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Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms
underlying disease. Age-relatedmacular degeneration (AMD) is a serious eye disease; it typically affects older adults and results in a
loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes.
Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was
established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct
neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum
redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification
system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related
genes.

1. Introduction

Age-related macular degeneration (AMD or ARMD) is a
chronic, progressive eye disorder that primarily occurs in
elders (>50 years) and has become amajor cause of blindness
and visual impairment in developed countries as well as the
third major cause globally [1, 2]. In an Asian population
aged 40–79 years, the morbidities of early and late AMD
were 6.8% and 0.56%, respectively [3]. Further, AMD is
likely to increase with a longer life expectancy. Due to retina
damage, AMD typically results in vision loss, which can
render daily activities difficult, such as reading, watching
TV, and recognizing faces [4]. There are two typical types
of AMD: dry AMD and wet AMD. Dry AMD is the major

type of AMD and accounts for approximately 80% of cases;
no efficient surgical or medical treatments are available.
It typically causes mild vision loss, which develops slowly.
However, it can cause vision loss through retinal pigment
epithelial layer atrophy, which results in photoreceptor loss
(rods and cones) in the central portion of the eye.WetAMD is
caused by choroidal neovascularization (CNV), wherein new
blood vessels grow in choriocapillaries through the Bruch’s
membrane. Leaking and bleeding of these vessels can damage
the rods and cones, which lead to rapidly deteriorating vision.
Thus, wet AMD accounts for 90% of AMD cases with severe
visual impairment.

The AMD etiology is complex. AMD results from both
genetic and environmental factors; however, the underlying
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mechanisms are unclear. Moreover, previous studies have
demonstrated strong correlations between AMD and mul-
tiple environmental factors. In addition to age, many risk
factors are correlated with AMD, such as cigarette smoking
[5], oxidative stress [6–8], hypertension, previous cataract
surgery, higher body mass index, a history of cardiovascular
disease, and higher plasma fibrinogen [9].

AMD is characterized by complex traits. Moreover,
mutant protein expression may begin early in AMD patients,
and symptoms associated with AMD do not manifest until
a long time thereafter. Often only clinical information for a
single generation is available for studies; thus, it is difficult
to detect AMD phenotypic heterogeneity and determine
the underlying mechanisms. Initially, through early linkage
studies on small families, several genetic loci at chromosomes
9p24, 10q26, and 15q21 [10] and 1q31, 10q26, and 17q25 [11]
were identified and verified. A GWAS study greatly increased
our understanding of AMD risk loci. Subsequently, more
AMD-related genes have been identified, such as C2 [12],
CFH [13], CFI [14], LIPC [15], CETP, TIMP3 [16], and
TNFRSF10A [17]. Recently a large-scale GWAS analysis of
more than 17,000 AMD cases indicated 19 other AMD loci,
in which 7 loci were novel and near the genes IER3-DDR1,
COL8A1-FILIP1L, SLC16A8, TGFBR1, ADAMTS9, RAD51B,
and B3GALTL [18]. Several studies have evaluated the impact
of susceptibility genes on AMD onset and progression. For
instance, CFH gene mutations yield a high risk of AMD.
Compared with the normal homozygous genotype, individu-
als with heterozygotic and homozygoticCFH exhibited a 4.6-
fold or 7.4-fold increased AMD risk, respectively [19].

AMD is a disease with complex inheritance patterns,
and it may be difficult to discover individual susceptibility
genes due to multiple genetic and environmental effects
and interactions. Identifying several genetic loci revealed
that several important biological pathways are involved in
AMD pathogenesis, such as the cholesterol, lipid metabolism
pathway, complement pathway, extracellular matrix pathway,
oxidative stress pathway, and angiogenesis signaling pathway
in [20–22], which provides a foundation for systematically
analyzing the biological processes underlying AMD. Gene
ontology (GO) is a major bioinformatics tool that stan-
dardizes representation and the product attributes of genes
across species [23]. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) [24, 25] pathway database is a collection
of manually drawn diagrams and comprehensive inferences
for pathwaymapping. Based on the gene ontology andKEGG
pathway materials, we analyzed the GO and KEGG enrich-
ments for known AMD-related genes, which were retrieved
from the Retina International website (http://www.retina-
international.org/files/sci-news/remacdy.htm) or the pub-
lished literature. To extract the distinctive features of these
genes, certain genes, which were not reported as AMD-
related genes, were randomly selected from Ensemble. Each
investigated gene was encoded into numeric vectors con-
sisting of enrichment scores of the gene set, including it
and its direct neighbors in STRING, and the GO terms or
KEGG pathways. Based on certain feature-selectionmethods
and SMO as the prediction engine, certain important GO
terms and KEGG pathways were discovered that were

