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Abstract: The spread of wearable and flexible electronics devices has been accelerating in recent
years for a wide range of applications. Development of an appropriate flexible power source to
operate these flexible devices is a key challenge. Supercapacitors are attractive for powering portable
lightweight consumer devices due to their long cycle stability, fast charge-discharge cycle, outstanding
power density, wide operating temperatures and safety. Much effort has been devoted to ensure
high mechanical and electrochemical stability upon bending, folding or stretching and to develop
flexible electrodes, substrates and overall geometrically-flexible structures. Supercapacitors have
attracted considerable attention and shown many applications on various scales. In this review, we
focus on flexible structural design under six categories: paper-like, textile-like, wire-like, origami,
biomimetics based design and micro-supercapacitors. Finally, we present our perspective of flexible
supercapacitors and emphasize current technical difficulties to stimulate further research.

Keywords: supercapacitors; flexible electronics; wearable devices; micro-supercapacitors

1. Introduction

Wearable and flexible electronics has been gaining much attention recently due to
the potential of the emerging Internet of Things (IOT) and related applications such as
smartwatches, head mounted-displays, Bluetooth-earphones, smart clothing, foldable
mobile phones, electronic skins and medical equipment. These applications have made the
distance between humans and devices smaller, resulting in a whole new set of performance
metrics and expectations—in addition to the usual metrics in each case—that include
endurance under unusual conditions of bending, stretching, exposure to ambient including
water and others. Advances in flexible sensors [1], transistors [2–4], displays [5,6] and touch
screens [7] have been reported in recent years to meet application needs. Development of
an optimal and appropriate power source in terms of energy/power density, fast charging
and footprint is a challenge facing these applications right now. Conventional energy
storage systems (ESS) such as the rigid supercapacitors (SC) and Li-ion batteries (LiB) are
not suitable because of their heavy weight relative to the application scenario, hardness
and bulk size. For example, lithium-ion coin-type batteries have powered simple fitness
band style sensors, but they face serious limitations with the introduction of more complex
smartwatches capable of multiple functions. The requirements to power these portable and
flexible cutting-edge electronic devices are as follows: First, the electronic components must
be miniaturized sufficiently to accommodate all the desirable features and the power source
must match the application device footprint. Second, the power source must be light and
immune from explosion. Third, the life of the power source must extend to long-term use on
a single charge, as most applications demand continuous signal detection from the body or
outside. Last, the power source must be ideally deformable as demanded by the application
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while maintaining its electrochemical performance. Flexible SCs meet most of the desirable
characteristics—as will be seen in this review—such as ultrafast charging, high power
density, good storage capacity and high expandability without significant performance
degradation. Further, its long cycle life, wide operating temperatures and safety range make
it more suitable than conventional batteries [8–12]. Here, we provide a review of the most
recent and promising examples of flexible SCs, classified by fabrication methodologies.

2. Design Strategies for Flexible Supercapacitors

Improving the flexibility along with a higher level of compact design of flexible SCs
requires innovations in the structural design of the electrode materials [13]. The basis
is a conductive and flexible substrate that can be used as a current collector, in addition
to flexible electrodes with high electrical conductivity for fast charging and discharging.
Recent research developments in this aspect can be grouped under the following categories:
paper and paper-like, textile and wire-shape configurations [14]. Paper and textile are
recognized as optimal substrates owing to their low cost, flexibility and highly porous
structure capable of absorbing active electrode materials. The wire-shaped SCs are small
in size, lightweight, highly flexible and can be transformed into any shape. This section
introduces all three categories and reviews their relative strengths and weaknesses in
meeting the common and basic criteria for flexible SCs.

2.1. Paper and Other Paper-Thin Substrates

Paper is a promising substrate for constructing flexible energy storage devices due to
its large surface area and mechanical strength. It serves as excellent support for loading
active materials and electrolytes and has features that can improve the life cycle with high
power density and energy density relative to conventional rigid electrodes when physical
stress is applied [15]. The two main electrode designs in paper SCs are the “sandwich”
and the “in-plane” devices as shown in Figure 1a [16]. Yuan et al., fabricated sandwich-
type supercapacitors using a carbon nanoparticle (CNP)/MnO2 nano-rod hybrid design
and H3PO4/polyvinyl alcohol (PVA) electrolyte [12]. The supercapacitors fabricated on
paper-thin carbon fabric were lightweight, flexible and twisted without compromising the
structurally integrated devices. The cyclic voltammetry (CV) results showed only subtle
changes in electrochemical performance at various bending angles and retention of 97.3%
of its initial capacity even after 10,000 charge-discharge cycles [12].

