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Abstract
Purpose Several mathematical models have been developed to estimate individualized chances of assisted reproduction 
techniques (ART) success, although with limited clinical application. Our study aimed to develop a decisional algorithm able 
to predict pregnancy and live birth rates after controlled ovarian stimulation (COS) phase, helping the physician to decide 
whether to perform oocytes pick-up continuing the ongoing ART path.
Methods A single-center retrospective analysis of real-world data was carried out including all fresh ART cycles performed 
in 1998–2020. Baseline characteristics, ART parameters and biochemical/clinical pregnancies and live birth rates were col-
lected. A seven-steps systematic approach for model development, combining linear regression analyses and decision trees 
(DT), was applied for biochemical, clinical pregnancy, and live birth rates.
Results Of fresh ART cycles, 12,275 were included. Linear regression analyses highlighted a relationship between num-
ber of ovarian follicles > 17 mm detected at ultrasound before pick-up (OF17), embryos number and fertilization rate, and 
biochemical and clinical pregnancy rates (p < 0.001), but not live birth rate. DT were created for biochemical pregnancy 
(statistical power–SP:80.8%), clinical pregnancy (SP:85.4%), and live birth (SP:87.2%). Thresholds for OF17 entered in all 
DT, while sperm motility entered the biochemical pregnancy’s model, and female age entered the clinical pregnancy and 
live birth DT. In case of OF17 < 3, the chance of conceiving was < 6% for all DT.
Conclusion A systematic approach allows to identify OF17, female age, and sperm motility as pre-retrieval predictors of 
ART outcome, possibly reducing the socio-economic burden of ART failure, allowing the clinician to perform or not the 
oocytes pick-up.
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Introduction

Infertility, defined as the inability to achieve clinical 
pregnancy after 1  year of regular unprotected sexual 
intercourses, is estimated to affect between 8 and 16% of 
reproductive-aged couples worldwide [1]. Thus, unsurpris-
ingly, assisted reproduction techniques (ART) are increas-
ingly applied in current clinical practice, due both to the 
relevant incidence of couple infertility and to the advanced 
age of couples starting to search a pregnancy [2]. Glob-
ally, it is estimated that more than eight million babies 
have been conceived through ART [3]. However, infertil-
ity treatment is a long-term and expensive therapy with 
high dropout rates [4] and nearly half of all couples who 
started ART are likely to remain childless even after mul-
tiple treatment cycles, with foreseeable sequelae in terms 
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of psychological, social, and economic health [5–7]. In 
this context, mathematical models are generated predict 
strong outcomes, such as pregnancy and live birth rates. 
On these parameters, several predictive models for ART 
have been developed over the last three decades in order 
to estimate individualized chances of treatment success 
[8]. These models are required to select either the ART 
approach applicable to the couple or the best treatment 
for the female partner [9]. However, these algorithms are 
scantly applied in current clinical practice. Nowadays, 
scientific societies suggest to tailor COS schemes on the 
female characteristics [10–12].

In clinical practice, the physician needs to estimate a 
priori the female response after the controlled stimulation 
phase (COS) without clear evidence-based recommenda-
tions [13], leaving an extreme variability in the proposed 
therapeutic regimens [8]. Indeed, the most cost-effective 
ART management in terms of pregnancy and live birth rates 
is still far to be achieved [14]. Alongside the absence of a 
gold standard of care in ART, the clinical application of 
predictive models is still scanty, considering their limited 
predictive ability and lack of confidence among clinicians 
about their effectiveness [15].

Despite the wide literature describing how to perform 
a predictive research, the majority of models published so 
far suffer from methodological shortcomings [16, 17]. One 
of the most accredited predictive models is the “McLernon 
post-treatment model,” which predicts the cumulative prob-
ability of a live birth after the first fresh embryo transfer 
during one or more in vitro fertilization (IVF) or intracy-
toplasmic sperm injection (ICSI) cycles [18]. Within this 
post-treatment model, the following parameters were iden-
tified as best predictors for live birth rate: (i) woman’s age, 
(ii) number of oocytes retrieved, and (iii) cryopreservation 
of embryos [18]. However, the currently available predic-
tive models are not sufficiently reliable to guarantee uniform 
counseling for infertile couples [8]. Moreover, these parame-
ters are generally available only when the ART path has been 
started and has passed a point of no return, which cannot be 
changed. Indeed, knowing that the chances of ART success 
are low or equal to zero when the number of embryos is low, 
does not allow the clinician to change the approach or sus-
pend treatment before failure, with the known psychological 
and economic consequences on the couple.

Thus, the need to obtain reliable parameters able to 
improve the concordance of treatment decisions in reproduc-
tive medicine remains urgent [8]. In particular, to promote 
the clinical impact of predictive models, it could be useful 
to identify predictors for those ART phases which could 
be revised or interrupted, i.e., COS, pick-up and embryo 
transfer phases. In particular, a predictive model able to esti-
mate the chances of success in the time point after ovarian 
stimulation and before the pick-up could guide the decision 

to prosecute or not the ongoing ART path or to suspended it 
and to re-schedule a new COS.

With this in mind, the aim of this study is the develop-
ment of a decisional algorithm able to predict strong ART 
outcomes, i.e., pregnancy and live birth rates, in order to 
help the clinician to decide when and whether to perform 
oocytes pick-up, continuing the ongoing ART path.

Materials and methods

A single center, retrospective analysis of real-world data was 
carried out, considering all couples attending the Fertility 
Centre of the Department of Obstetrics and Gynaecology of 
Reggio Emilia (Italy).