deemed important for identifying AMD-related genes. Anal-
yses suggest that certain such genes relate directly or indi-
rectly to AMD formation or development.

2. Materials and Methods

2.1. Dataset. The known AMD-related genes were retrieved
from the Retina International website (http://www.retina-
international.org/files/sci-news/remacdy.htm, recent update
from March 24, 2010) and the literature. Specifically, 16
genes are from Retina International; three genes for the
complement system proteins factor H (CFH), factor 3 (C3),
and factor B (CFB), which are strongly related with a
person’s risk for developing AMD, are employed; HTRA1 is
from [26, 27]; ABCR is from [28]; 2 genes are from [29,
30]; and 23 genes are from [18]. Finally, 39 known AMD-
related genes were collected; these genes are referred to as
“positive genes” and compose the gene set 𝑆𝑝. To analyze
the differences between the positive genes and other genes,
we randomly selected 1,950 genes (50 times the number of
positive genes) from Ensemble that were not in 𝑆𝑝; these
1,950 genes are referred to as “negative genes” and compose
the set 𝑆𝑛. The Ensemble IDs for the positive and negative
genes are in Supplementary Material I available online at
http://dx.doi.org/10.1155/2014/450386.

The negative genes outnumbered the positive genes; thus,
we confronted an imbalanced dataset. Encouraged by certain
studies that have managed this type of data [31, 32], the
following strategy was adopted. The negative genes were
equally and randomly split into 10 portions 𝑆1
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2.2. Feature Construction. To analyze the differences between
the positive and negative genes, each gene must be repre-
sented by certain features that can then be processed by
certain computer programs. Here, we adopted gene ontology
(GO) and KEGG enrichment to compute numerical values
that represent each gene.

GO enrichment indicates the relationship between genes
and GO terms. For each gene 𝑔 and each GO term GO𝑗,
a score is generated, which is typically referred to as the
gene ontology enrichment score and defined as the −log

10

of the hypergeometric test 𝑃 value [33–35] for a gene set 𝐺
consisting of 𝑔’s direct neighbors in STRING and the GO
term GOj that can be computed as follows:

ESGO (𝑔,GO𝑗) = −log10(
𝑛

∑

𝑘=𝑚

(
𝑀
𝑚 ) (
𝑁−𝑀
𝑛−𝑚 )

(
𝑁
𝑛 )

) , (1)

where 𝑁 denotes the overall number of proteins in humans,
𝑀 denotes the number of proteins annotated in the gene
ontology term GO𝑗, 𝑛 denotes the number of proteins in 𝐺,
and𝑚 denotes the number of proteins in𝐺 that are annotated
in the gene ontology term GO𝑗. If the score is large for
one gene and one GO term, the gene and GO term likely
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have a strong relationship; there were 12,877 gene ontology
enrichment scores.

Similarly, for each gene 𝑔 and each KEGG pathway 𝑃𝑗,
the KEGG enrichment score is defined as the −log

10
of the

hypergeometric test 𝑃 value [35, 36] for a gene set 𝐺 that
consists of 𝑔’s direct neighbors in STRING and the KEGG
pathway 𝑃𝑗, which can be calculated as follows:

ESKEGG (𝑔, 𝑃𝑗) = −log10(
𝑛

∑

𝑘=𝑚

(
𝑀
𝑚 ) (
𝑁−𝑀
𝑛−𝑚 )

(
𝑁
𝑛 )

) , (2)

where 𝑁 denotes the overall number of proteins in humans,
𝑀 denotes the number of proteins annotated in the KEGG
pathway 𝑃𝑗, 𝑛 denotes the number of proteins in 𝐺, and 𝑚
denotes the number of proteins in𝐺 that are annotated in the
KEGG pathway 𝑃𝑗. Additionally, a higher KEGG enrichment
score between 𝑔 and 𝑃𝑗 indicates a stronger relationship; 239
features were KEGG enrichment scores.