While almost every paper type SC uses conventional sandwich electrodes, this design
cannot compete with new configurations based on in-plane interdigitated electrodes that
feature higher power and energy densities [16]. Nam et al., fabricated transparent and
ultra-bendable supercapacitors with in-plane interdigitated electrodes using a masking
method (Figure 1b) [17]. They deposited Au and active materials (MnO2) on polyethylene
terephthalate (PET) and assembled transparent PVA/H3PO4 gel polymer electrolyte at
the last stage. This paper-thin supercapacitor displayed superior capacitance stability
under in-plane bending and compressive conditions [17]. The capacitance increased by
~1.2 times when a flat supercapacitor was curved with the internal highest bending rate
covering the transparent supercapacitor. Then, the compression bending of the electrolyte
caused pressure in the direction perpendicular to the PET substrate in the PVA/H3PO4
electrolyte membrane, resulting in a closer interaction between the electrode and electrolyte
membrane [18–21].

The interdigitated electrode pattern can be made using masking or by direct printing.
The example above used the masking approach. Printing enables mass production of a thin
digital design pattern since the inks are amenable to producing ultra-thin patterns on pre-
engineered substrates. The printing process begins by dispersing inorganic nanoparticles
(NPs) or organic dye in a proper solvent to develop an ink of appropriate viscosity. Printing
technology is particularly well suited for the manufacture of flexible, low-cost, portable
products because of the generality and broad applicability of substrates and inks. Choi
et al., demonstrated inkjet printing on paper utilizing a common desktop inkjet printer [22]
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and Figure 1d is a schematic representation of the step-by-step procedure using the desktop
printer. Figure 1e shows the CV profile for the fabricated device that exhibits an almost
rectangular shape at various scan rates from 1 to 200 mV/s. The cycling performance
of the SC was tested at a constant charging-discharging current density (0.2 mA/cm2)
and there was no significant decrease in the cell capacitance (about 100 mF/cm2) over
10,000 charge/discharge cycles (Figure 1f). The SCs also maintained their structural shape
after 1000 bending deformations without degrading the capacitance of the cell (Figure 1g).

The layer-by-layer (LbL) assembly is an easy way to accurately control the number of
active materials loaded on diverse substrates based on interdependent interactions between
species, regardless of the size and shape of the substrate [23,24]. Ko et al., fabricated
bendable paper-like SCs using LbL assembly based on hybrid asymmetric structural
composition [25]. Au-soaked paper was used as substrate with MnO cathode, Fe3O4 anode,
PVA/Na2SO4 polymer gel electrolyte and a separator. The contact resistance between
adjacent NPs was minimized to increase the areal capacitance and rate performance by
directly bridging all the interfaces of either metal, metal oxide nanoparticles, or both,
through a small TREN ligand (tris(2-aminoethyl)amine). The assembled SC showed a
specific power density of 128.9 kW/kg, specific energy density of 121.5 W h/kg and
energy density value of 267.3 µW h/cm2. The device exhibited an area power value of
15.1 mW/cm2 and areal capacitance of 1.35 mF/cm2 at a high NP loading amount of
>4.09 mg/cm2, and about 90% of the initial capacitance was retained after 5000 cycles.
The SC also exhibited outstanding mechanical stability under various stress conditions,
which is crucial for practical implementation. There was no significant change in the CV
shape during bending or wrapping, indicating a solid and stable connection between the
paper substrate, NP and electrolyte [25].

