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ABSTRACT Evidence that genomic selection (GS) is a technology that is revolutionizing plant breeding
continues to grow. However, it is very well documented that its success strongly depends on statistical
models, which are used by GS to perform predictions of candidate genotypes that were not phenotyped.
Because there is no universally better model for prediction and models for each type of response variable
are needed (continuous, binary, ordinal, count, etc.), an active area of research aims to develop statistical
models for the prediction of univariate and multivariate traits in GS. However, most of the models
developed so far are for univariate and continuous (Gaussian) traits. Therefore, to overcome the lack of
multivariate statistical models for genome-based prediction by improving the original version of the
BMTME, we propose an improved Bayesian multi-trait and multi-environment (BMTME) R package for
analyzing breeding data with multiple traits and multiple environments. We also introduce Bayesian multi-
output regressor stacking (BMORS) functions that are considerably efficient in terms of computational
resources. The package allows parameter estimation and evaluates the prediction performance of multi-trait
and multi-environment data in a reliable, efficient and user-friendly way. We illustrate the use of the BMTME
with real toy datasets to show all the facilities that the software offers the user. However, for large datasets,
the BME() and BMTME() functions of the BMTME R package are very intense in terms of computing time; on
the other hand, less intensive computing is required with BMORS functions BMORS() and BMORS_Env() that
are also included in the BMTME package.
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Genomic selection (GS) is a methodology used in plant breeding that was
proposed by Meuwissen et al. (2001). It is a type of marker-assisted
selection that consists of genotyping and phenotyping a training sample
(reference population); with the help of statistical models, predictions
of genomic estimated breeding values (GEBV) or phenotypic values of
the testing sample (validation population) are obtained for which only
genome-wide dense genetic marker data were available. GS does not
depend on prior knowledge about a few, large-effect genes or QTL,
since all markers are used simultaneously in the training of the statis-
tical models. GS was first used in animal breeding (Hayes and Goddard
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2010), but nowadays is being implemented in many crops, for example,
maize (Crossa et al., 2014), cassava (de Oliveira et al., 2012), wheat
(Rutkoski et al., 2011), sugar beet (Wiirschum et al, 2013), tomato
(Yamamoto et al, 2016), rice (Spindel et al, 2015), apple (Kumar
et al., 2012), pea (Burstin et al, 2015), cranberry (Covarrubias-Pazaran
et al,, 2018) and many others.

In recent years, an active area of research has begun to develop and
improve existing statistical models for genomic selection (GS) due to the
fact that successful GS implementation is strongly related to the accuracy
of the predictions performed by statistical models. However, because
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there are no universally superior machines for prediction, many models
have been proposed. For example, most of the proposed models are
univariate and few are multivariate. Most of the univariate models
are appropriate for continuous and Gaussian phenotypes, but there are
several appropriate models for binary, ordinal and count traits. Some
examples of implementations of models for non-Gaussian, non-con-
tinuous traits are unordered categorical (Heuer et al., 2016), binomial
(Technow and Melchinger 2013) and ordinal categorical (Montesinos-
Lépez et al., 2015a,b). While multivariate models are used almost rou-
tinely nowadays, for the joint analysis of multiple-traits (e.g., Jia and
Jannink 2012) as well as multiple-environments (e.g., Burguefio et al,
2012) and even multiple populations (e.g., Olson et al., 2012), there are
few multivariate practical software programs for continuous and
Gaussian phenotypes and there are scarcely any models and software
for other types of response variables. To the best of our knowledge,
almost none of the currently reported models consider mixed phenotypes
including continuous, binary, ordinal, count, etc. traits. For this reason, it
is clear that to increase the power of GS technology, it is of paramount
importance to develop more models and improve the existing ones.
Multi-trait models in GS have been applied by many scientists. For
example, Calus and Veerkamp (2011), Jia and Jannink (2012), Jiang
etal. (2015), He et al. (2016), Schulthess et al. (2017), and Covarrubias-
Pazaran et al. (2018) reported that multi-trait analysis outperforms uni-
trait analysis in terms of prediction accuracy and that the larger the
correlation between traits, the larger the benefit of multi-trait analysis.
The Multi-Trait Model (MTM) of de los Campos and Griineberg
(2016) is a mixed multi-trait Gaussian model under the Bayesian
framework that uses a Gibbs sampler for inferences. Furthermore,
Bayesian multi-output regressor stacking (BMORS) is a Bayesian ver-
sion of the multi-trait regressor stacking method proposed by
Spyromitros-Xioufis et al. (2012; 2016). The training of BMORS has
two stages: (1) a single univariate model is implemented using the
GBLUP model, and (2) the resulting predictions are directly included
by BMORS in an additional training stage. Thus, the concept of
BMORS is that a second-stage model will correct the predictions of
the first-stage model [using the predictions of the first-stage univariate
GBLUP model (Spyromitros-Xioufis et al., 2012; 2016)].
Montesinos-Lopez et al. (2016) were the first to develop a compre-
hensive theory for a Bayesian multi-trait multi-environment (BMTME)
model for genome-based prediction. An improved version of BMTME
allows general covariance matrices by using the matrix normal distri-
bution that facilitates easy derivation of all full conditional distributions
and permits a more efficient model in terms of time of implementation
Montesinos-Lopez et al. (2018a,b,c). In general, the matrix normal
distribution model considerably improved in terms of implementation
time over the time required by the original BMTME. Also, the Gibbs
sampler for implementing the new BMTME model can be found in
Montesinos-Lopez et al. (2018a), and the priors of the model are given
in detail in Montesinos-Lopez et al. (2018b). Montesinos-Lopez et al.
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(2018a) provide the appropriate notations used for the matrix-variate
normal distribution that is a generalization of the multivariate normal
distributions to matrices. This plays a key role in building the BMTME
model. The original software used by Montesinos-Lopez et al. (2016) to
fit the BMTME was the first attempt to implement the multi-trait
multi-environment theory when analyzing real data; however, the lack
of the necessary optimization algorithms for efficiently applying the
software made the original BMTME difficult to apply to real data.

It is also important to point out that even though the existing R
statistical software for Bayesian analysis like stan’ (https://mc-stan.org/)
and TAGS (https://en.wikipedia.org/wiki/Just_another_Gibbs_sam-
pler) are very flexible for implementing Bayesian analysis, they are
not user-friendly because the user needs a certain level of programming
skills to correctly implement them (Stan Development Team 2018;
Plummer 2018). These two software programs (stan and JAGS) also
require more computational resources for their implementation since
they are built not with conjugate priors. It is documented that multi-
variate analysis improves parameter estimation (Schulthess et al,
2017). For this reason, we agree with Castro et al. (2013) and Huang
et al. (2015), who stated that multi-trait analysis is a powerful tool for
clarifying the relationship and the effect of each studied variable and for
building more efficient prediction models.