Accordingly, each gene 𝑔 can be represented by 12,877
gene ontology enrichment scores and 239 KEGG enrichment
scores, which can be formulated as follows:

V (𝑔) = (ESGO (𝑔,GO1) , . . . ,ESGO (𝑔,GO12877) ,

ESKEGG (𝑔, 𝑃1) , . . . ,ESKEGG (𝑔, 𝑃239))
T
.

(3)

2.3. Prediction Method and Accuracy Measurement. Weka
[37] is a collection of many state-of-the-art machine-learning
algorithms and has been used to solve various biological
problems [38–42]. One classifier, which is referred to as
SMO, was adopted herein as the classification method; it
implements John Platt’s sequential minimal optimization
algorithm to solve the optimization problem that should be
settled during training of a support vector classifier. The
kernel function can be polynomial or Gaussian [43, 44].

The predicted results for a two-class classification prob-
lem can be represented by a confusion matrix consisting
of four entries: a true positive (TP), a true negative (TN),
false positives (FP), and a false negative (FN) [45, 46].
Accordingly, the prediction accuracy (ACC), specificity (SP),
and sensitivity (SN) can be computed as follows:

ACC =

TP + TN
TP + TN + FP + FN

,

SP = TN
TN + FP

,

SN =

TP
TP + FN

.

(4)

However, in each dataset 𝐷𝑖, the number of negative genes
was 5 times as many as the number of positive genes,
which is still imbalanced. Thus, an additional measurement,
Matthews’s correlation coefficient (MCC) [47], was employed

to solve the problem; the coefficient can be computed as
follows:

MCC

=

TP ⋅ TN − FP ⋅ FN
√(TN + FN) ⋅ (TN + FP) ⋅ (TP + FN) ⋅ (TP + FP)

.

(5)

2.4. 10-Fold Cross Validation. Ten-fold cross validation is
often used to examine the performance of various classifi-
cation models [48]. In 10-fold cross validation, the dataset is
equally and randomly divided into ten portions. Each portion
is used as testing data, and the samples in the remaining nine
portions compose the training dataset. Each sample is tested
once because each portion is tested once. Compared with
the Jackknife test [49, 50], a 10-fold cross-validation test is
more efficient and provides similar results for a given dataset.
Thus, it was adopted herein to examine the classification
model.

2.5. Feature Selection. As described in Section 2.2, each gene
is represented by 12,877 + 239 = 13,116 enrichment scores. To
analyze these features and extract key features that contribute
the most to the positive and negative gene classification,
certain feature-selection methods were employed. This pro-
cedure included two stages: (1) using Cramer’s coefficient
[51, 52] to exclude nonsignificant features and (2) using
the minimum redundancy maximum relevance (mRMR)
method as well as incremental feature selection (IFS) [53] for
additional selection.

Cramer’s coefficient [51, 52] is a statistical measure of two
variables that was derived from the Pearson Chi-square test
[54]; it ranges from 0 to 1. A high Cramer’s coefficient for two
variables indicates a strong association. Here, for each feature
and samples’ class labels, Cramer’s coefficient was calculated,
and features with a Cramer’s coefficient lower than 0.1 were
excluded.

