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Acute pulmonary embolism (APE) is a disabling diseases with high incidence rate and
mortality rate. Although with high specificity, D-Dimer lacks specificity to assess APE,
hence additional diagnostic and prognostic biomarkers are necessary. APE is widely
treated with serine protease urokinase or urokinase-type plasminogen activator (uPA),
which act as a catalyst for conversion of plasminogen to plasmin to resolve blood clots.
However, it is unknown the role of differential expression of microRNAs (miRNAs) in
protective effect of uPA against APE. Hence, we performed miRNA profiling in a hypoxia/
reoxygenation (H/R) model of bronchial epithelial BEAS-2B cells in vitro and a APE mice
model in vivo. Our analysis revealed that miR-34a-5p, miR-324-5p, miR-331-3p are
upregulated with H/R or APE induction, whereas miR-429, miR-491-5p, and miR-449a
are downregulated. The differential expression of the miRNAs was attenuated to levels
comparable to control by treatment with uPA both in vitro and in vivo. In situ target
prediction and analysis of potential functions of the target genes showed that the
enrichment of biological processes and pathways were related to cell growth,
proliferation, and inflammation. Ectopic overexpression of miR-449a using a mimic
completely attenuated the protective effect of uPA in the H/R model in vitro. These
results provide a group of miRNAs that could be used as markers, and the modulation of
these miRNAs might have potential therapeutic benefits in patients with APE, which need
to be validated in additional studies in humans.
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INTRODUCTION

Acute pulmonary embolism (APE) is defined as the obstruction of pulmonary circulation and
hemodynamic collapse caused blood clot mediated blockage of pulmonary artery (Cohen et al., 2007;
Geerts et al., 2008; Lang et al., 2013). Due to paucity of symptoms and appropriate diagnosis, the
epidemiological details of APE are unknown. A multicenter study in China between 1997 and 2008
estimated that the incidence rate of APE was 0.1%, and male patients were obviously more than
female ones (Yang et al., 2011). With the advancement of treatment protocols, the mortality rate of
APE significantly decreased from 25.1 to 8.1% between 1997 and 2008 (Yang et al., 2011). However, it
remains a serious disabling diseases which requires optimal therapies.

It has been well documented that APE is associated with inflammatory response and cell death,
which might be mediated by mitogen activated protein kinase (MAPK), Phosphoinositide 3-kinases/
protein kinase B (PI3K/Akt), and nuclear factor—kappa beta (NF-κβ) signaling pathways
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(Apostolakis and Spandidos, 2013; Wang et al., 2013; Wang et al.,
2014). The ischemia and pulmonary hypertension involved in
APE can induce an increase in serum levels of cytokines and
chemokines, including tumor necrosis factor-alpha (TNFα),
interleukin (IL)-1β, IL-8, CX3CR1, CXCRL1, brain natriuretic
peptide (BNP), troponin T (TnT) and D-dimer (D2D) (Zagorski
et al., 2003; Wang et al., 2013; Wang et al., 2014; Zhang et al.,
2017; Shi et al., 2018). These pro-inflammatory chemokines and
cytokines subsequently induce infiltration of immune cells in the
lungs including natural killer cells and T cells (Lang et al., 2013;
Saghazadeh et al., 2015; Saghazadeh and Rezaei, 2016).

D2D is clinically used to assess APE with high sensitivity, but
its specificity is poor (Contu et al., 2010; Kessler et al., 2016), so
the additional biomarkers for diagnosis of APE are needed.
Circulating miRNAs have been shown to be potent biomarkers
for a multitude of pathophysiological conditions (Mitchell et al.,
2008; van Rooij and Olson, 2009; Alevizos and Illei, 2010; Contu
et al., 2010; D’Alessandra et al., 2010; Markham and Hill, 2010;
Voellenkle et al., 2010; Zampetaki et al., 2010). MiR-134 andmiR-
1233 have been indicated as potential biomarkers for APE
diagnosis (Xiao et al., 2011; Kessler et al., 2016).