All consecutive ART cycles performed from 1998 to 
December 2020 were retrospectively extracted and cou-
ples fulfilling following inclusion criteria were included in 
the final dataset. Couple with (i) both partners older than 
18 years, (ii) attending ART cycles performed using fresh 
sperms and oocytes, (iii) in which COS proceeded until 
ovulation, and (iv) all ART variables reported below are 
available. Thus, neither cycles stopped for any reasons, nor 
cycles performed with frozen sperms and/or oocytes have 
been included. Donor egg and donor sperm were excluded. 
Both ICSI and IVF cycles were considered.

Assisted reproductive technology (ART) procedures

The downregulation of the hypothalamic-pituitary–gonadal 
axis was obtained through gonadotropin-releasing hormone 
agonists administration (GnRHa) (Enantone®, Takeda Phar-
maceutical, or Decapeptyl®, Ipsen). Then, ovarian stimu-
lation was performed applying individualized protocols: 
(i) recombinant follicle-stimulating hormone (FSH) alone 
(Gonal-F®, Merck Serono), (ii) recombinant FSH plus lute-
inizing hormone (LH) (Pergoveris®, Merck Serono), (iii) 
highly purified human menopausal gonadotropin (hMG) 
(Meropur®, Ferring), or (iv) biosimilar FSH (Ovaleap®, 
Theramex). The ovarian stimulation was monitored by 
serum estradiol assays and serial ultrasound (US) evalua-
tions. When more than three follicles with diameter higher 
than 17 mm were observed at US, human chorionic gon-
adotropin (hCG) (Gonasi®, IBSA Institut Biochimique) 
was injected to complete oocyte maturation and to promote 
ovulation. The oocyte retrieval was performed 34–36 h after 
hCG administration by US-guided transvaginal aspiration. 
All patients received supplemental progesterone for 12 days 
until β-hCG assay.

For conventional IVF, oocytes were individually cul-
tured in microdrops of fresh medium under mineral oil with 
100,000 activated sperms. For ICSI, after the removal of the 
cumulus and corona cells, nuclear maturation assessment 
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of oocytes was performed using an inverted microscope to 
ensure the sperm injection in metaphase-II oocytes only.

Oocytes fertilization was assessed at 18–20 h (day 1) after 
insemination/injection and confirmed by the presence of two 
pronuclei and the alignment of nucleolar precursor bodies. 
In all cases, the embryonic development was assessed on 
days 2 and 3 (i.e., after 41–43 and 65–67 h from insemina-
tion/injection, respectively). The best-quality embryos were 
transferred on day 2 or 3 after IVF/ICSI procedures until 
July 2020, when blastocyst transfer was started. In Italy, 
embryo production and transfer are regulated by specific 
national laws which have changed over the years. In particu-
lar, until 2004, a maximum of five embryos were transferred 
for each cycle, since embryos freezing was not allowed. 
Afterwards, the allowed maximum number of transferred 
embryos has progressively decreased until July 2020, when 
it was set to one embryo for women younger than 38 years 
and two for women older. Moreover, across years of obser-
vations, the day in which the embryo could be transferred 
changed according to national rules. Since the embryo trans-
fer follows COS, the day in which it was performed was not 
considered as a predictive variable of the statistical analysis, 
limiting its potential bias.

For the evaluation of pregnancies, international ESHRE 
definitions were considered [19]. In particular, biochemi-
cal pregnancies were assessed 12 days after embryo transfer 
by a positive quantitative serum β-hCG assay higher than 
10 IU/L. In case of positive biochemical pregnancy test, 
micronized progesterone support (Prometrium®, Rottap-
harm Madaus or Crinone®, Merck Serono) was continued 
until 35 days after embryo transfer.

Outcomes

Baseline couple characteristics were collected, considering 
age, body mass index (BMI), and smoking habit of both 
partners. Moreover, reason of couple infertility and fertility 
history of the couple (previous pregnancies, miscarriages, 
pre-term, and term births) were collected as categorical data.

The ART procedure was evaluated collecting several 
variables, considering male parameters (e.g., semen vol-
ume, sperm concentration, sperm motility, and morphol-
ogy percentages), COS approach (e.g., gonadotropin drug 
used, days of stimulation, starting gonadotropin dosage, total 
gonadotropins units used), and variables of COS response 
(e.g., ovarian follicles > 17 mm detected at US before pick-
up—OF17, total and mature oocytes retrieved, injected/
inseminated oocytes, fertilized oocytes, fertilization rate and 
number of total, transferred, and frozen embryos). The ferti-
lization rate was calculated a posteriori as the ratio between 
the number of fertilized oocytes and the number of either 
injected (ICSI method) or inseminated (IVF cycles) oocytes.

Finally, the strong ART outcomes were considered, i.e., 
biochemical and clinical pregnancy and live birth rates. 
The biochemical pregnancy rate represented the detection 
of increased levels of hCG in serum, while the clinical preg-
nancy was diagnosed in case of US visualization of at least 
one embryos with heartbeat [19].

Statistical analysis

First, the entire dataset was evaluated performing descriptive 
statistics, in order to obtain a snapshot of the characteristics 
of the cohort included, evaluating both ART variables and 
outcomes.

Second, continuous parameters’ distribution was evalu-
ated by Kolmogorov–Smirnov test. Then, continuous data 
were compared between couples who obtained a pregnancy 
(biochemical and clinical separately) and a live birth, using 
either ANOVA univariate or Mann–Whitney U-test, accord-
ing to data distribution.

Linear regression logistic analyses were performed, 
repeating the analysis for each strong ART outcome. In 
details, these analyses were performed using strong ART 
outcomes as dependent variables, setting both cohort base-
line characteristics and ART variables reported above 
as covariates and cofactors. Among cofactors, the ART 
approach used (i.e., ICSI or IVF) and the couple infertility 
etiology were included. Only those ART variables which 
predicted pregnancy/live birth rates were extracted and 
evaluated in correlation analyses with other variables, using 
Spearman’s Rho analysis. Moreover, these variables were 
used as dependent variables in multiple linear regression 
analyses, setting other ART variables, and baseline cohort 
characteristics as independent variables. These analyses are 
needed to decide whether a predictive model could be devel-
oped considering only variables obtained before pick-up.