The remaining features were further refined using
the minimum redundancy maximum relevance (mRMR)
method and incremental feature selection (IFS), which are
feature selection methods that have been widely used in
recent years [34, 55–58]. By evaluating a classification model,
key features can be extracted from a complicated biological
system. The mRMR method has two criteria: max-relevance
and min-redundancy. Accordingly, two feature lists can be
generated using this method: (1) the MaxRel feature list
and (2) the mRMR feature list. Specifically, the former
list sorts features according to their contributions to the
classification (i.e., only considering the criterion of max-
relevance), while the latter list sorts features by consider-
ing both the max-relevance and min-redundancy criteria.
The MaxRel and mRMR features lists were formulated as
follows:

MaxRel features list : 𝐹𝑀 = [𝑓
𝑀

1
, 𝑓
𝑀

2
, . . . , 𝑓

𝑀

𝑁
] ,

mRMR features list : 𝐹𝑚 = [𝑓
𝑚

1
, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑁
] ,

(6)
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Table 1:The number of remaining features for each dataset after the
first stage of feature selection.

Dataset Number of remaining features
𝐷1 4,288
𝐷2 3,919
𝐷3 4,549
𝐷4 4,663
𝐷5 4,371
𝐷6 5,012
𝐷7 4,877
𝐷8 3,787
𝐷9 4,701
𝐷10 4,473

where 𝑁 denotes the total number of features. A detailed
description of the mRMR method can be found in Peng et
al.’s paper [53].

Only the mRMR features list was used to extract key
features. The extraction procedure is described as follows.

(1) For the mRMR features list 𝐹𝑚, construct 𝑁 fea-
ture set, say 𝐹

1

𝑚
, 𝐹
2

𝑚
, . . . , 𝐹

𝑁

𝑚
, such that 𝐹

𝑖

𝑚
=

[𝑓
𝑚
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, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑖
] (1 ≤ 𝑖 ≤ 𝑁) (i.e., 𝐹𝑖

𝑚
contained the

first 𝑖 features in 𝐹𝑚).
(2) The classifier SMO was evaluated through 10-fold

cross validation using features in 𝐹𝑖
𝑚
. As described in

Section 2.3, ACC, SP, SN and MCC can be obtained.
(3) The feature set with the maximum MCC is deemed

the optimal feature set. For ease in observation, an
IFS-curve can be plotted with MCC values as the 𝑦-
axis and the superscript 𝑖 of 𝐹𝑖

𝑚
as the 𝑥-axis.

3. Results and Discussion

3.1. Results of the First Stage of Feature Selection. For each
of the 10 datasets 𝐷1, 𝐷2, . . . , 𝐷10, Cramer’s coefficients
of the features and samples’ class labels were calculated.
Accordingly, features with Cramer’s coefficients less than 0.1
were excluded, while the remaining features were processed
further. The number of remaining features in each dataset is
listed in Table 1.

3.2. Results of the Second Stage of Feature Selection. For each
dataset 𝐷𝑖, the mRMR, IFS, and SMO methods were used
to process the remaining features. The mRMR program was
retrieved from http://research.janelia.org/peng/proj/mRMR/
and was executed with its default parameters. As a result, we
generated two feature lists: the MaxRel and mRMR features
lists. To reduce the computation time, only the first 500
features in each of the two feature lists were obtained, and
they are available in Supplementary Material II.

The IFS and SMOmethods were used in accordance with
the mRMR features list for each dataset 𝐷𝑖 evaluated using
10-fold cross validation. The SNs, SPs, ACCs, and MCCs
obtained for each dataset 𝐷𝑖 are available in Supplementary

Table 2: The number of features in the optimal feature set for each
dataset and the MCC value obtained using these features.

Dataset Number of features in the
optimal feature set MaximumMCC value

𝐷1 344 0.712699
𝐷2 226 0.723116
𝐷3 104 0.873086
𝐷4 57 0.77142
𝐷5 146 0.744851
𝐷6 26 0.699118
𝐷7 136 0.788893
𝐷8 462 0.789865
𝐷9 55 0.704687
𝐷10 70 0.806162
Mean 0.76139