Urokinase or urokinase-type plasminogen activator (uPA), a
serine protease, is the most widely used drug for treating APE,
which act as a catalyst for conversion of plasminogen to plasmin
to resolve blood clots (Sasahara et al., 1967; Cheng et al., 2002).
Indeed, dose-effect and duration-effect clinical trials have been
performed to study outcome of urokinase treatment on patients
with APE (Zhang et al., 2007; Wang et al., 2009; Zhao et al., 2018;
Zhang et al., 2019). uPA mediates its activity by binding to its
urokinase plasminogen activator receptor (uPAR) (Xu et al.,
2020). Exogenous uPA has been shown to induce expression
of uPAR (Toki et al., 1985). Interaction of uPA with uPAR is
critical in APE resolvement (Bdeir et al., 2000; Liu et al., 2008). In
breast cancer, it has been shown that miR-645 can target uPA
(Meng et al., 2018). However, it is unknown the role of differential
expression of miRNAs in protective effect of uPA against APE.

Hence, our study determined differential expression of
miRNA in an model of APE (hypoxia/reoxygenation) with or
without uPA treatment in vitro, which were verified in an mice
model of APE in vivo. Moreover, In situ prediction algorithms
were used for target prediction of differentially expressed
miRNAs and GSEA.

MATERIALS AND METHODS

Hypoxia/Reoxygenation Model In vitro and
Treatments
Human bronchial epithelial cells (BEAS-2B) (ATCC) were
cultured in DMEM containing 5% FBS, 100 U/ml penicillin,
and 100 μg/ml streptomycin, and kept in incubators with 5% CO2

at 37°C. To establish the hypoxia/reoxygenation (H/R) model,
BEAS-2B cells were exposed to hypoxic condition (1% O2, 5%
CO2, and 94% N2) in serum and glucose free DMEM for 12 h.
After the incubation under hypoxic conditions, the culture
medium was replaced with normal growth medium and cells
were incubate for an additional 12 h under normoxic conditions

(5% CO2), which were used as H/R group. Then cells were treated
with recombinant urokinase (United Kingdom; 10 ng/ml,
American Diagnostica, Stamford, CT), which were used as
H/R + United Kingdom group. Cells only cultured under
normoxic conditions were used as controls, and normal cells
treated with recombinant urokinase were used as
United Kingdom group. Before induction of H/R, cells were
transfected with 30 nM of has-miR-449a mimic or negative
control mimic (MISSION microRNA mimic, HMI0576 and
HMC0003, respectively; Sigma Aldrich) using Lipofectamine
LTX PLUS (ThermoFisher Scientific) for 72 h.

Apoptosis Assay
The apoptosis of cells was evaluated by the TUNEL assay kit
(R&D Systems). TUNEL labeled cells were counterstained with
4′,6-diamidino-2-phenylindole (DAPI) and subsequently washed
thrice with phosphate-buffered saline (PBS). The apoptosis rate
was defined as number of apoptotic cells/total number of
cells × 100%.

Determination of Cytokines
At the end of the experiment, cells were centrifuged at 1,000 g for
5 min at 4°C, and the obtained supernatant was used to determine
the expression of cytokines, including BNP, TNFα, CX3CL1, IL-4,
and IL-10. Luminex (Millipore) was used to quantify the levels of
the cytokines. The cells were prepared for Western blot to
determine the expression of bcl-2, Bax, Caspase-3 using
routine methodologies. The primary antibodies for bcl-2, Bax,
Caspase-3, and Actin were all purchased from Cell Signaling
Technology. The analysis of relative band intensity was
conducted with ImageJ version 1.46 (National Institutes of
Health, Bethesda, United States).