2.2. Textile Configuration

Carbon fiber is an up-and-coming candidate for flexible substrates due to its high
mechanical strength and electrical conductivity. The textile’s 3D network can provide fast
electron and ion conduction paths and high loading quantity of active materials. The tex-
tile scaffolding can be fabricated from carbon nanotubes (CNT), graphene fiber, metal,
et cetera [26–31]. Dong et al., chose activated carbon fiber cloth (ACFC) as the body material
to design ACFC/CNT and ACFC/MnO2/CNT composites [31]. The ACFC/MnO2/CNT
textile electrode has a long operating life and excellent flexibility as fiber and textile elec-
trodes. The manufactured textile electrode showed an areal capacitance of 2542 mF/cm2,
power density of 16,287 µW/cm2 and energy density of 56.9 µWh/cm2. Textile and fiber
electrodes provide excellent cycling performance and structural flexibility. Figure 1h shows
an SEM image of ACFC, which is good for constructing electrochemical double-layer capac-
itor (EDLC) electrodes [28–30]. The ACFC textile was woven from activated carbon fiber
bundles (ACFBs), which were fabricated from thousands of twisted activated carbon fibers.
Mechanically strong and flexible carbon fiber provides constant strength and excellent
flexibility for ACFC-based textiles and ACFB-based fiber bundles. The composite textile
can be bent or rolled into a plastic tube as seen in Figure 1i, and the composite fiber bundle
can be distorted, knotted or woven into a simple fabric like frame [31].

Cheng et al., produced textile electrodes woven from CNT/graphene fibers (GF) which
have high electrical conductivity and surface area by pre-intercalating Fe3O4 nanoparticles [32].

The CNT/GFs retain outstanding flexibility of the GFs by bending them into loops or
springs without structural breaks. The folding state of the textile supercapacitor exhibited
a CV curve similar to that when in the flat state. The capacitance decreased initially during
cycle tests but leveled out at a stable value after 1000 cycles (0.4 mF/cm2); the box-shaped
CV curve also slowly contracted and stabilized over 200 folding cycles [32].

Cakici et al., reported highly flexible carbon-based textile well covered with MnO2
structures [33]. Owing to its 1D construction, carbon textiles are the most commonly used
current collectors in energy storage applications. MnO2 can be grown directly on the
surface of carbon textile collectors with a horizontal 1D structure and thus can produce
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a supercapacitor electrode without using a conductive additive or a binder. The charge
and discharge capacitance remained at the initial value of 461 F/g after 5000 cycles, and
the capacitance maintenance ratio of the carbon textile-MnO2 hybrid device was 99.7%.
Furthermore, the Coulombic efficiency was maintained at 99.3%, indicating the stability
of the device. The fabricated composite electrode has indicated a specific capacitance of
463 F/g at 1 A/g in 1.0 M Na2SO4 electrolyte and good cycling stability by maintaining
excellent capacitance at high C-rate [33].
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exhibiting the ion transfer associated with the operation of both types of supercapacitors (SCs). Adapted with permission
from [17]. Copyright (2015), The Royal Society of Chemistry 2015. (b) Process flow for producing transparent, super-bendable
supercapacitor without percolation. (c) Schematic of a transparent, ultra-bendable supercapacitor with alternating patterned
electrodes. Adapted with permission from [17]. Copyright (2013), The Royal Society of Chemistry 2013. (d) Manufacturing
of inkjet-printed SCs with different fabrication factors. Schematic diagram of the stepwise manufacturing procedure of
an inkjet-printed SC. (e) Cyclic voltammetry (CV) profiles at various scan rates (1–200 mV/s). (f) Cycling performance of
inkjet-printed SC at a constant charging-discharging current density (0.2 mA/cm2). (g) CV tests of inkjet-printed SC (scan rate
of 1.0 mV/s) after repetitive folding deformation (folding radius from 2.5 mm to 1000 cycles) [22]. Copyright (2016), The Royal
Society of Chemistry 2016. (h) SEM image of activated carbon fiber cloth (ACFC). (i) ACFC based textiles are bent with a
plastic tube of diameter 8.5 mm. Adapted with permission from [31]. Copyright (2015), WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.
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2.3. Wire Configuration

Unlike the traditional paper type flexible SCs, the recently introduced wire type SCs
are smaller in size, lighter in weight, more flexible and can be transformed into almost
any shape, knotted and even woven into textiles. Structural type is crucial for the device
assembly and operational stability in wire type SCs. Three structural designs have been
developed to date: parallel [34], twisted [35] and coaxial [36] configurations, as shown in
Figure 2a. Li et al., fabricated wire-shaped supercapacitor electrodes built through growing
CuCo2O4 nanostructures onto Ni wires [37]. In general, it is hard to control the morphology
of the grown nanostructure. To deal with these issues, they induced facile capillary action
to assemble the single-walled CNTs (SWCNTs) and graphene oxide (GO) directly on the
nickel wire (Figure 2b). The adsorption of CNTs on parallel Ni surfaces is facilitated
by the shape of the nanowires, which significantly enhances conductivity and promotes
electrolyte penetration. These symmetrical all-solid wire-shaped SCs exhibit outstanding
EDLC performance in addition to ultrahigh flexibility and mechanical properties. They
attained 34.7 F/g of specific capacitance which persisted at 83% of initial value over
3000 cycles of bending and relaxing by 45 degrees as shown in Figure 2c [37].