Material III. For clarity, we plotted an IFS-curve for each
dataset𝐷𝑖, which is referred to as IFS-curve-𝐷𝑖. The five IFS-
curves for 𝐷1, 𝐷2, 𝐷3, 𝐷4, and 𝐷5 are shown in Figure 1(a),
while the other five IFS-curves for 𝐷6, 𝐷7, 𝐷8, 𝐷9, and 𝐷10
are shown in Figure 1(b); the ten IFS-curves that are plotted in
separate coordinates are available in Supplementary Material
IV. Generating the maximum MCC for each dataset from
Supplementary Material III and IV (listed in column 3 of
Table 2) was a straightforward process. Clearly, most MCCs
are in the range 0.7 to 0.8, and the mean value was 0.76139.
As mentioned in Section 2.5, the features used to obtain
the maximum MCC compose the optimal feature set. The
number of features in the optimal feature set for each dataset
is listed in column 2 of Table 2. The results for dataset𝐷1 are
described as follows. The maximumMCC for the dataset 𝐷1
is 0.712699 (listed in row 2 and column 3 of Table 2) using
the first 344 (listed in row 2 and column 2 of Table 2) features
in the mRMR features list of dataset 𝐷1 (see Supplementary
Material II).

3.3. Analysis of the Optimal Feature Set. Asmentioned in Sec-
tion 3.2, we generated an optimal feature set for each dataset,
thereby obtaining 10 optimal feature sets. We combined these
optimal feature sets to compose the final optimal feature
set, which includes 720 GO terms and 11 KEGG pathways
that are available in Supplementary Material V. To discern
the distribution of these 731 optimal features, we counted
the number of optimal feature sets containing each of 731
features. Figure 2 shows the number of features against the
number of optimal feature sets, from which we can see that
400 featureswere exactly contained in one optimal feature set,
131 featureswere exactly contained in twooptimal feature sets,
while others were contained in at least three optimal feature
sets. Accordingly, 45.28% (331/731) features were contained
in at least two optimal feature sets, indicating that different
datasetsmay induce some common features. It also suggested
that some important features for distinguishingAMD-related
genes were contained in the final optimal feature set. In
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Figure 1: IFS-curve for each dataset. Specifically, (a) shows the IFS-curves for the datasets 𝐷1, 𝐷2, 𝐷3, 𝐷4, and 𝐷5, while (b) shows the IFS-
curves for the datasets 𝐷6, 𝐷7, 𝐷8, 𝐷9, and 𝐷10. The 𝑦-axis represents Matthews’s correlation coefficient (MCC), and the 𝑥-axis represents
the number of features involved in the classification model.
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Figure 2: The number of features against the number of optimal
feature sets.

the following sections, features in the final optimal feature set
were discussed.

3.3.1. GO Number and Percentage. It is known that GO
terms can be divided into the following three types: (1)
biological process (BP) GO term, (2) cellular component
(CC)GO term, and (3)molecular function (MF)GO term. To
efficiently discern the biological meanings and characterize
the functional essentiality of the GO terms in the final
optimal feature set, we considered the children terms of the
aforementioned three types. For clarity, let 𝑆𝑜 be the 720 GO
terms in the final optimal feature set and 𝑆 be the children
terms of any children term of BP GO term, CC GO term, or
MF GO term. To display the distribution of the GO terms
in 𝑆𝑜, we calculated the frequency and percentage for each
children term of BP GO term, CC GO term, or MF GO term
which were defined as |𝑆𝑜 ∩ 𝑆| and |𝑆𝑜 ∩ 𝑆|/|𝑆|, respectively.
Figures 3–8 display the frequency and percentage of children
terms of BP GO term, CC GO term, or MF GO term in the
final optimal feature set.

(1) BP GO Terms. In Figure 3, based on the BP term
frequencies, the top five biological process terms are (I) GO:
0009987: cellular process (382); (II) GO: 0065007: biological
regulation (301); (III) GO: 0050789: regulation of biological
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Figure 3: Frequency of children terms of biological process GO
terms in the final optimal feature set.