Fluorescence-Activated Cell Sorting
Analysis
Cells were incubated with anti-CD11b-APC or anti-CD206-APC
(Biolegend, San Diego, CA, United States) for 30 min on ice. After
washing, the cells were resuspended in wash buffer with 2% FBS
and assessed with a BD FACS Canto II instrument and the
software “FACS Diva” (BD Biosciences, San Jose, CA,
United States). The cells expressing CD11b surface markers
were defined as pro-inflammatory M1 macrophages, and cells
expressing CD206 surface markers were defined as anti-
inflammatory M2 macrophages.

Establishment of an Acute Pulmonary
Embolism Model
All animal studies were approved by the Instituitional Animal
Use and Care Committee of The First Hospital of China Medical
University. BALB/c mice were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China) and
housed in pathogen-free conditions with free access to food and
water. APE was established using previous protocol (Song et al.,
2013). Briefly, 0.2 ml of blood samples were collected by orbital
bleeding and incubated with 200U of hepatothrombin for 1 h to
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generate autologous thrombus. The mice were anesthetized by
injection of pentobarbital sodium at 50 mg/kg, then a 7F catheter
was inserted via the right femoral vein into the right pulmonary
artery. To establish the PE model, the autologous thrombus with
0.5 ml of saline was infused into the 7F catheter. The animals in
the control group received saline (n = 6), and the mice established
the APEmodel were used as PE group (n = 6). Mice model of APE
received 5,000 IU/kg urokinase (United Kingdom) (ND
Pharmaceuticals Co. Ltd., Nanjing, China) in 0.5 ml of normal
saline within 0.5 h of PE induction was the PE + United Kingdom
group (n = 6), normal mice received United Kingdom was the
United Kingdom group (n = 6). The mice with APEmodeling and
United Kingdom treatment were injected with miR-449a mimic
alongside United Kingdom, and used as thePE + UK + miR-449a
mimicgroup (n = 6).

Pulmonary Arterial Pressure Measurement
Six hours after APE modeling, mice were anesthetized to measure
pulmonary artery pressures. A PTE50 catheter was inserted into
the pulmonary artery via the right ventricle while the other end
was connected to the pressure transducer. Stable pulmonary
arterial pressure was recorded for 3 min using the Chengdu
Thai Union BL-420S-TyPTE system. Mean pulmonary arterial
pressure (PAMP), pulmonary diastolic (PADP) and systolic
(PASP) were calculated from the recorded wavefront.

Blood, Tissue Collection, and Hematoxylin
and Eosin Staining
Blood was collected for serum isolation, which was then used to
determine expression of D-Dimer (D2D), BNP, CX3CL1, IL-4,
and IL-10 using Luminex as described above. Collected
pulmonary tissues were fixed in 4% paraformaldehyde. After
embedding and section, 5 µm slices were processed for
hematoxylin and eosin (H&E) staining using routine
methodologies and then imaged using an optical microscope.

miRNA Isolation andReal TimeQuantitiative
Polymerase Chain Reaction
At the end of the experiment, miRNA was extracted from cells
using PureLink miRNA isolation kit (Thermo Fisher Scientific) as
manufacturer’s guidelines. Relative expression of miRNAs was
determined using the miScript miRNA PCR Array Human
Hypoxia Signaling (MIHS-121Z) (Qiagen). To determine
expression of miRNAs in the serum of mice, miRNA was
isolated and TaqMan probes were used to determine
expression of the indicated miRNAs. Data was analyzed using
the standard 2−ΔΔCt method. Expression of mmu-miR-16 was
used to normalize data, and log2 fold changes were visualized
using heat map.