The two fiber electrodes in a parallel structure are physically separated from each other
and can become mechanically unstable. Therefore, Ren et al., reported a flexible and wear-
able EDLC wire by twisting two aligned multi-walled carbon nanotube (MWCNT)/ordered
electrodes (Figure 2d) [35]. Figure 2e exhibits no apparent degradation in electrochemical
performance when the EDLC is bent. The ordered mesoporous carbon (OMC) particles are
tightly bundled by aligned MWCNTs, allowing more effective use of the high surface area
of OMC components. The CV curve of the EDLC wire was well maintained at a scan rate of
1 mV/s during the 1000 cycle bending process [35]. Parallel and twisted fibers placed in the
center of the devices exhibit the shortest distance, while the fibers located on the outside of
the devices show the maximum distance. The longer the distance between the cathode and
anode, the longer the ion diffusion path, which results in higher internal resistance and
lower power density [38,39].

Owing to the relatively low ion mobility of gel electrolytes compared to liquid elec-
trolytes, it is necessary to optimize the distance between the fiber electrodes to improve
the overall performance of the flexible device. On the other hand, the coaxial type demon-
strates a more homogeneous distance between electrodes and shows efficient charge/ion
transfer [40]. In addition to improving the charge/ion transfer, the coaxial type is regarded
as a more mechanically stable configuration [41,42]. This design also allows the flexibility
to merge two different devices into one device to perform the original function.

Yu et al., fabricated freestanding CuO@AuPd@MnO2 SCs using coaxial nano-whiskers
(NWs) [36]. Figure 2f shows an illustration of the coaxial supercapacitor cable (CSC)
using a solid electrolyte (SE). Thin AuPd was deposited onto the CuO NWs to act as
a current collector and the electrodeposited MnO2 acted as the anode. It can be easily
fabricated by placing the outer tubular electrode (both pre-coated with gel electrolyte)
over the two electrodes partitioned by a separator which has ionic porosity. Built from
these NWs, this supercapacitor showed outstanding bendability and flexibility, high energy
density, high power and excellent cyclic stability. Figure 2g indicates the shape of CV
curves to be the same for folding angles from 0 to 180 degrees. In addition, the box and
symmetrically shaped CV curves show the ideal pseudocapacitive property of MnO2 and
excellent reversible oxidation-reduction reaction. This device maintained 93.4% of its initial
capacitance after bending 100 times at 180 degrees (Figure 2h), showing considerable
bendability [36]. However, it is hard to accurately assemble a multi-layered core-sheath
design into long fibers with a small diameter. Consequently, it is necessary to develop a
simple process for producing new configurations that can keep a constant distance between
the electrodes [43,44]. Nam et al., called this difficulty an “energy lag effect” [45]. When
two types of electrodes are formed between the planar and cylindrical electrode, the electric
field is different. For example, the electric field in a normal charging plane is presumed to
be homogeneous in the 1D direction. In contrast, the electrodes of a wire-shaped energy
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storage device have a cylindrical structure, and in reality, an electric field that attenuates in
2D is generated. To avoid the effects of this energy lag effect, Nam et al., proposed a dual
planar-helix structure for the electrodes, which has an entire wire type but the capacity
is analytically equivalent to that of a normal 2D planar SC. The electro-capacity and the
ohmic resistance of the planar and double-helix designs were investigated using CV and
galvanostatic charging-discharging (GCD). The capacitance density of a dual planar-helix
supercapacitor (1.9 F/cm3 at 10 mV/s) was found to be three times higher than that of a
double helix type (0.66 F/cm3 at 10 mV/s) made using the same materials. Furthermore,
the CV curves showed stable electrochemical performance under twisting deformation [45].
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Figure 2. (a) Main structures and cross-sections of various wire type supercapacitors [40]. Copyright (2021), Materials Chemistry
Frontiers. (b) Description of the structure and schematic of the fabrication procedure for a flexible spiral supercapacitor. (c) Cyclic
stability of wire supercapacitor before and after 45-degree bending during charging-discharging at current density 0.8 A/g. The
insets indicate the wire supercapacitors in their original state (left) and their bent state (right) [37]. Copyright (2018), Advanced
Materials. (d) Schematic of an electrochemical double-layer capacitor (EDLC) wire composed of two multi-walled carbon
nanotube/ordered mesoporous carbon (MWCNT/OMC) composite fibers. (e) CV curves of EDLC wires (OMC weight percent
87%) before and after 500 and 1000 cycles of bending [35]. Copyright (2013), Advanced Materials. (f) Schematic illustrations of
coaxial supercapacitor cable with solid electrolyte. (g) CV graphs (at a scan rate of 100 mV/s) for various bending angles in the
range from 0 to 180◦. (h) Folding the device up to 100 times at various bending angles to show superior bendability of the device.
Adapted with permission from [36]. Copyright (2014), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (i) Schematic of
electric double layer on a planar electrode. (j) Cylindrical electrode structure of (k) dual planar-helix and (l) double helix wire
type SCs. (m) Dual planar-helix and (n) double helix wire type optical images [46]. Copyright (2016,) Advanced Energy Materials.