7.25%

3.99% 3.88% 4.00%

2.72%

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

G
O

: 0
00

00
03

G
O

: 0
00

19
06

G
O

: 0
00

23
76

G
O

: 0
00

67
91

G
O

: 0
00

67
94

G
O

: 0
00

81
52

G
O

: 0
00

82
83

G
O

: 0
00

97
58

G
O

: 0
00

99
87

G
O

: 0
01

59
76

G
O

: 0
01

60
32

G
O

: 0
01

62
65

G
O

: 0
01

97
40

G
O

: 0
02

24
14

G
O

: 0
02

26
10

G
O

: 0
02

30
52

G
O

: 0
03

25
01

G
O

: 0
03

25
02

G
O

: 0
03

61
66

G
O

: 0
04

00
07

G
O

: 0
04

00
11

G
O

: 0
04

34
73

G
O

: 0
04

85
11

G
O

: 0
04

85
18

G
O

: 0
04

85
19

G
O

: 0
05

07
89

G
O

: 0
05

08
96

G
O

: 0
05

11
79

G
O

: 0
05

12
34

G
O

: 0
05

17
04

G
O

: 0
06

50
07

G
O

: 0
07

18
40

(%
)

GO term

Figure 4: Percentage of children terms of biological process GO
terms in the final optimal feature set.

process (269); (IV) GO: 0008152: metabolic process (247);
and (V) GO: 0050896: response to stimulus (152).

The top four BP terms may indicate that these biological
processes are necessary tomaintain normal cellular functions
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Figure 5: Frequency of children terms of cellular component GO
terms in the final optimal feature set.
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Figure 6: Percentage of children terms of cellular component GO
terms in the final optimal feature set.

and may lead to AMD due to aberrant behavior in relevant
cells.

“Response to stimulus” refers to any process that results
from a stimulus, which leads to a change in a state or activity,
such as movement and secretion.
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Figure 7: Frequency of children terms of molecular function GO
terms in the final optimal feature set.
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Figure 8: Percentage of children terms of molecular function GO
terms in the final optimal feature set.

For the BP term percentages, as shown in Figure 4, the
top five biological process terms are (I) GO: 0001906: cell
killing (7.25%); (II) GO: 0040011: locomotion (4.00%); (III)
GO: 0002376: immune system process (3.99%); (IV) GO:
0022610: biological adhesion (3.88%), and (V) GO: 0048518:
positive regulation of a biological process (2.72%).

Biological adhesion between substrate and cells
modulates several critical cellular processes, such as cell
locomotion and gene expression [59]. Biological adhesion-
and locomotion-related gene dysfunction may result in
AMD. Previous research has shown that the immune system,
particularly the complement system, is relevant to AMD.
Genetic studies also indicate that several complement-related
genes, including CFH, complement component 2, complement
component 3, CFHR1, and CFHR3, are highly associated with
AMD [60]. Further, complement can enhance the generation
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of VEGF (vascular endothelial growth factor), which may
strongly facilitate AMD development [61]. Histological
studies show the presence of macrophages, lymphocytes,
mast cells, and fibroblasts in both atrophic lesions and with
retinal neovascularization [61].

(2) CCGO Terms. In Figure 5, for the cellular component GO
term frequency, the top five CC terms are (I) GO: 0005623:
cell (80); (II) GO: 0044464: cell part (64); (III) GO: 0032991:
macromolecular complex (27); (IV) GO: 0043226: organelle
(24); and (V) GO: 0005576: extracellular region (18). Cell, cell
part, organelle, and macromolecular complex inclusion may
be attributed to large base numbers of these GO terms.

For the percentage of cellular component terms, as
shown in Figure 6, the top five CC terms include (I) GO:
0044420: extracellularmatrix part (14.29%); (II)GO: 0031012:
extracellularmatrix (13.13%); (III) GO: 0044421: extracellular
region part (6.94%); (IV) GO: 0005576: extracellular region
(6.74%); and (V) GO: 0005623: cell (1.96%).

From the distribution of CC terms, except for the cell
term (GO: 0005623), the top four CC terms are associated
with the extracellular matrix. Moreover, the extracellular
region is relevant to cell adhesion and locomotion, which
were mentioned in the biological process GO terms.

The results are also consistent with a recent GWAS study,
which identified several new loci with enrichment for genes
involved in the extracellular matrix and other activities [18].
Structural damage of extracellular matrix in retinal cells may
lead to break point of AMD [62]. Matrix metalloproteinases
result in extracellular matrix degradation and are highly
related to AMD pathogenesis [63]. Therefore, taken together,
these facts suggest that the extracellular matrix plays an
important role in AMD.