In Silico Prediction of miRNA Targets and
Functional Predictions
Putative target genes of the top 10 up and down regulated
miRNAs differentially expressed among the control, H/R and

H/R + United Kingdom group were predicted using the Validated
Target module of the miRWalk database (http://www.umm.uni-
heidelberg.de/apps/zmf/mirwalk/) (Dweep et al., 2011). The
inclusion criteria used for target gene prediction were 1)
p-value of 0.5, 2) seed sequences in miRNAs complementary
to the 3′ untranslated regions (3′-UTRs), and 3) targets
recognized by all three databases, including miRTarBase
(http://mirtarbase.mbc.nctu.edu.tw/php/index.php) (Hsu et al.,
2011), miRDB (http://www.mirdb.org/) (Wang, 2008), and
TargetScan (http://www.targetscan.org/) (Agarwal et al., 2015).
Functional profiling and enrichment analysis of predicted
miRNA target genes were performed using g:Profiler
(Reimand et al., 2007; Raudvere et al., 2019) and Enrichr
(Kuleshov et al., 2016). Gene ontology (GO) and pathway
analysis were performed with a false discovery rate (FDR) < 0.
05 and p < 0.05 defined as the threshold of significance.

Statistical Analysis
Data was expressed as mean ± standard deviation (SD). Statistical
significance was determined using one-way analysis of variance
(ANOVA) with statistical significance defined as p < 0.05.

RESULTS

Treatment With Urokinase-Type
Plasminogen Activator Reverses
Differential miRNA Expression Following
Induction of Hypoxia/Reoxygenation
The cell death and expression of apoptosis-related proteins, bcl-2,
Bax and Caspase-3, in the normal cells with uPA treatment
showed no significant difference with the control (Figures
1A,B,E,H). Compared to control cells, H/R significantly
induced cell death assessed by TUNEL staining, and increased
expression of Bax and cleaved Caspase-3, but decreased bcl-2
expression by Western blot (Figures 1A,C,E,H). Treatment with
uPA significantly decreased apoptosis and expression of Bax and
cleaved Caspase-3, but increased bcl-2 expression in cells with
H/R induction to the level comparable to that in control cells
(Figures 1C–E,H). Compared to control cells, H/R significantly
increased expression of BNP, TNFα, and CX3CL1, but decreased
expression of IL-4 and IL-10, and treatment with
United Kingdom significantly reversed the secretion of these
cytokines in cell supernatants to levels comparable to that in
control cells (Figure 1F). These results confirmed that the H/R
model in BEAS-2B can be implemented as a system to define
mechanism of action of exogenous uPA.

The top 10 up regulated miRNAs following H/R induction,
whose expression significantly decreased with uPA treatment,
were hsa-miR-31-5p, hsa-miR-26b-5p, hsa-miR-125b-5p, hsa-
miR-130b-3p, hsa-miR-148b-3p, hsa-miR-34a-5p, hsa-miR-
320a, hsa-miR-324-5p, hsa-miR-335-5p, and hsa-miR-331-3p.
Conversely, the top 10 down regulated miRNAs following H/R
induction, whose expression significantly increased with uPA
treatment, were hsa-miR-451a, hsa-miR-155-5p, hsa-miR-429,
hsa-miR-491-5p, hsa-miR-449a, hsa-miR-138-5p, hsa-miR-215-
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FIGURE 1 | Apoptosis, inflammatory response and differential expressed miRNAs in hypoxia/reoxygenation (H/R) model in vitro. An APE model in BEAS-2B cells
in vitro was established by hypoxic conditions for 12 h and reoxygenation for 12 h (for details refer toMaterials and Methods). (A–D) Urokinase inhibits H/R induced cell
death. Representative images from TUNEL assay in BEAS-2B cells grown under control conditions (A) or treated with uPA (B) or subjected to H/R (C) or subjected to the
combination of H/R and uPA (D). (E) Quantification of images in A-D. ****p < 0.0001, ns, not significant (n = 5). (F) Urokinase inhibits H/R induced inflammatory
response. Secretion of indicated cytokines in the cell supernatant was determined using Luminex assay. ****p < 0.0001, ns, not significant (n = 5). (G)Heat map showing
log2 fold changes of miRNA expression in BEAS-2B cells maintained under control conditions or subjected to HR or subjected to the combination of H/R and uPA
(United Kingdom) (n = 4). (H) Urokinase inhibits H/R induced apoptosis. Western blot images (left) and their quantified results (right) in BEAS-2B cells with different
treatments.
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5p, hsa-miR-877-3p, hsa-miR-98-5p, hsa-miR-93-5p
(Figure 1G).