Guo et al., developed a wire-type supercapacitor with a parallel double helix struc-
ture (PDHS) for stable operation even under deformed states [47]. They wrapped two
symmetrical titanium @MnO2 (Ti@MnO2) fiber electrodes around flexible nylon fiber and
separated them by a spatial gap filled with LiCl/PVA gel as the electrolyte. A commercially
available metal Ti fiber with high conductivity was used as current collector and MnO2
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was electrochemically deposited as active material for the cathode and anode. Figure 3a
depicts the mechanical and electrochemical stability of PDHSs at different angles (0–180◦).
The CV curves (at a scan rate of 10 mV s−1) in the bent state are almost the same as shown
in Figure 3b. The capacitance change is less than 1% for bends from 0 to 180◦ (Figure 3c).
This structure allows two parallel, twisted fiber electrodes to remain physically separated
during bending, ensuring mechanical stability [47].
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2.4. Origami-Shaped SCs

The origami-based approach represents another alternative that allows deformability
compared to conventional methods using freely deformable materials and mechanically
designed structures. Origami is the ancient art of folding 2D sheets of paper with advanced
folding along predefined creases and can be used to fabricate flexible and compact 3D
structures [48]. Nam et al., fabricated an origami-based, all-solid-state, bendable superca-
pacitor system, assembling the analog of a series circuit [49]. This supercapacitor consisted
of periodically isolated electrodes (IEs) and sectionalized electrolytes. These are important
elements of a single system for the densely packed series circuit analogs. The sectionalized
electrolytes and IEs were produced by easily designing with a graphite rod onto a paper
substrate. The sectionalized ion transferring paper (SITP) substrate exhibits stable folding
characteristics that are natural for ordinary paper. The characteristics of SITP allow origami
construction. As shown in Figure 4a, Nam et al., produced three IE samples featuring seven
bent in layers with a wavy pattern and confirmed their electrochemical properties. The
results indicate a close CV graph under compression (60%), planar and tensile deformation
(30%) conditions with specific capacitances of 0.94, 0.98 and 0.93 mF/cm2 according to each
deformable state in Figure 4b. Furthermore, they demonstrated the numerical analysis of
stress distribution through modeling to represent the mechanical properties of each sample
(Figure 4c) [49].
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2.5. Biomimetic Configuration

Nature is a collection of technologies that have long been stabilized, optimized and
made efficient and sustainable through the process of evolution. The collaboration between
material scientists and biologists is important, namely, in the development of biomimetics,
which refers to the imitation and application of systems and mechanisms as well as the struc-
ture and functions of organisms adapted to the environment through evolution. It seeks to
develop stable and energy-efficient technologies by utilizing the structural features of living
things such as multifunctionality, adaptability, resilience and self-organization capabilities.
Examples of biomimetics range from materials to robotics [50,51], human organs and tissue
development [52–54] and power supplies [46,55].

