by 1.255 times. The odds ratio of residential and industrial use was smaller than
one, indicating that they are factors that increase the odds that the region is a cold spot.
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Therefore, regions with high area ratios of residential and industrial use are likely to be
cold spots, showing a clear decrease in the visiting population when there are high PM
concentrations on weekends. Moreover, bus accessibility, length of the pedestrian path,
and Walk Score all showed a statistically significant relationship with hotspots, indicating
that weekend outdoor activities are concentrated in regions with high bus accessibility
and a good pedestrian environment. Thus, people’s visits to these regions are likely to
increase despite high PM concentration. Living infrastructures did not show a significant
relationship with hotspots or cold spots on weekends.

Table 6. Results of logistic regression analysis (weekends).

Variable B S.E. Wald Degree of
Freedom p-Value Exp(B)

Land use

Residential use −0.156 0.069 5.082 1 0.024 ** 0.855

Commercial use 0.227 0.176 1.659 1 0.098 * 1.255

Ratio of business areas 0.174 0.373 0.217 1 0.641 1.190

Industrial use −5.301 2.577 4.232 1 0.040 ** 0.055

Land use mix 0.034 0.035 0.973 1 0.324 1.035

Public transport
accessibility

Bus accessibility 0.054 0.033 2.738 1 0.098 * 1.056

Subway accessibility 0.125 0.121 1.068 1 0.301 1.134

Pedestrian
environment

Length of pedestrian path 0.003 0.000 5.234 1 0.022 ** 1.002

Walk Score 0.126 0.060 4.478 1 0.034 ** 1.135

Living
infrastructure

Park area ratio 0.028 0.027 1.108 1 0.292 1.029

Number of schools 0.004 0.041 0.010 1 0.921 1.004

Number of hospitals −0.037 0.213 0.031 1 0.861 0.963

Number of welfare
facilities −0.163 0.157 1.084 1 0.298 0.849

Number of markets 0.035 0.152 0.054 1 0.817 1.036

Number of public facilities 0.074 0.471 0.025 1 0.875 1.077

Constant term −8.514 3.460 6.054 1 0.014 0.000

**, * are 1% and 5% significance levels, respectively.

5. Discussion and Conclusions

This study compared citizens’ outdoor activities on days with high PM concentrations
and control days using Big Data of the de facto population collected from a mobile carrier
and discussed the regional differences.

The results showed that changes in the number of visitors from high PM concentrations
were different on weekdays and weekends. Weekdays showed an average decrease of
66.71 people per km2, indicating a statistically significant decrease, whereas weekends
showed an increase in the visiting population despite high PM concentrations. This partially
proves the hypothesis that PM reduces outdoor activities, thus proving that the effect of PM
is not simple or comprehensive. The decrease was also observed to be spatially diverse. The
results of the cluster analysis showed that Jung-gu and Jongno-gu—major urban centers of
Seoul—are the hotspots exhibiting the clearest increase in the visiting population, despite
high PM concentrations on both weekdays and weekends. These regions are Seoul’s key
urban centers, with a high concentration of historical and cultural resources. Additionally,
there is a high ratio of commercial districts with high population mobility and activity.
Gangnam-gu is a hotspot on weekends and an urban center with high concentrations
of commercial and business establishments. Additionally, it is a region where young
people congregate on weekends. Conversely, Songpa-gu—with an extremely high ratio
of residential use—was a cold spot, where the visiting population clearly decreased on
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both weekdays and weekends when there were high PM concentrations. This study also
examined the spatial characteristics affecting hotspot and cold spot clusters using the
binomial logistic regression analysis. Regions with more commercial use, higher bus
accessibility, and better pedestrian environment (pedestrian path, Walk Score) were more
likely to become hotspots, whereas those with higher ratios of residential use and industrial
use were more likely to become cold spots. The number of hospitals among the living
infrastructures also increased the probability of a region becoming a hotspot on weekdays.

The results have the following policy implications: first, the effects of high PM concen-
trations varied between weekdays and weekends and among regions. Modern society is
actively engaged in leisure and outdoor activities on weekends; therefore, urging people to
refrain from outdoor activities when there is PM is ineffective. More active efforts must
be made to fundamentally reduce PM (such as managing the emission sources, supplying
green transportation, installing roads and traffic facilities that prevent PM, etc.), install
air-cleaning facilities to ensure that people conducting outdoor activities are not affected
by PM, and intensively manage air quality in public facilities such as subways, railways,
and airports. Second, since there are clear differences in the number of visitors across
regions, it is necessary to establish customized measures by considering regional charac-
teristics. Rather than applying a comprehensive policy across the country, measures must
be undertaken in regions with a high ratio of commercial functions and a good pedestrian
environment, as people prefer to participate in outdoor activities here. The policy must
consider the land use, public-transport accessibility, pedestrian environment, and major
facilities of the region since the findings have demonstrated their significance to visitation.

This study is significant as it empirically examined the effects of PM on the visit
activity of urban residents, and the regional differences of these effects, a topic that had
previously lacked empirical evidence. Further, it used Big Data based on communications
services and demonstrated its feasibility as a source of data.

However, despite various efforts, this study has limitations. The temporal scope was
limited to 6 months due to the high purchasing cost of Big Data. Moreover, this study was
limited to spatial characteristics, although the outdoor activities of citizens are affected by
factors such as weather and individual characteristics. Future research could add other
variables and reflect on PM concentrations through direct analysis.
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