Treatment With Urokinase-Type
Plasminogen Activator Reverses Acute
Pulmonary Embolism-Induced Changes of
miRNA Expression in an Mice Model of
Acute Pulmonary Embolism In vivo
H&E staining revealed similar lung structure in the control
(Figure 2A) and mice with United Kingdom treatment
(Figure 2B), and widespread lung injury in mice model of
APE (Figure 2C) compared to control (Figure 2A). In mice
model of APE, mixed and coagulated thrombi, perivascular
edema and pulmonary abscess were visible in the pulmonary
artery (Figure 2B). No thromboembolism was observed in mice
in the control or United Kingdom group (Figure 2A). Treatment
with urokinase resolve thromboembolism in these mice
(Figure 2D). The heart rate (HR), PASP, PADP, and PAP
were similar in the control and United Kingdom group, and
these in the mice model of APE were significantly elevated
compared with control (Figure 2E). Treatment with uPA
significantly decreased HR, PASP, PADP, and PAP in mice
model of APE to levels comparable to the control group
(Figure 2D). Furthermore, Luminex assay found that the
serum concentrations of D2D, BNP, CX3CL1, IL-4 and IL-10
were similar in the control and United Kingdom group, and

concentrations of D2D, BNP, CX3CL1 in the mice model of APE
were significantly increased, but concentrations of IL-4 and IL-10
were significantly decreased, which could be reversed following
urokinase treatment (Figure 2F). Taken together, these results
established that APE could induce thromboembolism and level
changes of serum inflammatory cytokines in the mice model in
vivo, which could be restored by treatment with uPA.

The expressions of the top 10 up and down regulated miRNAs
observed in vitro were investigated in vivo. Of the top 10 up
regulated miRNAs, only 3 - mmu-miR-34a-5p, mmu-miR-324-
5p, and mmu-miR-331-3p in vivo showed similar expression
pattern observed in vitro (Figures 3A,B). Expression of mmu-
miR-34a-5p, mmu-miR-324-5p, and mmu-miR-331-3p
significantly increased after induction of PE but were
significantly down regulated following u-PA treatment.
Similarly, of the top 10 down regulated miRNAs, only mmu-
miR-429, mmu-miR-491-5p, and mmu-miR-449a in vivo showed
similar expression pattern observed in vitro (Figures 3A,C).
Expression of mmu-miR-429, mmu-miR-491-5p, and mmu-
miR-449a significantly decreased after induction of PE but
were significantly increased to levels comparable in control
mice following u-PA treatment. Taken together, these results
suggested that miR-34a-5p, miR-324-5p, miR-331-3p, miR-429,
miR-491-5p, and miR-449a were miRNAs that were differentially
expressed following PE induction in vitro and in vivo, which
could be restored to levels comparable to control condition with
uPA treatment.