(3) MF GO Terms. In Figure 7, based on the frequency of
molecular function terms, the top five MF terms are (I) GO:
0003824: catalytic activity (89); (II) GO: 0005488: binding
(72); (III) GO: 0000988: protein binding transcription factor
activity (34); (IV) GO: 0004872: receptor activity (34); and
(V) GO: 0060089: molecular transducer activity (26).

MF terms related to catalytic activity and binding were
highlighted partly due to the large base numbers of these
terms. However, this finding may suggest that genes assigned
to these two terms are essential to maintain normal function.
For example, matrix metalloproteinases, which can degrade
extracellular matrix proteins, play an important role in
AMD [63]. In addition, highlighting receptor activity and
molecular transducer activity indicates that abnormal cellular
signal pathway behaviors are involved in AMD patients. For
example, the Aryl hydrocarbon receptor, which is responsible
for clearing cellular debris and for toxin metabolism, is
essential to maintaining normal function in RPE cells, and
deficiency of this receptor causes AMD in mice [64].

For the percentage of molecular function terms, as shown
in Figure 8, the top five MF terms are (I) GO: 0005198: struc-
tural molecule activity (11.76%); (II) GO: 0016209: antioxi-
dant activity (11.54%); (III) GO: 0016247: channel regulator
activity (8.33%); (IV) GO: 0030545: receptor regulator activ-
ity (5.00%); and (V) GO: 0004872: receptor activity (4.72%).

To our surprise, receptor activity was highlighted in both the
frequency andpercentage ofmolecular function terms,which
is further evidence of the important role that receptor activity
plays in AMD. Antioxidant activity is also highlighted, and
oxidative stress [6] is a risk factor correlated with AMD.
Channel regulator activity and structural molecule activity
may also be involved in AMD.

3.3.2. The KEGG Pathways in the Final Optimal Set. Based
on the final optimal set, we obtained 11 KEGG pathways,
which are (I) hsa00290 (valine, leucine, and isoleucine
biosynthesis); (II) has00450 (selenocompound metabolism);
(III) hsa00512 (mucin-type O-glycan biosynthesis); (IV)
hsa03013 (RNA transport); (V) hsa04145 (phagosome); (VI)
hsa04610 (complement and coagulation cascades); (VII)
hsa04962 (vasopressin-regulated water reabsorption); (VIII)
hsa05133 (pertussis); (IX) hsa05146 (viral myocarditis); and
(X) hsa05150 (Staphylococcus aureus infection); and (XI)
hsa05416 (viral myocarditis).

Valine, leucine, and isoleucine biosynthesis (hsa00290)
and selenocompound metabolism (hsa00450) are related to
amino acid metabolism. Mucin-type O-glycan biosynthe-
sis is associated with modifications of serine or threonine
residues of certain proteins. RNA transport from nucleus to
cytoplasm is also essential for gene expression. These terms
may not be the key factors in AMD, but they may give
us suggestions about the AMD development. Phagosome
(hsa04145) is also associated with AMD. There are various
forms of cell death and phagocytosis in the retina [65]. But
failure of retinal pigment epithelial cells and macrophages to
phagocytize dying retinal pigment epithelial cells may result
in drusen formation and development of AMD [66]. The
underlying mechanism of AMD is still unclear, but many
studies have highlighted the essential role of the immune
system in the development and progression of AMD [67].
Previous studies have revealed a strong association between
complement pathway and AMD [20]. Several complement
genes including complement 2 (C2) and complement 3 (C3)
have been strongly associated with AMD [12, 68]. Except
vasopressin-regulated water reabsorption, viral myocarditis
(hsa05146) and Staphylococcus aureus infection (hsa05150)
are all correlated with immunity, which further emphasizes
the effect of immunity in AMD.

4. Conclusions

In this study, we performed GO and KEGG enrichment
analyses of AMD-related genes. The results suggest that 720
GO terms and 11 KEGG pathways are important factors that
contribute to identifying AMD-related genes.
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