Due to the background of plant breeders, not only are new models
needed, but the existing ones need to be improved. We also need reliable,
efficient, user-friendly software in which breeders can implement the
existing GS models. One popular R package in the context of genomic
selection for continuous and ordinal data are the BGLR package of Pérez
and de los Campos (2014) that was built under the Bayesian framework
and is very flexible because it allows the use of a genomic relationship
matrix (derived from marker or pedigree), and also allows implementing
various methods like BayesA, BayesB, Bayes Lasso, Bayes Ridge and
GBLUP and can deal with moderate datasets; however, it only allows
the implementation of univaritate models. Therefore, to contribute
to this requirement, we developed a Bayesian multi-trait and multi-
environment (BMTME) R software that allows the implementation of
multi-trait and multi-environment data for performing parameter esti-
mates and evaluating the prediction performance of multiple traits that
are studied in many environments. This BMTME package is different
from existing ones [sommer (Covarrubias-Pazaran 2016), BGGE
(Granato et al., 2018), ASREML (Gilmour et al., 1995) and MCMCglmm
(Hadfield et al., 2010)] because it takes into account the genetic correla-
tion between traits and between environments. The main difference of
BMTME with sommer and ASREML is that our package was built under
a Bayesian framework, while sommer and ASREML were based on a
classical approach using restricted maximum likelihood. The difference
between BGGE and our model is that our model is not only for multi-
environment data but rather for multi-environment and multi-trait data
simultaneously. On the other hand, the MCMCglmm package only al-
lows a general covariance matrix for traits but not for environments, like
the proposed BMTME package; however, it is important to point out that
the MCMCglmm package allows modeling not only continuous re-
sponses but also binary, ordinal and counts.

The main objective of this research was to illustrate the application of the
new BMTME with two real toy datasets; with these we show how to use the
functions available in the BMTME package for implementing multi-
environment (BME function), multi-trait and multi-environment data
(BMTME function), as well as the Bayesian multi-output regressor stacking
functions BMORS () and BMORS_ENV (). These two functions are very
different to what the existing software [sommer (Covarrubias-Pazaran
2016), BGGE (Granato et al, 2018), ASREML (Gilmour et al., 1995)
and MCMCglmm (Hadfield ef al, 2010)] implements, since the theory
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behind this function is that of stacking methods. Stacking methods consist
of training multiple learning algorithms for the same dataset and then
combining the predictions to obtain the final predictions. In this study we
used the initial BMTME of Montesinos-Lopez et al. (2016) but improved
it by using the matrix variate normal distribution (Montesinos-Lépez
et al, 2018¢c) and the appropriate priors given by Montesinos-Lopez
et al. (2018a) and Montesinos-Lopez et al. (2018b).

METHODS
Statistical models

Multiple-environment Genomic Best Linear Unbiased Predictor
(GBLUP) model: Since genotype X environment interaction is of par-
amount importance in plant breeding, the following univariate linear
mixed model is often used for each trait:

yij = Ei + g + gEij + €; (6Y)

where y;; represents the response of the jth line in the ith environment
(i=1,2,...,1,j=1,2,...,]). E; represents the effect of the ith envi-
ronment, g; represents the random genomic effect of the jth line, with
g=(g,--,g)" ~N(0,0% G,), g% is a genomic variance, Gy is of
order J X J and represents the genomic relationship matrix (GRM) and is
calculated (VanRaden 2008) as G, = WTWl, where p denotes the number
of markers and W is the matrix of markers of order J X p. The G; matrix
is constructed using the observed similarity at the genomic level between
lines, rather than the expected similarity based on pedigree. Further, gE;; is
the random interaction term between the genomic effect of the jth line and
the ith environment with gE = (gEyy, ...,gEy)" ~ N(0,02 L;®G),
where a'% is an interaction variance, and e;; is a random residual associated
with the jth line in the ith environment distributed as N (0, o*) where o
is the residual variance.

Bayesian multiple-trait multiple-environment (BMTME) model:
The current BMTME model was implemented by Montesinos-Lopez
et al. (2018a,b,c). For a complete understanding of its description, first
we provide the notations used for the matrix-variate normal distribu-
tion that plays a key role in building the BMTME model. Matrix-variate
normal distribution is a generalization of the multivariate normal dis-
tribution to matrices. The (nxp) random matrix, M, has a matrix-
variate normal distribution denoted as M ~ NM,.,(H, €2, X), if and
only if, the (npx1) random vector vec(M) is distributed as multivariate
normal as N, (vec(H), Z® Q); therefore, NM,, denotes the (nx p)
dimensional matrix-variate normal distribution, H is a (1 X p) location
matrix, X is a (p X p) first covariance matrix, and €2 is a (n X n) second
covariance matrix (Srivastava and Khatri 1979). vec(.) and ® are the
standard vector operator and Kronecker product, respectively. Unlike
in a multivariate normal model where the data are concatenated into a
single vector of length np, in a matrix-variate normal model, the data
(M) are in an nxp matrix where each column is a trait (Montesinos-
Loépez et al., 2018a). Therefore, the proposed BMTME model is defined
as follows:

Y=Xﬁ+Z1b1+Z2b2 +E 2)

where Y is of order nx L, with L the number of traits and n = J X I,
where ] denotes the number of lines and I the number of environ-
ments, X is of order nxI, B is of order I XL, since B = {B;} for
i=1,.,]andl=1,..,L, Z; is of order nx], b, is of order ] X L and
contains the genotype X trait interaction term since b; = {gt;} where
gtir is the effect of the genotype X trait interaction term for1 = 1,..,J
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and for j=1,..,L. Z, is of order nxIJ, b, is of order I xL and
contains the genotype X environment X trait interaction, since
b, = {gEt;i}, where gEt;; is the effect of genotype X environment x
trait interaction for j=1,..,], for i=1,..,I and for I=1,.., L.
Vector b; is distributed under a matrix-variate normal distribution
as NMj,; (0, Gy, %), where Gg is of order JxJ and represents the
Genomic Relationship Matrix (GRM) and is calculated using the
VanRaden (2008) method as G; = WWZ where p denotes the number
of markers and W the matrix of markers of order Jxp; and %,
is the unstructured genetic (co)variance matrix of traits of order
LXL, b, ~ NMj; (0,25 ® Gy, X;), where Xg is an unstructured
(co)variance matrix of order I XI and E is the matrix of residuals
of order nx L with E ~ NM,,;(0,1,,R,), where R, is the unstruc-
tured residual (co)variance matrix of traits of order LX L, and Gy is
the genomic relationship matrix described above (Montesinos-Lopez
et al., 2018a). The BMTME model resulting from equation (2) was
implemented by Montesinos-Lopez et al. (2016).