2.5.1. Actin-Myosin Induced Omni-Directional Stretchable System

The sarcomeres in muscle tissue are composed of myosin molecules and actin filaments.
Myosin molecules act as wheels and actin filaments function as tracks and they undergo
permanent and reversible stretching in living bodies. Nam et al., imitated the structure
of sarcomere to investigate complete and independent stretchable all-solid-state SCs [55].
In this system, graphene-CNT layer and PVA/H3PO4 were used as electrodes and gel
electrolyte, respectively. CNT adapts as a roll of myosin and graphene acts like a floated
track (actin filaments). CNT turns into a stretching motion when it receives external stress
because of its high elasticity, and by connecting graphene and CNT with van der Waals
interaction, the interfacial stress and slip stress are diminished at various deformed states.
Figure 5a demonstrates the systematic structure of the electrode. The graphene/CNT-
layered structures demonstrate highly stable electrochemical performance under twisting
and biaxial and uniaxial transformation. The performance under stretched and twisted
conditions was measured by the charge/discharge method and the CV curves of the SC
with graphene/CNT electrodes are shown in Figure 5b–d. A higher specific capacitance
(329 F/g) is seen compared to the capacitance of traditional electrodes having resistance
against a deformed state. The representative values of CD and CV is shown at various
currents and scan rates upon releasing and 80% stretching state in Figure 5c,d. It indicates
the stable and high energy storage property (349 F/g) at a twisting 360◦ angle [56–59].
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Figure 5. (a) Paradigms for the gradual motion of carbon nanotubes (CNTs) along with graphene in an inorganic system
and of myosin along actin in a living cell. (b) The galvanostatic charging-discharging (GCD) curve for the graphene/CNT
layers on polyvinyl alcohol (PVA)/H3PO4 film at a constant current (0.15 A/g) while stretching the structure at a steady
rate of 0.4% strain per minute. (c) Representative GCDs at several current densities (from 0.15 to 0.75 A/g) without strain
and with twisting (360◦) and stretching (80%). (d) Representative CVs at diverse scan rates (from 1 to 10 mV/s) without
strain and with twisting (360◦) and stretching (80%) [55]. Copyright (2017), Biomaterials. (e) Bending deformation states of
energy storages and schematic drawing of an exoskeleton energy storage system. (f) Endoskeleton energy storage system.
Stretching features of endoskeletons with hexagonally located pore structures and electrochemical properties of the device.
(g) Representative CVs at 0.1, 0.3 and 0.5 mV/s. (h) Employment of the endoskeleton system in a micro-LED device on a
wrist [46]. Copyright (2016), Journal of Materials Chemistry.

2.5.2. Endoskeleton Structure Energy Storage System

Regardless of how stretchable and foldable electrodes are developed, fabrication of
fully flexible electrical devices is not possible as long as an external hard passive cover
exists. The passive cover, electrodes and electrolytes are loaded from the outside to the
inside in conventional systems, which have a structure similar to exoskeleton systems like
insects. The hard-cover provides stability against physical attacks but limits flexibility.
To circumvent this intrinsic problem, Nam et al., proposed an oppositely ordered structure,
in other words, endoskeleton structure as shown in Figure 5e,f. They used graphene-
CNT layer electrodes for stretchable electrodes and PVA/H3PO4 as electrolyte because
PVA has enough tensile yield strength (23 MPa) and stretchability for use as an external
layer [60]. Polypropylene sheets were used as a porous and internal scaffold, which played
the roles of a skeleton and ion transferring substrate. The pores are arranged hexagonally
to minimize strain and stress while deformed, resulting in serpentine networks. These
endoskeleton structured SCs showed great capacitance stability under folded and stretched
states. The specific capacitance assessments according to scan rates of 0.1, 0.3 and 0.5 mV/s
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were 144, 95, and 73 F/g under 15% stretched state (Figure 5g) and the achieved Coulombic
efficiency was about 90% regardless of the deformation states. Furthermore, the specific
capacitance values were maintained at over 97% and 90% after 50 cycles of bending
and stretching, showing steady electrochemical and mechanical performance. Figure 5h
represents a simple application of devices for use on the wrist [46].