FIGURE 2 | Pathological and physiological changes, and inflammatory response in anmicemodel of acute pulmonary embolism (APE) in vivo. (A–D) uPA inhibits H/
R induced pathologicalchanges. Representative images from hematoxylin and eosin staining of bronchial tissues from mice without thrombus injection (A) or injected
with uPA (B) or injected with thrombus (C) or injected with thrombus and uPA (D). Scale bar, 100 μM. (E) Detection of heart rate (HR) and pulmonary artery pressure
(PAP). PASP, pulmonary arterial systolic pressure; PADP, pulmonary artery diastolic pressure. Data is represented as mean ± SD; *p < 0.05, **p < 0.01, ***p <
0.001, ns, not significant (n = 6). (F) Serum concentration of D-Dimer (D2D), brain natriuretic peptide (BNP), Fractalkine or chemokine (C-X3-C motif) ligand 1 (CX3CL1),
interleukin-4 (IL-4) and interleukin-10 (IL-10) were determined using Luminex assay. The PE group had a significant elevation of cytokines compared to the control;
however, uPA treatment attenuated the increase. ****p < 0.0001, ns, not significant (n = 6).
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FIGURE 3 | Differential expression of miRNAs post-induction of APE in mice. (A) Heat map of log2 fold changes of indicated miRNAs expression in mice (sham
control) and subjected to APE or APE ± uPA (United Kingdom) (n = 6). Only top 10 up and 10 down regulated miRNAs observed in H/R model in vitro (Figure1G) were
assayed. (B,C) Venn diagram of miRNAs down (B) and up (C) regulated in both in vitro and in vivo.

FIGURE 4 | Enrichment analysis of putative targets of miRNAs up regulated in PE. (A) Footprint of GSEA analysis performed by g:Profiler of 24 targets. Inset shows
key results. (B,C) Enrichment in GO biological processes (B) and Reaction pathways (C) were performed using Enrichr, with an adjusted p < 0.05. The length of
horizontal bars indicates the number of genes in that category.
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Target Genes and Pathways Involved With
Cell Growth and Survival Are Predicted
From Differentially Expressed miRNAs
To identify putative target genes of the differentially expressed
miRNAs, the in situ Validated Target module of miRWalk
version 2.0 was applied. 52 targets were obtained from the 3
upregulated miRNAs, miR-324-5p, miR-331-3p, and miR-
34a-5p. After deduplication, 24 unique targets were
screened (Supplementary Table S1), 20 for miR-34a-5p
(PEG10, MTMR9, TMEM109, MAP2K1, PODXL, PP1R11,
FOXP1, BCL2, TGF2, CLOCK, ZDHHC16, CDK6, MDM4,
SURF4, AXL, FUT8, FAM46A, DLL1, FOSL1, and SNTB2)
(Supplementary Figure S1A), 2 for miR-324-5p (RAN and
KLF7) (Supplementary Figure S1B, S2) for miR-331-3p
(KDELR1 and NACC1) (Supplementary Figure S1C).
Similarly, for the 3 down regulated miRNAs, miR-429, miR-
449a, and miR-491-5p, 36 putative targets were predicted and
18 unique targets were screened (Supplementary Table S2), 12
for miR-449a (E2F3, CDK6,MDM4, POU2F1,MYCN, CCNE2,
ADAM10, LDHA, VPS37B, RDH11, HDAC1, and LEF1)
(Supplementary Figure S2A), and 3 for miR-429 (N4BP2,
ERRF11, and DLC1) (Supplementary Figure S2B) and 3 for
miR-491-5p (SHSA6, RDM4B, and IGF2BP1) (Supplementary
Figure S2C).

Enrichment analyses showed that the 24 gene targets from the
3 up regulated miRNAs in PE were involved inmultiple biological
processes and reaction pathways (Figure 4A and Supplementary

Figure S3). Biological processes associated with negative
regulation of cellular processes (Figure 4B), and pathways
related to MAPK, NOTCH, anti-apoptosis, and organelle
trafficking (Figure 4C) were enriched. Similarly, the 18
predicted gene targets from the 3 downregulated miRNAs in
PE were associated with biological processes and signaling
pathways (Figures 5A, 6). There was overwhelming
enrichment of biological processes (Figures 5B, 6) and
pathways (Figures 5C, 6) related to cell cycle progression,
proliferation, and WNT signaling. Cumulatively, the
enrichment analyses highlighted the possibility that the
differentially expressed up and down regulated miRNAs in PE
or H/R are impacting signaling pathways related to cell growth,
proliferation, survival, and cytokine secretion, which might be
contributing to the observed pathophysiological changes in vitro
and in vivo.