The predictive models’ development was systemati-
cally performed according to the seven steps proposed by 
Steyerberg et al. [20], considering separately biochemical 
pregnancy, clinical pregnancy, and live birth rates as final 
outcome. Table 1 shows the systematic approach to the main 
question.

Finally, three decision trees were created. Each decision 
tree was built to predict pregnancy (biochemical and clinic 
separately) and live birth rates, considering the study ques-
tion. Thus, the dependent variables were the strong ART 
outcomes, whereas independent variables/factors were 
the ART variables that precede pick-up. The exhaustive 
chi-square automatic interaction detector (CHAID) deci-
sion tree was applied. This statistical tool derived from 
the first algorithm developed in the 1980s, accepting both 
categorical and continuous variables [21]. In particular, 
like CHAID, merely nominal or ordinal categorical pre-
dictors are allowable, thus continuous predictors are first 
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converted into ordinal predictors before the merging step. 
The primary advantage CHAID decision tree analysis is 
the large number of variables potentially usable in the seg-
mentation process. In these analyses, nodes were created 
considering those variables acting before the ovulation 
induction, such as female and male ages, BMI, smoking 
habit, infertility causes, gonadotropin drug used, starting 
gonadotropin dose, days of stimulation, total gonadotro-
pin units used, and OF17. The analysis was performed 
using the 50% of the casuistry, randomly selected, to test 
the tree, and the remnant 50% to validate the result. Per-
centages reported within each node of the decision tree 
generated did not report the occurrence of the endpoint 
evaluated but the accuracy of the classification performed 
by each node. Since this approach could be suboptimal 
for internal validation, we confirmed these results apply-
ing a further cross-validation resampling [22]. Moreover, 
in applying the CHAID algorithm, the rule of thumb (or 
stopping rule) for the growth of the tree had a key role. 
Thus, we considered a minimum sample size of 50 cases 
for the terminal nodes (final segments). As such, we assure 
the assumption of normality for an ANOVA procedure to 
compare the means of a continuous variable of interest 
for each segment. In addition, if the variable of interest is 
a categorical one, we reach a reasonable sampling size to 
apply a multinomial logistic regression.

Finally, since the dataset included couples treated one 
time and couples in which ART was applied more than two 
times, the analyses were repeated considering the couples 
treated only one time as a single group.

Statistical analysis was performed using the “Statistical 
Package for the Social Sciences” software for Windows 
(version 26.0; SPSS Inc., Chicago, IL, USA). For all com-
parisons, p < 0.05 was considered statistically significant.

Results

The final database included 12,275 ART cycles, consisting 
of 7826 ICSI (63.8%) and 4449 IVF (36.2%) procedures. 
The 87.5% of the entire cohort (10,375 couples) were 
treated for primary couple infertility. Table 2 summarizes 
main baseline cohort characteristics of couples enrolled. 
Table 3 shows the ART variables and outcomes (as dis-
tinguished above) collected for each ART cycle included 
in the analyses.

Comparing couples who obtained a biochemical preg-
nancy to those who did not, the pregnant couples showed 
lower female and male ages (p < 0.001 and p = 0.002, 
respectively), higher sperm morphology (p = 0.044), 
OF17 (p < 0.001), total retrieved oocytes (p < 0.001), 
injected/inseminated oocytes (p < 0.001), fertilized oocytes 
(p < 0.001), total embryos (p < 0.001), transferred embryos 
(p < 0.001), and fertilization rate (p < 0.001) (Table 4). Simi-
larly, couples who achieved a clinical pregnancy showed 
lower female and male ages (p = 0.002 and p < 0.001, 
respectively), higher sperm morphology (p = 0.006), num-
ber of ovarian follicles higher than 17 mm (p < 0.001), total 
retrieved oocytes (p = 0.025), injected/inseminated oocytes 
(p = 0.004), oocytes fertilized (p < 0.001), total embryos 
(p < 0.001), fertilized embryos (p < 0.001), and fertilization 
rate (p < 0.001) (Table 5). On the contrary, couples who 
achieved a live birth showed fewer statistically significant 
differences compared to couples who did not, as expected. In 
particular, couples who achieved a live birth showed higher 
OF17 number (p < 0.001), total retrieved oocytes (p < 0.001), 
and total embryos (p < 0.001) (Table 6).

Linear logistic regression analysis detected three ART 
variables able to influence the biochemical pregnancy 

Table 1  Development of predictive models applying the seven-steps systematic approach

ART , assisted reproductive techniques; COS, controlled ovarian stimulation

Question Answer

First step Problem definition 
and data inspec-
tion

Main goal of the predictive model: which parameters are able to predict whether to continue the ART path 
after COS phase to obtain biochemical pregnancy/clinical pregnancy/live birth?