2.6. Micro-Supercapacitors

With an industrial focus on miniaturized autonomous electrical devices, reducing the
thickness and size enough to be carried has commanded attention, along with flexibility to
easily integrate them into circuits of micro-devices. All-solid-state micro-supercapacitors
(MSCs) are especially encouraging to meet the aforementioned purposes [61,62]. How-
ever, ions of the electrolyte in conventional electronic devices with piled structures hardly
penetrate deep inside the active electrode materials, leading to low C-rates accompanied
by comparatively low power and energy densities [63–65]. Hence, in-plane MSCs us-
ing interdigitated structures were developed to provide high power density because of
their short ion diffusion length and densely packed electrodes [66]. Diverse patterning
approaches have been established to prepare interdigitated electrodes for MSCs including
photolithography with laser scribing [67–69], etching [70–72] and printing [73–75].

Liu et al., developed carbon-type flexible all-solid-state MSCs using a mask-free
plasma etching method, the schematic illustration is given in Figure 6a. CNT electrode and
PVA/H3PO4 gel polymer electrolyte were used. They compared interdigitated SCs and
conventional sandwich SCs using the same electrodes with the former exhibiting higher
capacitance [68]. The power and energy densities could be handled easily by changing
the dimension of interdigitated electrodes per unit area. The MSC with 12 electrodes
demonstrated a capacitance of 2.02 F/cm3 (scan rate = 10 mV/s). The capacitance stayed at
94.1% after 6000 GCD cycles and showed stable performance with capacitance retention of
98.2% over 600 bending cycles [61]. El-Kady et al., fabricated MSCs on flexible substrates
using laser-scribed graphite oxide (LSG) electrodes, which are very deformable and can be
twisted and bent without influencing the structural integrity of the device. The laser scrib-
ing process utilizes changes in electrical properties, optical properties, and film structure.
Figure 6b shows the mechanical performance of the LSG-MSC under strain and Figure 6c
shows the CV characteristics of an MSC for various bending and twisting conditions at
1000 mV/s with the data demonstrating electrochemical stability and excellent mechan-
ical stability irrespective of the degree of bending or twisting. As shown in Figure 6d,
the flexibility and stability of the device was examined during bending and twisted state
and the capacitance was reversible and the initial capacitance was sustained at 97% after
2000 cycles [68].

The studies mentioned above featured electrodes using carbon based-materials, which
form an electrical double layer (EDL) at the surface. They are commonly used as active
materials for SCs because of their good electric conductivity and large surface areas. Surface
area is an important indicator for the performance of SCs, as ions are stored only at the
surface by adsorption and desorption. Metal oxides are also outstanding candidates as
they store ions over redox reactions on the surface. However, most pseudocapacitive
materials do not have a large specific area nor satisfactory electrical conductivity, both
of which are necessary. In this regard, Lee et al., increased the surface area using laser
processing and fabricated flexible MSCs [76]. Laser-induced sintering of the metal oxide
precursors allows fabricating considerably porous electrodes, forming incomplete crystal
growth and agglomeration. They used a polyimide (PI) film as the flexible substrate,
silver conductor, PVA as gel electrolyte and MnO2 and Fe2O3 as active materials. They
maximized the operating voltage and achieved high volumetric energy density by using an
asymmetrical configuration of hetero-pseudocapacitive metal oxides, namely, MnO2 and
Fe2O3. By controlling the laser scan rate, the porosity of silver and metal oxides could be
managed. As the scan rate increased, the size of pores decreased and simultaneously the
number of pores per unit area increased. The measured CV and GCD of both electrodes
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showed high stack capacitance values of 160.5 F/cm3 (Fe2O3) and 136 F/cm3 (MnO2).
Furthermore, the CV curve was continuously maintained under different bending angles
(0◦, 45◦, 90◦, and 120◦), showing good deformability of the device [76].
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Industrial-scale applications demand rapid production of large-area interdigitated elec-
trodes at a low cost. In this regard, the gravure printing method is a promising option, as it
provides high-speed, roll-to-roll deposition of materials at high resolution (<30 µm) [77,78].
Zhang et al., fabricated interdigitated MSCs by gravure printing on a PI substrate with Ag
electrodes, graphene active material and PVA-H2SO4 solid electrolyte [73]. The gravure-
printed MSCs exhibited a high capacitance value of 6.65 mF/cm2, high power density
(0.35 mWh/cm3 at 300 mW/cm3) and high energy density (1.41 mWh/cm3 at 25 mW/cm3).
The CV performance was estimated for various bending states and no considerable devia-
tion was observed at 150 µA/cm2, indicating excellent flexibility [73]. Yun et al., fabricated
foldable asymmetric SCs (AMSCs) by patterning graphene/ZnO nanoparticles using a
resistive-type UV sensor method [79]. An organic solvent-based gel-type electrolyte con-
taining Li+ ions was used for pseudo-capacitance. In each folding state, the Galinstan
interconnect between adjacent separated AMSCs was completely folded. The calculated
capacitance after 100 folding/releasing cycles indicated significantly stable performance.
The tarray also exhibited mechanical stability without pronounced electrochemical degra-
dation after 2000 folding cycles [79].