Next, we used the modified version of the Gibbs sampler of the
original BMTME model proposed by Montesinos-Lopez et al. (2016)
that was implemented in Montesinos-Lopez et al. (2018a). It is impor-
tant to point out that model (2) takes into account the genotype x
environment terms in the (Z,b,) term and, for comparison purposes,
we also ran the model in equation (2) but without the (Z,b,) term to
study the effect on prediction performance with and without the geno-
type X environment term. The Gibbs sampler for implementing the
BMTME model is found in Montesinos-Lopez et al. (2018a), and the
priors of this model are given in detail in Montesinos-Lopez et al.
(2018b). The concept of the matrix variate normal distribution is given
in Montesinos-Lopez et al. (2018c).

Bayesian multi-output regressor stacking (BMORS): The proposed
BMORS is a Bayesian version of the multi-trait regressor stacking
method proposed by Spyromitros-Xioufis et al. (2012;2016). The train-
ing of BMORS consists of two stages. In the first stage, L single uni-
variate models are implemented using the GBLUP model given in
equation (1), but instead of using the resulting predictions directly as
the final output, the BMORS includes an additional training stage
where a second set of L meta-models are implemented for each of
the L traits under study. Each meta-model is implemented with the
following model:

i = BiZvj + By Zaij+ ..+ BrZuij + ¢ 3)

where the covariates Zl,j,Zz,»j, ... ,ZL;j represent the scaled predic-
tions of each trait obtained with the GBLUP model in the first-stage
analysis, and B, .., 3, are the beta coefficients for each covariate.
The scaling of each prediction was performed by subtracting its mean
(,LL,,«]») anc} dividing by its corresponding standard deviation (o7;),
that is, Z;=(; — ;Ll,-j)a'lj.jl, for each I =1,...,L. Therefore, the
BMORS model contains as predictor information the scaled predic-
tions of its response variables yielded by the first-stage models. In
other words, the BMORS model is based on the idea that a second-
stage model is able to correct the predictions of a first-stage model
using information about the predictions of other first-stage models
(Spyromitros-Xioufis et al., 2012; 2016).

Real toy datasets

Mada dataset: This dataset was obtained from the study by Ben Hassen
et al. (2018). The dataset is composed of a sample of 188 wheat lines
evaluated for six traits. Each of the lines was evaluated in one environment.
The lines were genotyped and 32,066 single nucleotide polymorphisms
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(SNPs) were obtained with a heterozygosity rate << 5% and a minor allele
frequency (MAF) > 5%. A subset of the data were included in the package
that includes 30 lines, and we named this dataset Mada. For more details,
see the study by Ben Hassen et al. (2018). Raw markers are not included,
and we provide the genomic relationship matrix (GRM) calculated
according to the method of VanRaden (2008).

Maize dataset: This dataset was obtained from the study by
Montesinos-Lopez et al. (2016). It consists of a sample of 309 maize
lines evaluated for three traits: anthesis-silking interval (ASI), plant
height (PH), and grain yield (GY). Each trait was evaluated in three
optimal environments (Envl, Env2 and Env3). The lines were geno-
typed, 681,257 single nucleotide polymorphisms (SNPs) were obtained,
and markers with more than 20% missing values were removed. After
that, markers were imputed using observed allelic frequencies, and
markers with MAF < 0.05 were removed, so that at the end of the
quality control and imputation, 158,281 SNPs were still available for
further analyses. To load this dataset in the package, we used only
30 lines, and we named this dataset Maize. For more details, see the
study by Montesinos-Lopez et al. (2016).

Evaluation of prediction performance

We implemented cross-validation (CV) to evaluate the prediction
performance. Two types of CV were implemented: K-fold cross-vali-
dation and random cross-validation.

K-fold cross-validation: Under this CV, the dataset was partitioned
into K subsamples of equal size; each time K-1 of them were used for
training (TRN) and the remaining one for testing (TST). In this CV, one
observation cannot appear in more than one fold. In the design, some
lines can be evaluated in some, but not all, target environments, which
mimics a prediction problem faced by breeders in incomplete field trials.
This CV strategy is exactly the same as the strategy denoted as CV2 that
was proposed and implemented by Jarquin et al. (2017), where a certain
portion of test lines (genotypes) in a certain portion of test environ-
ments is predicted, since some test lines that were evaluated in some test
environments are assumed to be missing in others.

Random cross-validation: This CV strategy randomly splits the dataset
into training (TRN) and testing data (TST). For each such split, the model is
fitted to the TRN data, and predictive accuracy is assessed using the TST
data. Since we used sampling with replacement, one observation may
appear in more than one partition. The implemented CV mimics a
prediction problem faced by breeders in incomplete field trials, where
some lines may be evaluated in some, but not all, target environments. Since
N = ] xI denotes the total number of records per each available trait,
then to select lines in the TST dataset, we fixed the percentage of data to be
used for TST [PTesting]. Then PTesting<N (lines) were chosen at ran-
dom, and subsequently for each of these lines, one environment was
randomly picked from I environments. The cells selected through this
algorithm were allocated to the TST dataset, while the cells (i) that were
not selected were assigned to the TRN dataset. Lines were sampled with
replacement if J <PTestingx N, and without replacement otherwise
(Lopez-Cruz et al., 2015). The metrics used to measure the prediction
accuracy under both CV strategies were Pearson’s correlation and the
mean arctan absolute percentage error (MAAPE), which has the advan-
tage that no zero estimates are produced when the response variable
contains many zeros. They were calculated from each trait-environment
combination for each of the testing sets and the average of all random
partitions (folds) is reported as a measure of prediction performance.
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Data availability

The data used in this study are included in the BMTME package, so once
that package is installed, the datasets can be loaded into the R
environment.