Second step Coding of predictors Variables are divided in baseline characteristics and ART variables. All categorical variables have been 
transformed in binary factors

Third step Model specification Step 1: logistic linear regression analysis with stepwise selection method
Step 2: decision trees analysis applying Wald statistics

Fourth step Model estimation Step 1: Spearman’s Rho
Step 2: Chi-squared

Fifth step Model performance Not applicable in this clinical context
Sixth step Model validity A random sample including 50% of the cohort was selected for model development and the remaining 50% 

for the validation. Then, the validation was confirmed by cross-validation resampling
Seventh step Model presentation Decision trees construction for each strong ART outcomes
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rate, such as OF17 number (B = 0.336; Wald coeffi-
cient = 887.1; p < 0.001; OR, 1.40; CI95%, 1.37–1.43), 
the number of total embryos (B = 0.132; Wald coeffi-
cient = 58.0; p < 0.001; OR, 1.14; CI95%, 1.10–1.18), and 
the fertilization rate (B = 0.982; Wald coefficient = 91.9; 
p < 0.001; OR, 2.67; CI95%, 2.18–3.26). Similar results 
were obtained considering the clinical pregnancy rate 
as dependent variable. However, the latter was sig-
nificantly influenced by the OF17 number (B = 0.494; 

Wald coefficient = 281.0; p < 0.001; OR, 1.64; CI95%, 
1.55–1.73), and the total number of embryos formed 
(B = 0.140; Wald coefficient = 14.2; p < 0.001; OR, 1.15; 
CI95%, 1.07–1.24), but not by the fertilization rate. 
Finally, live birth rate was not significantly related to any 
ART variable in logistic regression analysis.

Thus, three ART variables are related to ART out-
comes, such as ovarian follicle number at US, total 
embryos, and fertilization rate. These parameters were 
set as dependent variables in correlation analyses with all 
parameters that chronologically precede them. The OF17 
number was inversely related to female age (p < 0.001), 
BMI (p < 0.001), and total FSH dose used for COS 
(p < 0.001) (Table 3). On the contrary, neither the FSH 
starting dose, nor the length of COS significantly influ-
enced the OF17 number (Table 7). Similarly, the number 
of embryos obtained was inversely related to the female 
age (p < 0.001) and directly related to the OF17 number 
(p < 0.001), semen volume (p < 0.001), sperm concentra-
tion (p < 0.001), sperm motility (p < 0.001), sperm mor-
phology (p < 0.001), total retrieved oocytes (p < 0.001), 
mature oocytes (p < 0.001), injected/inseminated oocytes 
(p < 0.001), and fertilized oocytes (p < 0.001) (Table 7). 
Finally, the fertilization rate was significantly directly 
related to OF17 (p < 0.001), sperm concentration 
(p < 0.001), sperm motility (p < 0.001), sperm morphology 

Table 2  Cohort baseline characteristics

Couples’ characteristics Mean ± stand-
ard deviation

Number of cycles (n) 12,275
Number of couples performing two cycles 3122
Number of couples performing more than two 

cycles
572

Female age (years) 36.9 ± 4.5
Female body mass index (kg/m2) 23.9 ± 4.8
Male age (years) 40.2 ± 5.5
Male body mass index (kg/m2) 23.8 ± 7.5
Infertility causes

  Pelvic n(%) 862 (7.0%)
  Endometriosis n(%) 1085 (8.8%)
  Tubal n(%) 1315 (10.7%)
  Idiopathic n(%) 3263 (26.6%)
  Advanced maternal age n(%) 2308 (18.8%)
  Male factors n(%) 5174 (42.2%)

Previous pregnancies
  1 n(%) 2961 (24.1%)
  2 n(%) 1165 (9.5%)
  3 n(%) 446 (3.6%)
  4 n(%) 181 (1.5%)
  > 5 n(%) 76 (0.6%)

Previous miscarriages
  1 n(%) 2588 (21.1%)
  2 n(%) 917 (7.5%)
  3 n(%) 282 (2.3%)
  4 n(%) 111 (0.9%)
  > 5 n(%) 48 (0.3%)

Previous pre-term delivery
  1 n(%) 114 (0.9%)
  2 n(%) 6 (0.1%)

Previous delivery
  1 n(%) 1386 (11.3%)
  2 n(%) 121 (1.0%)
  3 n(%) 19 (0.2%)
  4 n(%) 13 (0.1%)

Smoking habit
  Female n(%) 994 (8.1%)
  Male n(%) 1252 (10.2%)

Table 3  Assisted reproductive technique (ART) variables and out-
comes. Data are expressed as mean ± standard deviation

ART , assisted reproductive techniques; FSH, follicle-stimulating hor-
mone; OF17, ovarian follicles > 17 mm detected at ultrasound before 
pick-up

ART variables
Days of stimulation (n) 13.1 ± 10.2
Total FSH units (n) 2879.8 ± 2011.3
Estradiol (pg/mL) 1562.9 ± 1004.4 
OF17 (n) 4.3 ± 2.5
Semen volume (mL) 3.0 ± 1.9
Sperm concentration (million/mL) 35.0 ± 37.2
Sperm motility (%) 27.7 ± 18.6
Sperm morphology (%) 3.8 ± 3.6
Total oocytes retrieved (n) 5.5 ± 3.6
Mature oocytes (n) 5.5 ± 4.2
Oocytes injected/inseminated (n) 4.5 ± 3.2
Fertilized oocytes (n) 3.6 ± 2.3
Fertilization rate (%) 60.0 ± 34
Total embryos (n) 2.7 ± 2.3
Transferred embryos (n) 1.6 ± 1.3
ART outcomes
Pregnancy (biochemical) n(%) 2817 (22.9)
Pregnancy (clinic) n (%) 2442 (19.9)
Live birth n (%) 2212 (18.0)
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Table 4  Comparison between 
couples who achieved a 
biochemical pregnancy 
compared to couples who did 
not. Data are expressed as 
mean ± standard deviation. 
Bold values express statistically 
significant differences

ART , assisted reproductive techniques; FSH, follicle-stimulating hormone; OF17, ovarian follicles > 17 mm 
detected at ultrasound before pick-up

Biochemical pregnancy

ART variables Biochemically pregnant 
couples
(n = 2817)