Modulating Expression of miR-449a Can
Attenuate Protective Effect of Exogenous
uPA in the Hypoxia/Reoxygenation Model
in vitro
MiR-449a was chosen to verify the hypothesis that miRNAs
expression could attenuate protective effect of exogenous uPA
in the H/R model in vitro, as miR-449a had the largest number of
predicted target genes among the 3 downregulated miRNAs
(Supplementary Figure S2). BEAS-2B cells were transfected
with control mimic or miR449A mimic 72 h before H/R

FIGURE 5 | Enrichment analysis of putative targets of miRNAs down regulated in PE. (A) Footprint of GSEA analysis performed by g:Profiler of 18 targets. Inset
shows key results. (B,C) Enrichment in GO biological processes (B) and Reaction pathways (C) were performed using Enrichr, with an adjusted p < 0.05. The length of
the horizontal bars indicates the number of genes in that category.
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induction. Compared to control cells transfected with control
mimic, H/R significantly induced cell death and increased
expression of Bax and cleaved Caspase-3, but decreased bcl-2
expression (Figures 7A,B,E,G). The apoptosis and related
protein expressions induced by H/R could be attenuated by
uPA treatment (Figures 7A–C,E,G). However, treatment with
uPA failed to inhibit cell death after H/R induction in BEAS-2B
cells pre-transfected with miR449A mimic (Figures 7C–E,G).
Similarly, uPA attenuated the levels of inflammatory cytokines
and chemokine TNF-α, BNP, CX3CL1, IL-4, and IL-10, as well as
specific immune cells M1 macrophages and M2 macrophages in
cell supernatant of BEAS-2B cells subjected to H/R, but miR449A
mimic transfection prevented decrease in these inflammatory
cytokines, chemokine, and immune cells (Figures 7F,H–J). These
results provide evidence that protective effect of exogenous uPA
during H/R or APE is related to the expression of miR-449a.

DISCUSSION

Radiological imaging inclusive of venous ultrasonography, CT
angiography, pulmonary venous angiography, and
biochemical determination of serum D2D levels are
clinically used to diagnose APE (Goldhaber and Elliott,
2003; Kearon, 1998; Xiao et al., 2011). Although with high
specificity, D2D determination lacks specificity to assess APE
(Goldhaber and Elliott, 2003; Kearon, 1998), hence additional
diagnostic and prognostic biomarkers, which can be used

alone or in combination with D2D are necessary to provide
higher specificity. Indeed, miR-134 and miR-1233, either alone
or in combination, have been shown to provide better
diagnostic potential of COPD-associated APE (Xiao et al.,
2011; Kessler et al., 2016; Peng et al., 2020). However, there
are as yet no studies to explore differential miRNA expression
before and after uPA treatment in APE, even though uPA has
been a choice for APE treatment. Our analysis reveals that
miR-34a-5p, miR-324-5p, miR-331-3p are up regulated
following H/R or APE induction in vitro and in vivo,
respectively, whereas miR-429, miR-491-5p, and miR-449a
are down regulated under the same conditions.

More importantly, the expression of the mentioned 6
miRNAs were restored to levels comparable to control
conditions following treatment with uPA, indicating their
potential role in mediating the protective effect of uPA in
PE. It is imperative to validate the roles of these 6 miRNAs in
additional in vivo models of PE and ultimately in longitudinal
patient samples with and without uPA treatment.
Furthermore, whether the same set of miRNAs regulates
effect of uPA on other cases of uPA/uPAR mediated
pathophysiology, like vascular remodeling, cardiovascular
disorders, and cancer, remains to be determined.