Installation of the BMTME package

The aim of this section is to illustrate the use of the R BMTME package
for analyzing multi-environment and multi-trait and multi-environ-
ment data from plant breeding programs. The BMTME package was
built following the paper by Montesinos-Lopez et al. (2016) and imple-
mented in the R statistical software (R Core Team 2018).

The development version of the BMTME package can be installed
directly from the GitHub repository (https://github.com/frahik/
BMTME). In order to install the package, it is necessary to install the
appropriate compilers; the installation process and the required tools
depend heavily on the operating system. For example, in Windows it is
necessary to install Rtools (https://cran.r-project.org/bin/windows/
Rtools/), and in modern versions of macOS, it is necessary to install
XCode from App Store or the development tools for R from CRAN
(https://cran.r-project.org/bin/macosx/tools/). In the case of Linux, it is
necessary to install the C++ compilers included in your distribution, for
example, g++ from GNU (https://www.gnu.org). Once the tools have
been installed, use the following command to install the package within
your R session:

install.packages(’devtools’)
devtools:install_github('frahik/BMTME’)

You can also find the package in the CRAN repository, and you can
use the following command (see below) to install a version of the package
from CRAN. This will avoid the need to install some dependencies
manually and install the Rtools software using the following command:

install.packages('BMTME')

The R package BMTME is available at the following link: https://
cran.r-project.org/web/packages/BMTME/index.html.

RESULTS

The results are given in three main sections. The first section illustrates
the use of the BME function for implementing multi-environment
analysis, while the second and the third sections illustrate the use of
the BMTME and BMORSs functions for implementing multi-trait and
multi-environment analyses.

The BME Function
This example illustrates how to fit a model when there is only one
environment and several dependent variables. First, we load the library:

library(BMTME)
Then we load the Mada dataset:
data(“WheatMadaToy”)

Then we define the model to be adjusted; since the dataset only
includes an environment where several dependent variables were eval-
uated, the BME model is used. To implement it, first we need to order
the dataset as follows:

phenoMada <- (phenoMada[order(phenoMada$GID),])
rownames(phenoMada)=1:nrow(phenoMada)
head(phenoMada)

GID PH FL FE NS SY NP

19 29.7776 -8.8882 -4.93900 1.04100 169.06 28.8025

-=.G3:Genes| Genomes | Genetics


https://github.com/frahik/BMTME
https://github.com/frahik/BMTME
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/macosx/tools/
https://www.gnu.org
https://cran.r-project.org/web/packages/BMTME/index.html
https://cran.r-project.org/web/packages/BMTME/index.html

2 11 3.2210 -7.1111 -0.36940 -3.88940 -107.19 58.2516
312 6.1670 -9.5337 -12.43680 2.58250 -160.54 17.1278
415 6.8117 4.6377 11.78860 -0.03378 235.70 -19.6571
520 -14.4480 3.2525 6.40780 -14.23460 131.87 42.2962
6 21 -13.2185 3.8902 0.09722 5.35680 164.06 36.8239

This is a very important step in the analysis, because if the dataset is
not ordered correctly, this may cause conflicts and produce incorrect
estimations. Also, with the head() function we printed the phenotypic
dataset, where the required format of the dataset requires a first column
with the identifiers of the lines and then the names of all the traits. It is
important to respect this format to be able to successfully implement the
multi-environment (trait) datasets.

Then, the design matrix for the genetic effects should be generated, as
shown below.

LG <- cholesky(genoMada)
ZG <- model.matrix(~0 + as.factor(phenoMada$GID))
2.G <-ZG %*% LG

Then, we can extract the phenotypic responses that were converted
to matrix object as shown in the following command:
Y <- as.matrix(phenoMadal, -c(1)])

Finally, the model was adjusted, and 30,000 iterations were used to
adjust the model.

fm <- BME(Y =Y, Z1 = Z.G, nlter = 30000, burnIn = 20000,
thin = 2, bs = 50)

Itis important to point out that bs is the block size for sampling from
posterior distributions; we suggest using a value of at least 50 butless than
1000.

Next we used the names() function to identify all the available
outputs of the fitted model.

names(fm)

[1] “Y” “nlter” “burnIn” “thin” “dfe”

[6] “Se” “yHat” “SD.yHat” “beta” “SD.beta”
[11] “b1” “SD.b1” “vare” “SD.vare” “varTrait”
[16] “SD.varTrait” “NAvalues”

Here we extracted the observed values ($Y), the predicted values
($yHat), the parameters provided for the model fit ($nlter, $burnln,
$thin, etc.), the estimates of the beta coefficients, random effects of lines
and the genetic and residual covariances ($beta, $SD.beta, $b1, $SD.b1,
$varTrait, $vare, etc.). Next we show how to extract the predicted values:

head(fm$yHat)

PH FL FE NS SY NP

[1,] 13.4602 -4.6073 2.2247 -5.2839 -161.7740 28.9334
[2,] 4.6792 -2.7261 2.3857 -3.3243 -89.1425 29.2848
[3,] 3.0779 -2.0297 0.1369 -3.2161 -91.4642 11.7453
[4,] 5.2408 1.6600 5.6141 1.6136 60.2424 -23.3492

[5,] -5.1899 1.0555 1.8783 -3.0015 49.6383 11.7256
[6,] -9.8591 1.2399 0.5886 3.4539 88.8181 26.9665

We also extracted the genetic covariance between traits, as shown
below:

COV _TraitGenetic <- fm$varTrait

COV _TraitGenetic

PH FL FE NS SY NP

[1,] 64.4266 -4.2148 6.3730 -0.0049 -103.8781 -114.4456
[2,] -4.2148 5.9607 3.2257 -0.1355 175.7770 -21.0909
[3,] 6.3730 3.2257 23.8617 1.3721 -133.4962 -43.6292
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[4,] -0.0049 -0.1355 1.3721 46.2903 370.1770 -59.0136
[5,] -103.8781 175.7770 -133.4962 370.1770 27963.1634 604.6203
[6,] -114.4456 -21.0909 -43.6292 -59.0136 604.6203 872.3525

To convert this covariance matrix into a correlation matrix, we
suggest using the following command:

COR_TraitGenetic <- cov2cor(COV_TraitGenetic)
COR_TraitGenetic

PH FL FE NS SY NP

[1,] 1.000000e+00 -0.215077873 0.16254014 -8.972603e-05
-0.07739239 -0.4827480

[2,] -2.150779e-01 1.000000000 0.27047346 -8.157286e-03
0.43054670 -0.2924829

[3,] 1.625401e-01 0.270473457 1.00000000 4.128479¢-02
-0.16342747 -0.3023991

[4,] -8.972603e-05 -0.008157286 0.04128479 1.000000e+00
0.32536534 -0.2936710

[5,] -7.739239e-02 0.430546701 -0.16342747 3.253653e-01
1.00000000 0.1224175

[6,] -4.827480e-01 -0.292482897 -0.30239914 -2.936710e-01
0.12241752 1.0000000

Here there are no high correlations (i.e., greater than 0.5). In a similar
way, we obtained the residual covariance matrix:

COV_ResGenetic <- fm$vare

COV_ResGenetic

PH FL FE NS SY NP

[1,] 65.2173 -2.7253 -12.3196 20.9669 880.3571 -71.9332

[2,] -2.7253 11.6654 10.6847 -7.8144 182.0011 -10.3907

[3,] -12.3196 10.6847 40.1432 -20.4498 -436.0834 -31.4401

[4,] 20.9669 -7.8144 -20.4498 54.0458 375.0032 -70.7700

[5,] 880.3571 182.0011 -436.0834 375.0032 60960.1184 2058.4876
[6,] -71.9332 -10.3907 -31.4401 -70.7700 2058.4876 670.1587

For demonstration purposes, we will only extract the first 6 predic-
tions for the 6 evaluated traits. We also plotted the observed values
against the predicted values for each trait, as follows (see Figure 1):

plot(fm, trait = 'FL")

Since the code provided above is only appropriate for parameter
estimation, now we provide the code required to evaluate the prediction
accuracy using the BME() function. For this reason, first we built the
random CV strategy with 10 random partitions, each with TRN = 80%
and TST = 20%, using the following code:

pheno <- data.frame(GID = phenoMadal, 1], Response =
phenoMadal, 2])

CrossV <- CV.RandomPart(pheno, NPartitions = 10, PTesting =
0.2, set_seed = 123)

Finally, we implemented the CV strategy as:

pm <- BME(Y =Y, Z1 = Z.G, nlter = 1250, burnln = 500,
thin = 2, bs = 50, testingSet = CrossV)

In the summary we show the average predictions of the 10 random
partitions implemented under average Pearson’s correlation (APC) and
MAAPE:

summary(pm)

Environment Trait Pearson SE_Pearson MAAPE SE_MAAPE
1 FE 0.3895 0.0847 0.7264 0.0313

2 FL 0.1758 0.0767 0.7751 0.0248

3 NP 0.3920 0.1192 0.7070 0.0347

4 NS 0.4281 0.0879 0.7604 0.0364
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5 PH 0.5612 0.0767 0.7285 0.0542
6 SY 0.0242 0.0623 0.7436 0.0255

Here we see that the best prediction in terms of APC was found in trait
PH (0.5612), while the worst was in trait SY (0.0242). However, in terms of
MAARPE, the best prediction was observed in trait NP (0.7070), while the
worst was found in trait FL (0.7751). With the boxplot(pm) function, we
created a plot summarizing the predictions in terms of Pearson’s corre-
lation, but if users want this plot in MAAPE terms, they need to use the
following code: boxplot(pm, select="MAAPE”) (Figure 2).

boxplot(pm)

It is important to point out that the BME function can be used with
only 1 testing set that can be defined by the user, as shown in the
following example:

CrossV1 <-sample(nrow(Y),15)
pm <- BME(Y =Y, Z1 = Z.G, nlter = 1250, burnln = 500,
thin = 2, bs = 50,testingSet = CrossV1)

Next we summarize the prediction accuracy:

summary(pm)

Environment Trait Pearson SE_Pearson MAAPE SE_ MAAPE
1 NA FE 0.1181 NaN 0.7765 NaN

2 NA FL -0.1222 NaN 0.8207 NaN

3 NA NP 0.6937 NaN 0.6813 NaN

4 NA NS 0.4636 NaN 0.7098 NaN

5 NA PH 0.7362 NaN 0.7949 NaN

6 NA SY -0.0079 NaN 0.8251 NaN

Since only one training set and one testing set were used, the standard
errors for both metrics appear with NaN, given that it is not possible to
calculate the standard error because only one testing set is available.

The Bayesian Multi-Trait and Multi-Environment

(BMTME) function

This example illustrates how to fit a model with multiple traits and
multiple environments. To do this, use the Maize dataset; first, load the
data using the following function:
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data(“MaizeToy”)

Next, order the dataset, rename the rows of the phenotypic dataset
and print the first six observations of the data in order to see the structure
required of the data, which consists of a first column that includes the
lines, a second column that includes the environments and third, fourth
and fifth columns that correspond to the traits under study.

phenoMaizeToy<<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy)

Line Env Yield ASI PH

1 CKDHLO0008 EBU 6.88 2.7 226

2 CKDHL0039 EBU 6.85 1.3 239

3 CKDHL0042 EBU 6.37 2.3 238

4 CKDHL0050 EBU 4.98 3.1 239

5 CKDHL0060 EBU 7.07 1.4 242

6 CKDHL0063 EBU 8.62 2.3 250

7 CKDHL0069 EBU 5.16 1.0 248

8 CKDHL0072 EBU 5.77 1.7 227

This step is very important for avoiding an incorrect estimation
process. Then the design matrices for the line effects, the environment
and the genotypexenvironment interaction are generated:

LG <- cholesky(genoMaizeToy)

ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
7.G <-7ZG %*% LG

Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model. matrix(~0 + as.factor(phenoMaizeToy$Line):as.
factor(phenoMaizeToy$Env))

G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))),
data.matrix(genoMaizeToy))

LG2 <- cholesky(G2)

Z.EG <- ZEG %*% LG2

Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])

Finally, the following command is used to fit the model:

fm <- BMTME(Y =Y, X = ZE, Z1 = Z.G, Z2 = Z.EG,
nlter =15000, burnIn =10000, thin = 2,bs = 50)
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We used the names() function to see all the things that can be
extracted after fitting a model with the BMTME function.

names(fm)

[1] “Y” “nlter” “burnIn” “thin” “dfe” “Se” “yHat” [8] “SD.yHat”
“beta” “SD.beta” “b1” “b2” “vare” “SD.vare”

[15] “varEnv” “SD.varEnv” “varTrait” “SD.varTrait” “NAvalues”

We can extract the predicted and observed values, the random effects
of lines, of linesxtrait, linesxenvironmentxtrait, as well as the genetic
covariances between traits and environments, and the residual covari-
ance between traits. To extract the matrix of covariances between traits,
we used the following:

COV _TraitGenetic <- fm$varTrait
COV _TraitGenetic

Yield ASI PH

[1,] 0.0956 -0.0027 0.9642

[2,] -0.0027 0.0654 0.1893

[3,] 0.9642 0.1893 23.0647

To convert this covariance matrix between traits into a correlation
matrix, we used the following command:

COR_TraitGenetic <- cov2cor(COV_TraitGenetic)
COR_TraitGenetic

Yield ASI PH

[1,] 1.00000000 -0.03414648 0.6493282

[2,] -0.03414648 1.00000000 0.1541302

[3,] 0.64932822 0.15413023 1.0000000

Next we show how to extract the matrix of genetic covariance
between the environments.