Biochemically not preg-
nant couples
(n = 9458)

p-value

Female age (years) 36.4 ± 4.1 37.1 ± 4.1  < 0.001
Female body mass index (kg/m2) 24.8 ± 1.9 25.0 ± 1.3 0.621
Male age (years) 39.9 ± 5.3 40.3 ± 5.5 0.002
Days of stimulation (n) 13.6 ± 10.9 12.8 ± 4.8 0.543
Total FSH units (n) 2433.8 ± 1677.9 2983.8 ± 2067.7 0.487
Semen volume (mL) 2.9 ± 2.3 2.8 ± 1.8 0.219
Sperm concentration (million/mL) 33.7 ± 33.8 34.0 ± 37.1 0.686
Sperm motility (%) 28.1 ± 18.1 27.9 ± 18.1 0.708
Sperm morphology (%) 3.9 ± 3.7 3.7 ± 3.5 0.044
OF17 (n) 5.9 ± 2.4 3.9 ± 2.3  < 0.001
Total oocytes retrieved (n) 6.1 ± 3.0 5.3 ± 3.7  < 0.001
Mature oocytes (n) 5.6 ± 4.5 5.5 ± 4.2  < 0.001
Oocytes injected/inseminated (n) 5.2 ± 2.8 4.3 ± 3.2  < 0.001
Fertilized oocytes (n) 3.5 ± 1.9 2.4 ± 2.3  < 0.001
Fertilization rate (%) 70.0 ± 29 57.0 ± 34  < 0.001
Total embryos (n) 3.6 ± 2.0 2.4 ± 2.3  < 0.001
Transferred embryos (n) 2.4 ± 1.0 1.4 ± 1.2  < 0.001

Table 5  Comparison between 
couples who achieved a clinical 
pregnancy compared to couples 
who did not. Data are expressed 
as mean ± standard deviation. 
Bold values express statistically 
significant differences

ART , assisted reproductive techniques; FSH, follicle-stimulating hormone; OF17, ovarian follicles > 17 mm 
detected at ultrasound before pick-up

Clinical pregnancy

ART variables Clinically pregnant couples
(n = 2442)

Clinically not preg-
nant couples
(n = 9883)

p-value

Female age (years) 36.2 ± 4.1 36.9 ± 4.2 0.002
Female body mass index (kg/m2) 24.7 ± 1.9 25.1 ± 1.4 0.437
Male age (years) 39.6 ± 5.1 40.6 ± 5.7  < 0.001
Days of stimulation (n) 13.7 ± 13.9 13.2 ± 5.2 0.581
Total FSH units (n) 2328.4 ± 1406.8 2743.6 ± 2319.1 0.145
Semen volume (mL) 2.9 ± 2.5 2.9 ± 1.7 0.805
Sperm concentration (million/mL) 34.3 ± 34.2 31.6 ± 31.8 0.107
Sperm motility (%) 28.5 ± 18.4 26.9 ± 17.1 0.089
Sperm morphology (%) 3.9 ± 3.2 3.7 ± 3.3 0.006
OF17 (n) 6.4 ± 2.3 4.2 ± 2.2  < 0.001
Total oocytes retrieved (n) 6.2 ± 3.0 5.9 ± 3.1 0.025
Mature oocytes (n) 5.7 ± 4.7 5.4 ± 4.3 0.004
Oocytes injected/inseminated (n) 5.3 ± 2.8 5.0 ± 2.9  < 0.001
Fertilized oocytes (n) 3.5 ± 1.9 3.3 ± 2.0  < 0.001
Fertilization rate (%) 71.0 ± 28 67.0 ± 39  < 0.001
Total embryos (n) 3.7 ± 2.0 3.3. ± 2.0  < 0.001
Transferred embryos (n) 2.4 ± 1.0 2.2 ± 1.0  < 0.001
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(p < 0.001), total retrieved oocytes (p < 0.001), injected/
inseminated oocytes (p < 0.001), fertilized oocytes 
(p < 0.001), total embryos (p < 0.001), transferred embryos 
(p < 0.001) (Table 7).

The three ART variables that significantly influenced 
pregnancy and live birth rates were then used as dependent 
variables in multivariate linear regression analyses, setting 
other factors, and baseline characteristics as independent 
variables. No statistical models were generated by multi-
variate analyses able to correlate the three ART variables 
with other parameters. These results suggest that the three 
parameters are not statistically influenced by any of the other 
ART parameters considered.

Decision trees analysis

The first decision tree was created using biochemical preg-
nancy as dependent variable. The statistical power of the 
analysis was 80.8% for the training (relative risk = 0.192, 
standard error 0.005) and 81.4% for the validation analysis 
(relative risk = 0.186, standard error 0.005). Seven predictive 
nodes have been identified (Fig. 1). The first five nodes clas-
sified biochemical pregnancies according to thresholds for 
OF17 (Fig. 1). The result of the decision tree suggests that at 
least two thresholds of OF17 could be suggested. When two 
or less follicles have been recognized at US before pick-up 
a biochemical pregnancy is virtually unachievable, while 
when more than 7 follicles are observed, there is the highest 

probability to achieve a biochemical pregnancy. Moreover, 
although between three and seven follicles at US, no clear 
distinction between pregnancy and no pregnancy could be 
achieved, when the follicle numbers at US was three, sperm 
motility entered the model (nodes 6 and 7), detecting a pre-
dicting threshold of 34.0% of progressive sperm motility 
(Fig. 1).