Micromachines 2021, 12, 163 12 of 16

3. Conclusions and Future Perspectives

Realizing state-of-the-art flexible electronic devices of the future is critically depen-
dent on flexible energy storage systems. Fabrication of devices with intrinsically flexible
materials or developing effective structural configurations is crucial to impart the needed
extreme deformability of the flexible SCs. Here, we have summarized some relevant
fabrication methodologies and reviewed them by category. In spite of the tremendous
efforts by the research community thus far, many challenges still remain, and the following
issues deserve attention. Improvement of the electrolyte performance is highly stressed,
as it affects capacitance, operation voltage and energy/power density. Liquid electrolytes
have leakage problems, while gel-type polymer electrolytes do not have sufficient ion
conductivity. In addition, the operation voltage and temperature range must be expanded
for stable performance under various situations by developing organic-based electrolytes
with nontoxic materials or adding electrolyte additives.

There is a limit to improving the electrochemical performance of the flexible SCs by
optimizing only the active materials. Reducing the ratio of the electrochemically inactive
components in electrodes is also necessary. If possible, flexible electrodes comprised of
all-electrochemically-active materials must be achieved. The development of a proper
passivation layer for the fabricated flexible SCs cannot be overlooked [80]. Exposure to
ambient air results in drying of electrolytes and cracking and performance degradation of
electrodes. A printable passivation or protective layer or cover is preferable to conventional
packaging or rigid covers. The passivation layer must be easy to apply in various device
sizes while maintaining mechanical and electrochemical stability.

The criteria for testing and reporting the mechanical strength and flexibility of flexible
SCs must be established. The word “flexible” has two implications in the application
context: bendable and stretchable. However, many bendable SCs may not be able to
expand and contract. In addition, the electrochemical characteristics of flexible SCs have
been tested at various bending angles, but the number of bending cycles the device can
withstand is unclear in many studies. Establishing standard guidelines for reporting the
electrochemical performance of flexible SCs is urgently needed, as it is difficult to compare
the results across material and fabrication systems [43]. The value of capacitance is often
expressed normalized to the mass of active materials, while the total mass of electrodes
is used occasionally and common in commercial product literature. Restricting to only
active material mass is fully understandable in academic studies since research studies
only focus on preparation and proper use of materials. Total mass is relevant only to
commercial products as numerous details and designs go into obtaining a final optimized
product which is the goal in industry but not in academic studies; it is also beyond the
scope and capability of academic labs to optimize the entire design of an SC and thus,
considering total mass for normalization in the research literature may be meaningless as
well as misleading.

The state-of-the-art printed devices in general, including printed supercapacitors here,
do not yet match the performance of their conventional rigid counterparts in the relevant
metrics. Flexibility is understandably accompanied by compromise in performance, which
may be due to the choice of substrates and other active materials, theoretical limits in
performance, if any, while accommodating flexibility, current limitations of printing tech-
nologies, lack of well-developed equipment, lack of standards and quality control and
many others. Further advances in all these areas may help to close the gap in performance
between flexible devices and their conventional rigid counterparts.

Finally, manufacturing flexible SCs on a large-scale with high throughput requires
further advances, as energy storage devices are a commodity item in a consumer market,
and thus, are price-sensitive. Many of the printing methods are low-cost alternatives to
cleanroom-based micro and nanofabrication, which are not needed here. Reliable process-
ing techniques and the choice of the correct materials become important in establishing
a low-cost structure. As has been pointed out before, performance is not the only, or the
most important, criterion in material selection, but performance to price ratio must be
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considered instead [81]. For example, Ru is nearly 500 times more expensive than Mn
and therefore not recommended unless a RuO2 based pseudocapacitor shows 500-fold or
greater improvement over Mn-oxide devices in all or most critical performance metrics [81].
Safety must also be a primary criterion when making choices for electrolytes and other
active components of the flexible SC.
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