COV_EnvGenetic <- fm$varEnv
COV_EnvGenetic

EBU KAK KTI

[1,] 308.6270 258.9984 285.3723

[2,] 258.9984 237.9283 264.3881

[3,] 285.3723 264.3881 324.4536

Finally, we show how to extract the residual covariance matrix
between traits.

COV_ResGenetic <- fm$vare
COV_ResGenetic
Yield ASI PH
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NP PH

[1,] 0.5282 -0.0955 3.3701
[2,] -0.0955 0.4837 -1.5896
[3,] 3.3701 -1.5896 106.5525

The observed and predicted values of each trait can be plotted using
the following plot(), function (Figure 3):

plot(fm, trait="Yield")

We provide the corresponding code for the fivefold CV strategy and
its implementation with the BMTME function:

pheno <- data.frame(GID = phenoMaizeToy[, 1], Env =
phenoMaizeToy[, 2], Response = phenoMaizeToy[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID’, K = 5,
set_seed = 123)

pm <- BMTME(Y =Y, X = ZE, Z1 = Z.G, Z2 = ZEG,

nlter = 1250, burnln = 500, thin = 2,bs = 50, testingSet = CrossV)

With the summary we obtained the average predictions in terms of
Pearson’s correlation and MAAPE for each trait X environment
combination.

summary(pm)

Environment Trait Pearson SE_Pearson MAAPE SE_MAAPE
1 EBU ASI 0.4136 0.1997 0.3128 0.0369
2 EBU PH 0.2141 0.1227 0.0553 0.0054

3 EBU Yield 0.1064 0.2358 0.1554 0.0153
4 KAK ASI 0.1711 0.3141 0.5771 0.0375
5 KAK PH 0.5918 0.1907 0.0462 0.0097
6 KAK Yield 0.6233 0.1642 0.1161 0.0162
7 KTI ASI 0.0064 0.1436 0.3421 0.0300

8 KTI PH 0.2599 0.2212 0.0631 0.0103

9 KTI Yield 0.6077 0.1241 0.1390 0.0116

The summary information is given with the following code using the
boxplot(pm, select="MAAPE”, las = 2), where we added the parameter
las = 2, to show the labels vertically and be able to distinguish the
complete names (Figure 4).

boxplot(pm, select="MAAPE?, las = 2)

The BMORS Function

Since the BMORS function is only appropriate for evaluating prediction
performance (but not for parameter estimation), we provide the required
R script for evaluating the prediction performance of multiple trait and
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multiple environment data with a random CV strategy. Since we use the
same dataset that was used to illustrate the BMTME function, we only
provide the R code for building the predictor (ETA), the CV strategy and
for implementing the BMORS function. To build the linear predictor,
we used the following R code:

ETA <- list(Env = list(X = Z.E, model = “BRR”), Gen = list(X =
Z.G, model = “BRR”), EnvGen = list(X = Z.EG, model = “BRR”))

Next, we provide the R code for implementing the random CV
strategy:

CrossValidation <-CV.RandomPart(pheno, NPartitions = 10,
PTesting = 0.2, set_seed = 123)

Finally, the model will be implemented with 15,000 iterations, of
which 10,000 will be used as burn-in to fit the model. Below we show the
resulting predictive performance using the summary() function. The
information = 'complete’ command inside the summary() function
shows the prediction performance (in terms of Pearson’s correlation

and MAAPE) for all partitions implemented, but we only show the first
20 observations.

pm <- BMORS(Y, ETA = ETA, nlter = 15000, burnln = 10000,
thin = 2, progressBar = TRUE, testingSet = CrossValidation,
digits = 4)

head(summary(pm, information = 'complete’), 20)
Environment Trait Partition Pearson MAAPE

1 EBU Yield 1 0.4815 0.1693

2 EBU Yield 2 0.1231 0.1170

3 EBU Yield 3 0.2922 0.2016

4 EBU Yield 4 0.5016 0.2224

5 EBU Yield 5 -0.1674 0.2701

6 EBU Yield 6 0.1033 0.1774

7 EBU Yield 7 0.6086 0.0919

8 EBU Yield 8 0.6689 0.1878

9 EBU Yield 9 0.3322 0.1068

10 EBU Yield 10 0.1161 0.1966
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11 EBU ASI 1 0.3506 0.3080
12 EBU ASI 2 0.2944 0.2764
13 EBU ASI 3 0.0694 0.4862
14 EBU ASI 4 0.9157 0.3902
15 EBU ASI 5 0.7654 0.2694
16 EBU ASI 6 0.7956 0.2843
17 EBU ASI 7 0.8630 0.3009
18 EBU ASI 8 -0.1160 0.3421
19 EBU ASI 9 0.1343 0.2799
20 EBU ASI 10 0.8346 0.2041

The summary of the predictions is obtained with the following code:

summary(pm)

Environment Trait Pearson SE_Pearson MAAPE SE_ MAAPE
1 EBU Yield 0.3060 0.0835 0.1741 0.0175
2 EBU ASI 0.4907 0.1219 0.3142 0.0245
3 EBU PH 0.3486 0.1612 0.0482 0.0050

4 KAK Yield 0.3075 0.1019 0.0965 0.0079
5 KAK ASI 0.0064 0.1296 0.5733 0.0449
6 KAK PH 0.6010 0.0650 0.0396 0.0037
7 KTI Yield 0.3816 0.0992 0.1639 0.0104
8 KTI ASI 0.0278 0.0973 0.2878 0.0198

9 KTI PH 0.3835 0.0753 0.0591 0.0063

To create a graph with a summary of the predictions in terms of
Pearson’s correlation and in terms of MA APE, we used the plot() func-
tion (Figure 5). Because the names are composed of the evaluated traits
and environments, we added the parameter las = 2 to show the labels in
a vertical way and to distinguish the complete names of the trait-envi-
ronment combinations. In addition, we used the par() function and the
mar parameter to modify the margins of the graph.

par(mar = ¢(6,4,2,1))
plot(pm, las = 2)

Figure 5 shows that the lowest average Pearson’s correlation
obtained was observed in the ASI_KAK and ASI_KTI trait-environ-
ment combinations, while the highest average Pearson’s correlation was
obtained in the PH_KAK trait-environment combination. It is possible
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to create a boxplot with the results of the MAAPE, using the following
command (Figure 6):

boxplot(pm, select ="MAAPE”, las = 2)

Figure 6 shows that the lowest MAAPE was for PH_KAK (best
prediction), while the highest MAAPE was for the ASI_KAK trait-
environment combination (worst prediction).