The processes and pathways related to cell cycle
progression, cell growth, proliferation, and apoptosis were
enriched, and each of them would be associated with
pathophysiological changes observed in APE pulmonary
tissue. Furthermore, merely overexpressing miR-449a was

FIGURE 6 | Enrichment in GO biological processes and KEGG pathways of target genes of miRNAs down regulated in PE. The GO biological processes and KEGG
pathways were performed using g:Profiler for target genes of miRNAs down regulated in PE, with an adjusted p < 0.05. For each category, the number of genes is
indicated by the length of horizontal bars.
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observed to mitigate the in vitro protective effect of uPA in
BEAS-2B cells after H/R induction. It needs to be determined
whether overexpression of the other 2 down regulated
miRNAs, miR-429, and miR-491-5p, have a similar effect or
synergistic effect. In addition, the effect of the knockdown of
the upregulated miRNAs, miR-34a-5p, miR-324-5p, and miR-
331-3p, on APE after uPA treatment also needs to be further
studied.

One limitation of our study is that an unbiased miRNA
profiling hasn’t been performed. The rationale for screening
hypoxia specific miRNA array is that major pathophysiological
changes of PE are associated with emboli-mediated hypoxia in
bronchial tissue (Goldhaber and Elliott, 2003; Kearon, 1998).
CDK6 was predicted to be a target of both the up regulated
miR-34a-5p and the down regulated miR-449a, indicating
regulation of cell cycle is central to APE and uPA treatment

FIGURE 7 | Ectopic expression of miR-449a inhibited protective effect of uPA on hypoxia/reoxygenation (H/R) model in vitro. After transfection with either a control
or miR449a mimic, the APE model in BEAS-2B cells in vitro were subjected to hypoxic conditions for 12 h followed by reoxygenation for 12 h 72 h (A–D) Urokinase
inhibits H/R induced cell death, and overexpression of miR-449a inhibited the role of urokinase. Representative images from TUNEL assay in control mimic-transfected
BEAS-2B cells grown under control conditions (A) or subjected to H/R (B) or subjected to the combination of H/R and United Kingdom (C), and miR449a mimic-
transfected BEAS-2B cells subjected to H/R and treated with uPA (D). (E) Quantification of images in A-D. ****p < 0.0001, ns, not significant (n = 5). (F) Secretion of
indicated cytokines in the cell supernatant was determined using Luminex assay. Pre-transfection with miR449a mimic inhibited urokinase-mediated decrease in
cytokine secretion post-induction of H/R. ****p < 0.0001, ns, not significant (n = 3). (G) overexpression of miR-449a inhibited the effect of uPA on apoptosis in H/Rmodel.
Western blot images (left) and their quantified results (right) in BEAS-2B cells with different treatments. (H–J) Urokinase inhibits H/R induced changes of specific immune
cells M1 macrophages (H) and M2 macrophages (I), and overexpression of miR-449a inhibited the role of urokinase by FACS analysis. (J) Representative images of
specific immune cells under different conditions.
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potentially works via cell cycle regulation. There was
significant enrichment of pathways related to organelle
trafficking and endocytosis in our study. It has been shown
that uPA interacts with its cognate receptor uPAR at the cell
surface, inducing nuclear translocation of uPAR and
subsequent downstream activation of signaling pathways
vascular remodeling (Kiyan et al., 2009; Kiyan et al., 2012).
Therefore, it needs to be determined if similar mechanisms are
operative in APE. Moreover, the role of overexpressions of
miR-449a in APE-induced mice with or without u-PA
treatment, hasn’t been studied this time, which needed
further experiment to explore the role of miR-449a in vivo.

In conclusion, our study reveals 6 differential expression
miRNAs during PE induction in vitro and in vivo. These
miRNAs are predicted to target genes associated with
critical functions in cell cycle progression. Treatment with
uPA reverses the expression of these 6 miRNAs to levels
comparable to control conditions, indicating that effect of
uPA might be affected by these miRNAs. Indeed, ectopic
overexpression of miR-449a, one of the downregulated
miRNAs, was sufficient to inhibit uPA-mediated protective
effect against H/R-mediated changes in vitro. These miRNAs
thus might be utilized as biomarkers in PE, especially in the
treatment with uPA.
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