The second decision tree was performed on clinical preg-
nancy, reaching a statistical power of 85.4% for the train-
ing (relative risk = 0.146, standard error 0.005) and 86.8% 
for the validation analysis (relative risk = 0.138, standard 
error 0.004). Ten predictive nodes were identified (Fig. 2), 
in which the OF17 number remained in the first six nodes 
(Fig. 2). As for biochemical pregnancy, this analysis con-
firmed two thresholds regarding the OF17 number, i.e., 
equal or below 2 and above 7 follicles. In this analysis, 
between 5 and 7 follicles detected at US, no clear distinc-
tion between pregnancy and no pregnancy could be detected. 
On the contrary, when the number of follicles was 3 or 4/5, 
the female age entered the model with two different thresh-
olds, respectively (37.2 years, nodes 7 and 8, and 40.1 years, 
nodes 9 and 10) (Fig. 2).

Finally, the third decision tree analysis was made for 
live birth rate. In this last model, the OF17 represented 
the first five nodes, with a statistical power of 86.6% for 
the training (relative risk = 0.134, standard error 0.004) 
and 87.2% for the validation analysis (relative risk = 0.128, 
standard error 0.004) (Fig. 3). This result suggests that 

Table 6  Comparison between 
couples who achieved a live 
birth compared to couples who 
did not. Data are expressed 
as mean ± standard deviation. 
Bold values express statistically 
significant differences

ART , assisted reproductive techniques; FSH, follicle-stimulating hormone; OF17, ovarian follicles > 17 mm 
detected at ultrasound before pick-up

Live birth

ART variables Couples with live birth
(n = 2212)

Couples without live birth
(n = 10,063)

p-value

Female age (years) 36.7 ± 4.7 36.9 ± 4.8 0.722
Female body mass index (kg/m2) 24.9 ± 1.8 25.0 ± 1.6 0.498
Male age (years) 39.6 ± 5.1 40.6 ± 5.7 0.080
Days of stimulation (n) 13.9 ± 23.9 11.7 ± 7.2 0.555
Total FSH units (n) 2321.7 ± 1402.3 2230.1 ± 1221.6 0.217
Semen volume (mL) 2.9 ± 2.6 2.6 ± 1.9 0.289
Sperm concentration (million/mL) 33.8 ± 34.8 32.6 ± 33.1 0.282
Sperm motility (%) 28.3 ± 18.5 27.1 ± 18.4 0.159
Sperm morphology (%) 3.9 ± 3.7 3.4 ± 2.6 0.054
OF17 (n) 6.5 ± 2.3 5.5 ± 1.9  < 0.001
Total oocytes retrieved (n) 6.2 ± 3.0 5.8 ± 2.9  < 0.001
Mature oocytes (n) 5.8 ± 5.0 5.6 ± 4.5 0.236
Oocytes injected/inseminated (n) 5.3 ± 2.8 5.0 ± 2.9 0.126
Fertilized oocytes (n) 3.5 ± 1.9 3.3 ± 2.1 0.076
Fertilization rate (%) 71.0 ± 31 68.0 ± 32 0.093
Total embryos (n) 3.7 ± 1.9 3.2. ± 2.1  < 0.001
Transferred embryos (n) 2.4 ± 1.0 2.4 ± 0.9 0.909
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OF17 is the first parameter able to classify pregnant and 
not pregnant women (first node). However, only the thresh-
old of 2 follicles is confirmed as a predictor of lack ART 
success. On the contrary, other nodes did not clearly clas-
sify live birth rate. In this analysis, if the OF17 number 
was 3 or > 7, female age entered into the model (second 
node) with the thresholds of 37.2 (nodes 6 and 7) and 
35.6 years (nodes 8 and 9), respectively (Fig. 3).

Decision tree analyses for each strong ART outcome 
were repeated considering only those couples in which 
the ART was applied only one time (i.e., 7952 couples). 

The predictive accuracy of all three trees remained also 
considering only this subgroup (data not shown).

Male contribution

Considering the role of sperm motility in the biochemical 
pregnancy decision tree, the casuistry was divided accord-
ing to the threshold suggested (i.e., 34%). Fisher exact test 
was performed to compare biochemical and clinical preg-
nancy between the two groups created, considering IVF 
and ICSI separately. Indeed, we previously demonstrated 

Table 7  Linear correlation 
analysis between parameters 
which predicted assisted 
reproduction techniques (ART) 
outcomes and all parameters 
preceding the variable itself. 
Bold values express statistically 
significant differences

ART , assisted reproductive techniques; BMI, body mass index; FSH, follicle-stimulating hormone; OF17, 
ovarian follicles > 17 mm detected at ultrasound before pick-up

ART variables OF17 Total embryos Fertilization rate

Female age Spearman’s Rho  − 0.100  − 0.495 0.021
p-value  < 0.001  < 0.001 0.064

Male age Spearman’s Rho - 0.004 0.001
p-value - 0.523 0.943

Female BMI Spearman’s Rho  − 0.090 0.002  − 0.018
p-value  < 0.001 0.243 0.054

FSH starting dose Spearman’s Rho  − 0.036 0.087 0.038
p-value 0.121 0.231 0.381

Days of stimulation Spearman’s Rho  − 0.003  − 0.001 0.110
p-value 0.768 0.589 0.232

Total FSH units Spearman’s Rho  − 0.224 0.058  − 0.044
p-value  < 0.001 0.081 0.075

OF17 Spearman’s Rho - 0.281 0.312
p-value -  < 0.001  < 0.001

Semen volume Spearman’s Rho - 0.007 0.025
p-value - 0.435 0.117

Sperm concentration Spearman’s Rho - 0.089 0.132
p-value -  < 0.001  < 0.001

Sperm motility Spearman’s Rho - 0.058 0.144
p-value -  < 0.001  < 0.001

Sperm morphology Spearman’s Rho - 0.051 0.187
p-value -  < 0.001  < 0.001

Total oocytes retrieved Spearman’s Rho - 0.634 0.182
p-value -  < 0.001  < 0.001

Mature oocytes Spearman’s Rho - 0.677 0.043
p-value -  < 0.001 0.153

Oocytes injected/inseminated Spearman’s Rho - 0.732 0.290
p-value -  < 0.001  < 0.001