The BMORS_ENV Function

This function is useful for predicting whole environments using the
remaining environments as training. Next we provide the R code for
evaluating the prediction performance of the same maize dataset, but
using the KAK environment as training and the KTT and EBU envi-
ronments as testing. Two important things to point out for using this
function are: (a) that we provided not only the matrix of response
variables, but also a data.frame that contains, in the first column, the
names of the environments followed by information on all response
variables, and (b) we did not create a separate file for specifying the
training and testing individuals; we only specified in testingEnv which
environments are used as testing; the remaining environments are used
by default as training, as shown below.

dataset <- phenoMaizeToy[, 2:5]

pm <- BMORS_Env(dataset, testingEnv = ¢('KTI’, 'EBU’),
ETA = ETA, covModel = 'BayesB’, nlter = 15000, burnln =
10000, thin = 2, progressBar = TRUE, digits = 3)
summary(pm)

Environment Trait Pearson MAAPE

1 KTI Yield 0.4114 0.1344

2 KTI ASI 0.0334 0.4304

3 KTI PH 0.2091 0.0760

4 EBU Yield 0.2775 0.1722

5 EBU ASI -0.0586 0.3825

6 EBU PH 0.0533 0.0933

For this example, we specified that covModel = 'BayesB’, which
means that the Bayesian BayesB model will be implemented for the
second stage of the model where it is implemented (equation 3). In
covModel, in addition to Bayesian Ridge regression (BRR) and BayesB,
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we can also implement BayesA, BayesC and Bayesian Lasso (BL); how-
ever, the BRR model is implemented by default.To create a graph with
Pearson’s correlation or the MAAPE index, we used the barplot() func-
tion, as shown below (Figure 7):

barplot(pm)

Figure 7 shows that the lowest Pearson’s correlation obtained was in
the ASI_EBU trait-environment combination, while the highest Pear-
son’s correlation was obtained in the Yield KTI trait-environment
combination.

DISCUSSION

As mentioned in the introduction, we propose a Bayesian R package for
implementing multi-environment and multi-trait and multi-environ-
ment analysis for parameter estimation and for evaluating prediction
accuracy. We illustrate the four main functions [BME(), BMTME(),
BMORS() and BMORS_Env()] of the BMTME package with real toy
datasets starting from the type and preprocessing required to make
correct use of each of these datasets for parameter estimation and for
evaluating prediction performance. It is important to point out that one
advantage of the BME and BMTME functions is that, in addition to

being used to evaluate the prediction accuracy, they can also be used for
parameter estimation, which allows estimating the random effects (lines,
linesxenvironments for each trait) and variance-covariance matrices of
genetic (for traits and environments) and residual (for traits) effects.
The BMORS() and BMORS_Env() functions are not useful for obtain-
ing parameter estimates of covariances between traits and environ-
ments because they implement univariate analysis at both stages.
However, they have two important advantages: (a) they allow imple-
menting even more complex predictors than the one specified in equa-
tion (1), which modifies the ETA list used to create the predictor, and
(b) the computational resources required to implement it are much less
than those needed by the BMTME() function for implementing multi-
trait and multi-environment data. This last point is observed in Figure 8
where the implementation time for the Mada and Maize datasets is
reported. The figure shows that in the Mada dataset, the BMORS model
was more than 15 times faster than the BMTME model (25.246/ 1.621=
15.572), while in the Maize dataset, the BMORS model was more than
37 times faster than the BMTME model (25.668/ 0.692= 37.093); these
results were obtained with 10000 iterations of the Gibbs sampler. The
BMTME R package provides very synthetic summaries (tables and
plots) of the prediction accuracies, which are ready to be interpreted

Figure 7 Average Pearson’s cor-
relations of the testing sets for
each trait-environment combina-
tion of the Maize dataset using
the BMORS_Env function.
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and used to write the results in a manuscript. Additionally, we provide
three types of cross-validations useful for breeders that are imple-
mented in this R package, which is very simple to use and implement.

The main disadvantage of the BME() and BMTME() functions of the
BMTME R package is that the computational resources required for
their implementation are very demanding; fortunately, the parameter
estimates involved are stabilized very quickly even with few iterations.
The toy examples used in this article are for illustration purposes and to
help users follow, as easily as possible, the necessary steps for running the
different processes. Comparing them with other software of similar type
is not possible, as no similar software for simultaneously fitting multi-
trait multi-environment is currently available. For example, the MTM
(de los Campos and Griineberg 2016) is an efficient Bayesian multi-trait
software but is not multi-trait and multi-environment. Future research
on benchmarking the BME() and BMTME() functions of the BMTME
package with other potential software to be developed in terms of comput-
ing time for processing large datasets should be performed. However, the
BMORS() and BMORS_Env() functions that also belong to the BMTME
R package are very efficient in terms of computational resources, which
gives the user an alternative option for performing this type of analyses.

It is important to point out that the proposed BMTME package is
different from existing multi-trait analysis software such as ASREML
(Gilmour et al., 1995), sommer (Covarrubias-Pazaran 2016), BGGE
(Granato et al, 2018) and MCMCglmm (Hadfield et al, 2010). In
addition to taking into account variance-covariance matrices of traits
(genetic and residual), it also takes into account the genetic covariance
(correlation) between environments, which is estimated from the data.
This can help improve parameter estimates and prediction accuracy
when the degree of correlation between traits is moderate or high.

Multi-trait models are preferred over univariate-trait models because
they have the following advantages: (a) they produce higher prediction
accuracy because they have more information (direct or indirect) and
better data connectedness (Colleau et al., 2009); (b) they improve index
selection because optimal weight factors can be obtained for the total
merit index (Colleau et al, 2009); and (c) they allow obtaining more
precise genetic and residual covariances and incorporating them into
expected breeding value (EBV) estimates for across-location, across-
country or across-region evaluations (Thompson and Meyer 1986;
Schaeffer 2001).