Fertilized oocytes Spearman’s Rho - 0.932 0.543
p-value -  < 0.001  < 0.001

Total embryos Spearman’s Rho - - 0.458
p-value - -  < 0.001

Transferred embryos Spearman’s Rho - - 0.363
p-value - -  < 0.001
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that sperm motility could have a predictive role in IVF, 
rather than ICSI cycles (Villani et al. 2021, submitted). As 
a confirm, both biochemical (75.3 versus 24.7%, p < 0.001) 
and clinical pregnancy (74.8 versus 25.2%, p < 0.001) 

rates were significantly higher in couples in which the 
man showed sperm motility higher than 34% compared to 
the others only in IVF cycles. On the contrary, no differ-
ences in biochemical (44.1 versus 55.9%, p = 0.189) and 

Fig. 1  Decision tree performed using biochemical pregnancy as dependent variable. Only the validation step of the analysis is represented. Per-
centages reported for each node express the predictive accuracy of the node. Df, degrees of freedom; US, ultrasound

Fig. 2  Decision tree performed using clinical pregnancy as dependent variable. Only the validation step of the analysis is represented. Percent-
ages reported for each node express the predictive accuracy of the node.Df, degrees of freedom; US, ultrasound
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clinical (44.8 versus 55.2%, p = 0.303) pregnancy rates 
were detected between the two groups created on sperm 
motility in case of ICSI.

Discussion

Here, we applied a systematic seven-steps approach to 
generate a predicting ART success model [20], detecting 
three sensitive milestones of the decision-making process 
in which the clinician is routinely involved. In particular, 
OF17 number, female age, and sperm motility could be 
used to evaluate whether the ART path should be continued 
before pick-up. Several mathematical and statistical models 
have been proposed so far to predict ART success. However, 
an overall limited predictive accuracy and clinical utility 
emerged, due to several shortcomings and to a probably 
incorrected view to the problem [23]. Indeed, these previ-
ous works were finalized to identify predicting markers of 
overall ART success, not asking the question of how these 
factors could influence the decision-making process. Here, 
on the other hand, we have changed the point of view to 
the question, first selecting the ART path sensitive points, 
where a predictor could advise the doctor either to suspend 
the treatment or to change the approach. Two ART sensitive 
milestones, in which the clinician could decide to stop the 
process, could be the pick-up and the transfer time. Here, we 
demonstrate that the decision to continue the ART path to 
pick-up could be guided by three specific factors, applying 
a decision tree analyses.

Logistic regression analyses confirmed the relationship 
between strong ART outcomes and those variables detected 
before pick-up. Interestingly, these connections appeared 
only when pregnancy rates were considered, suggesting that 
the classical statistical approach is not able to overcome the 
higher number of biases influencing live birth rates. In the 
biochemical pregnancy decision tree, alongside to OF17, 
sperm motility entered the model introducing the threshold 
of 34%. This result suggests that a male parameter represents 
a crucial point in terms of prediction of pregnancy obtain-
ment with a cut-off near to what proposed by the WHO man-
ual, i.e., 32% [24, 25]. Although the relevance of male con-
tribution in human reproduction seems obvious, most studies 
aimed at predicting ART success relegated the male factor to 
a secondary role, evaluating only the female partner (Villani 
MT et al., 2021, submitted). Together with the male partner, 
two female-related parameters emerged as the strongest and 
most clinically relevant key points derived from our deci-
sion trees, i.e., OF17 and female age. In particular, when 
less or equal than two follicles have been identified by US 
after COS, the chance of pregnancy obtainment is virtually 
zero. Similarly, in case of three OF17, the chance of con-
ceiving remained below 6% for all three developed trees. On 
the other hand, increasing the OF17 number coherently, the 
pregnancy probabilities raised, however without identify-
ing a clear threshold beyond which the virtual certainty of 
pregnancy obtainment is reached. When more than seven 
follicles have been identified, the pregnancy probabilities 
are the highest possible. Moreover, our trees showed that, 
for intermediate OF17 results, the female age could guide 

Fig. 3  Decision tree performed using live birth as dependent variable. Only the validation step of the analysis is represented. Percentages 
reported for each node express the predictive accuracy of the node.Df, degrees of freedom; US, ultrasound
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the clinician decision. In other words, our results suggest 
that when OF17 is lower than three the ART path should be 
stopped and the COS re-scheduled. When the OF17 is higher 
than 7, the ART path should be followed. When the OF17 
is between 3 and 6, other parameters should be considered. 
In particular, in this setting, when the female age is high or 
when the sperm motility is low, the chance of ART success 
significantly decreases, and a COS re-schedule should be 
considered.