Note that the two datasets used for illustrating the main functions of
the BMTME R package are datasets with few lines (toy datasets) with the
main intention that users interested in using the package can obtain
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results very quickly and practice using the software. However, the
structure of the data are exactly the same as the structure of the data
produced in plant breeding programs. The two toy datasets are included
in the BMTME package to facilitate its implementation and allow users
to practice using the R software.

To conclude, this paper presents the R package BMTME which
allows the implementation of multi-trait, multi-trait and multi-
environment analysis for estimating parameters (genetic correlation
between traits and environments, residual correlation between traits,
random effects of lines and linesxenvironments) and evaluating the
prediction accuracies of many traits simultaneously. We illustrate the
implementation of the main functions (BME, BMTE and BMORS) of
the R package with two toy real datasets that are very common in plant
breeding programs. We provide details of the characteristics that each
of the datasets must have, and show how to build the CV strategies
available in the package, how to prepare the data to implement the
main functions of the BMTME package, how to extract the parameter
estimates and how to obtain the summary and plots of prediction
accuracies resulting from the implemented CV strategy. The comput-
ing time of the BME() and BMTE() functions of the BMTME R package
for large datasets is significantly more demanding (in terms of time)
than for the toy examples used in this study.
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APPENDIX A - R CODE

R code for example 1.
rm(list=lIs())
library(BMTME)
data(“WheatMadaToy”)
1s()
phenoMada <- (phenoMada[order(phenoMada$GID),])
rownames(phenoMada)=1:nrow(phenoMada)
head(phenoMada)
LG <- cholesky(genoMada)
ZG <- model.matrix(~0 + as.factor(phenoMada$GID))
7.G <-ZG %*% LG
Y <- as.matrix(phenoMadal[, -c(1)])

head(Y)

#H####Ha####H#Parameter estimation###########HHHHHHHUH HHHUHH HHHY

fm <- BME(Y =Y, Z1 = Z.G, nlter =15000, burnln =10000, thin = 2, bs = 50)
names(fm)

head(fm$yHat)

COV_TraitGenetic <- fm$varTrait

COV _TraitGenetic

COR_TraitGenetic <- cov2cor(COV_TraitGenetic)

COR_TraitGenetic

COV_ResGenetic <- fm$vare

COV_ResGenetic

COR_ResGenetic <- cov2cor(COV_ResGenetic)

COR_ResGenetic

head(fm$yHat)

plot(fm,trait="FL”)

plot(fm,trait="FE”)

#ss#an######Evaluation of prediction performance##################
pheno <- data.frame(GID=phenoMadal, 1],

Response = phenoMadal, 2])

CrossV <- CV.RandomPart(pheno, NPartitions = 10, PTesting = 0.2, set_seed = 123)
pm <- BME(Y =Y, Z1 = Z.G, nlter = 1250, burnIn = 500, thin = 2, bs = 50,
testingSet = CrossV)

summary(pm)

boxplot(pm)

boxplot(pm, select="MAAPE”)

CrossV1 <-sample(nrow(Y),15)

CrossV1

pm <- BME(Y =Y, Z1 = Z.G, nlter = 1250, burnIn = 500, thin = 2, bs = 50,
testingSet = CrossV1)

summary(pm)

boxplot(pm)

boxplot(pm, select="MAAPE”)

R code for example 2.
rm(list=lIs())
library(BMTME)
data(“MaizeToy”)
phenoMaizeToy< -(phenoMaizeToy[order(phenoMaizeToy$Env,phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,8)
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
7.G <-ZG %*% LG
Z.E <- model. matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line):as.factor(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix(genoMaizeToy))
LG2 <- cholesky(G2)
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Z.EG <- ZEG %*% LG2

Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])

fm <- BMTME(Y =Y, X = ZE, Z1 = Z.G, Z2 = Z.EG, nlter =1500, burnIn =1000, thin = 2,bs = 50)

str(fm)

COV_TraitGenetic <- fm$varTrait

COV _TraitGenetic

COR_TraitGenetic <- cov2cor(COV_TraitGenetic)

COR_TraitGenetic

COV_EnvGenetic <- fm$varEnv

COV_EnvGenetic

COR_EnvGenetic <- cov2cor(COV_EnvGenetic)

COR_EnvGenetic

COV_ResGenetic <- fm$vare

COV_ResGenetic

COR_ResGenetic <- cov2cor(COV_ResGenetic)

COR_ResGenetic

plot(fm, trait="Yield")

plot(fm,trait="ASI”)

####Evaluation of prediction performance with BMTME########## #####

pheno <- data.frame(GID = phenoMaizeToy[, 1], Env = phenoMaizeToy, 2],

Response = phenoMaizeToy|, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID’, K = 5, set_seed = 123)

pm <- BMIME(Y =Y, X = ZE, Z1 = Z.G, Z2 = Z.EG, nlter = 1250, burnIn = 500, thin = 2,bs = 50, testingSet = CrossV)
summary(pm)

boxplot(pm, select ="MAAPE”, las = 2)

####Evaluation of prediction performance with BMORS############ ########

ETA <- list(Env = list(X = Z.E, model = “BRR”), Gen = list(X = Z.G, model = 'BRR’), EnvGen = list(X = Z.EG, model = “BRR”))
CrossValidation <-CV.RandomPart(pheno, NPartitions = 10, PTesting = 0.2,set_seed = 123)

pm <- BMORS(Y, ETA = ETA, nlter = 15000, burnIn = 10000, thin = 2, progressBar = TRUE, testingSet = CrossValidation, digits = 4)
head(summary(pm, information = 'complete’), 20)

par(mar=c(6,4,2,1))

plot(pm, las = 2)

boxplot(pm, select ="MAAPE”, las = 2)

###########Evaluation of prediction performance with BMORS_Envi########## ## ###H###HHHHHHHHH

dataset <<- phenoMaizeToy][, 2:5]

pml <- BMORS_Env(dataset, testingEnv = cCKTI', ’EBU’), ETA = ETA, covModel = 'BayesB’, nlter = 1500, burnIn = 1000, thin = 2,
progressBar = TRUE, digits = 3)

summary(pm1)

barplot(pm1)

barplot(pm1,select="MAAPE”)
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