Recently, a meta-analysis evaluated the methodological 
quality and the performance of all existing ART predictive 
models, to recommend the most accurate approach at pre-
dicting chances of parenting after ART procedures, helping 
couples in managing their expectations [23]. The first inter-
esting result of this meta-analysis is the high heterogene-
ity of statistical approach to the topic. Indeed, considering 
35 predictive models from 33 manuscripts, logistic regres-
sion analyses were applied in 91% of studies and time to 
event modelling in 9% [23, 26, 27]. A combined statistical 
approach was not applied in all these analyses. The second 
relevant issue raised by this meta-analysis was the sample 
size considered in the 35 trials included. Indeed, only four 
works (11.4%) had sample sizes large enough to support the 
development and the validation of their models [18, 28–30], 
while the remaining analyzed cohorts of patients was insuffi-
cient to obtain reliable predictors. Here, we considered more 
than twelve thousand fresh cycles, applying a complex sta-
tistical model in which the linear logistic regression analy-
sis was combined to a decision tree classification approach. 
Moreover, the vast majority of previous predictive models 
shares the limitation of not being processed in a systematic 
way, avoiding the recommended methodological develop-
ment steps and consequently limiting their reliability [20, 
31, 32]. In our work, we applied a systematic seven-steps 
approach to predictive model development [20] on a con-
sistent single center casuistry of fresh ART cycles. In this 
systematic approach, the first step provides the problem defi-
nition and data inspection. Evaluating what is already known 
in the literature, the problem has been often faced looking 
for those parameters able to predict the final success, not 
thinking about how these can then be really applied to clini-
cal practice. Thus, we changed the point of view on the prob-
lem, focusing the analysis on the search for those parameters 
able to tell the clinician when to continue the ART path 
after the COS phase, i.e., whether to proceed or not with 
the pick-up. Thus, our model could help to objectively pre-
dict a priori the potentiality in terms of pregnancy/live birth 
after ovarian stimulation. In particular, our model showed 
that three variables (OF17, female age, and sperm motil-
ity) could help the clinician to decide when and whether to 
continue the ART path after COS, and, consequently, when 
re-schedule a new ART cycle. This change of view could 
be potentially extremely relevant in ART management, to 

avoid loss of time and money stopping the ART cycle at 
an early stage when success chances result negligible. As a 
consequence, a new ART cycle could be planned to modify 
the COS phase in order to improve the OF17 number and 
to proceed to pick-up with higher probability of success. 
Indeed, the COS phase is heterogeneously managed compar-
ing different assisted fertilization centers given the absence 
of evidence-based protocols, but crucial for ART success 
[13, 33]. Apart from tangible clinic and economic advan-
tages, possible repercussions on the psychological health of 
the infertile couple have to be taken into account. Indeed, 
it is well established in the scientific literature and clearly 
evident in clinical practice that ART procedures are accom-
panied by a significant emotional burden experienced by 
both partners [34]. Since psychological consequences could 
be even more burdensome in case of ART treatment failures 
and with the consequent need to schedule new cycles [34], a 
precocious suspension of the ART cycle followed by a new 
treatment schedule could improve the couples’ psychologi-
cal health.

Our study fits well into this research line [35], apply-
ing a validated statistical method and enriching it with the 
analysis of decision trees. A decision tree is a tree-like model 
commonly used as a supportive tool in operation research 
and decision analyses, such as in economy and marketing 
settings. This approach, aimed at identifying the strategy 
most likely to reach a goal, is simple to understand and inter-
pret and could be combined with other decision techniques, 
such as logistic regression analyses. For these reasons, the 
decision tree model has been applied in several medicine 
branches, such as gastroenterology [36, 37], breast oncologi-
cal surgery [38], cardiology [39], orthopedic surgery [40], 
and even to diagnose SARS-CoV-2 infection [41]. Specifi-
cally in the ART setting, the decision tree model has been 
previously applied mainly in cost-effectiveness analyses, for 
instance to identify the most cost-effective ovarian stimula-
tion drug for intra-uterine insemination (IUI) [42]; to evalu-
ate the clinical utility for preimplantation genetic assessment 
for aneuploidy after IVF in the USA [43], and in Germany 
[44]; to highlight anti-Müllerian hormone (AMH) serum 
levels as informative for stimulation dose management for 
optimizing blastocyst development [45]; and to identify the 
most cost-effective policy in terms of ART success in case 
of female age below 38 years comparing expectant manage-
ment, IUI with ovarian stimulation and IVF [46]. Moreover, 
a decision tree was applied to develop a model combining 
AMH, antral follicle counts, FSH basal levels and female 
age to obtain the true ovarian reserve [47], and to compare 
GnRH-agonist long protocol to GnRH-antagonist proto-
col in IVF, highlighting that GnRH-antagonist introduces 
an economic advantage in case of fresh embryos, while 
the GnRH-agonist long protocol is preferable considering 
the cumulative pregnancy rate using both fresh and frozen 
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embryos [48]. Here, we applied for the first time this statisti-
cal approach to new clinical question that should be increas-
ingly relevant in ART practice.

The main strengths of our study are represented by the 
large sample size and the systematic approach to the pre-
dictive model development. However, several limitations 
should be considered. First, the retrospective collection 
of real-world data is biases by a high rate of missing data, 
possibly impacting the reliability of the results. However, 
we included only those cycles in which all ART variables 
were available, at the cost of reducing the sample size. In 
addition, during the long interval of data collection (i.e., 
1998–2020), ART technologies evolved, as well as the 
regulatory rules for ART access and the characteristics 
of couples recurring to ART procedures. This data het-
erogeneity over the years could mitigate the reliability of 
our results. Moreover, we decided to develop our models 
excluding frozen embryos to avoid possible confound-
ing factors, whereby obtained results are reliable only for 
fresh ART cycles. However, the large time-frame interval 
of observations, together with the use of only fresh cycles 
could be the reason for the low overall pregnancy rates 
detected in the cohort. Finally, our results come from a 
fairly young population, limiting their actual application 
to an older cohort. The accuracy of our model is 100% 
when less than three OF17 were detected and reaches 
the 43% when more than three OF17 were identified. 
However, this is true in our casuistry and further studies 
should confirm this accuracy.

In conclusion, we identified three decision trees helping 
the clinician to decide whether or not to perform oocytes 
pick-up, continuing the ongoing ART path. In these math-
ematical models, three predictors of ART success at a very 
early stage emerged, such as OF17 number, sperm motil-
ity, and female age. Although the female age constitutes 
a non-modifiable factor, the increase of OF17 and sperm 
motility should be pursued by clinicians to improve the 
chances of ART success.
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