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Abstract 

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide. ESCC has 
a generally poor prognosis and there is a lack of available biomarkers for diagnosis and prognosis. The aim 
of the study was to identify novel biomarkers for ESCC. We screened the overlapping differentially 
expressed genes (DEGs) acquired from six Gene Expression Omnibus (GEO) ESCC datasets and The 
Cancer Genome Atlas (TCGA) ESCC datasets. Subsequently, protein–protein interaction network 
analysis was performed to identify the key hub genes. Then, Kaplan Meier survival and receiver operating 
curve (ROC) analysis were utilized to clarify the diagnostic and prognostic role of these hub genes. The 
UALCAN database, single cell RNA sequencing (scRNA-seq) and real-time quantitative PCR (qPCR) 
were performed to confirm the expression levels of identified hub genes. Finally, immune infiltration 
analysis was conducted to investigate the role of these genes in the pathogenesis of ESCC. The results 
showed that PBK, KIF2C, NUF2, KIF20A, RAD51AP1, and DEPDC1 effectively distinguish ESCC tissues 
from normal samples, and all of them were significantly correlated with overall survival. The results of 
scRNA-seq and qPCR indicated that the expression levels of hub genes in ESCC were significantly higher 
than in normal cells or tissues. Further immune infiltration analysis showed that infiltration of dendritic 
cells was significantly negatively correlated with PBK, KIF2C, NUF2, RAD51AP1, and DEPDC1 
expression levels. In conclusion, our results suggest that PBK, KIF2C, NUF2, KIF20A, RAD51AP1 and 
DEPDC1 are all potential biomarkers for ESCC diagnosis and prognosis may also be potential therapeutic 
targets for ESCC. 
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Introduction 
Esophageal cancer was the seventh most 

common cancer and the sixth leading cause of cancer 
death worldwide in 2018, with around 572,000 new 
cases and 509,000 deaths annually [1]. As the 
predominant subtype of esophageal cancer, 
esophageal squamous cell carcinoma (ESCC) 
comprises over 90% of all esophageal cancer cases in 
parts of Asia [2]. Many patients with ESCC are 
diagnosed at an advanced stage due to the lack of 
effective biomarkers, and often at this stage distant 
metastases have already occurred resulting in poor 
prognosis. At present, there is no effective treatment 

strategy together with the lack of effective diagnosis 
and prognosis biomarkers, the 5-year survival rate of 
ESCC patients is less than 30% [2]. Moreover, ESCC 
patients at the advanced stage are always suffering 
great pains, such as difficulty eating and breathing, 
which are usually refractory to treatment. Therefore, 
there is an urgent need to identify more effective 
biomarkers for ESCC, which will increase the 
efficiency of diagnosis and treatment, and even 
improve our understanding of the pathogenesis 
mechanisms. 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

900 

In recent years, as high-throughput microarray 
platforms have been widely used in medical research, 
a large number of high-throughput data available in 
many databases, and re-analysis of these data has 
become an effective and low-cost method to discover 
biomarkers for many diseases. The Cancer Genome 
Atlas (TCGA) is the largest database for storing cancer 
related high-throughput data, including 33 cancer 
types with more than 20,000 primary cancers and 
matched normal samples. The Gene Expression 
Omnibus (GEO) database is a comprehensive 
repository of high-throughput experimental data in 
the National Center for Biotechnology Information 
(NCBI) which is one of the world’s largest database of 
biochips. To date, the GEO database contains > 40000 
microarray gene expression datasets and > 2000 items 
containing the keywords “esophageal cancer”. 
Currently, these two databases are widely used for 
data mining due to their large sample size and 
complete clinical information. Many studies have 
identified various biomarkers for ESCC based on 
TCGA and GEO databases [3-9]. For example, Mao et 
al. identified a seven-lncRNA signature to predict 
overall survival in ESCC, which displayed better 
prognostic predict ability than tumor-node-metastasis 
(TNM) stage. Song et al. identified PDLIM2 as a novel 
prognostic predictor for ESCC, which also associated 
with nodal invasion. These studies have promoted 
our understanding of the development of new 
diagnostic and prognostic biomarkers for ESCC. 
However, biomarkers related to ESCC diagnosis and 
prognosis was usually identified independently, 
which may hinder our understanding of the process 
from initiation to deterioration. More importantly, 
most previous studies were mainly depended on one 
or two datasets, while individual dataset often can be 
unreliable due to bias introduced by sample 
processing and insufficient samples [10]. Therefore, to 
obtain more convincing results, more datasets from 
multiple platforms are needed. What’s more, most 
previous studies based on TCGA or GEO data 
analysis mainly focused on bioinformatics analysis, 
and few studies further verified on clinical samples. 
As we all know, there are certain technical errors in 
both microarray and next-generation sequencing data. 
Therefore, to eliminate technical errors, experimental 
confirmation is required. Finally, as the traditional 
bulk profiles represents the average expression levels 
of the constituent cells (malignant, immune and 
stromal cells), it does not reflect the true condition of 
cancer cells. Thus, verifying the identified differential 
expression genes (DEGs) at the single cell resolution 
will increase the authenticity and reliability of the 
analysis results, and even improve our understanding 

of the underlying mechanism. As far as we know, 
there is no relevant research to verify the identified 
biomarkers at the single cell levels. 

In the present study, we combined six GEO 
microarray datasets to screen the DEGs in at least two 
different ESCC datasets, and further integrated with 
TCGA ESCC dataset to screen the possible biomarkers 
associated with diagnosis and prognosis for ESCC. 
We discovered that PBK, KIF2C, NUF2, KIF20A, 
RAD51AP1, DEPDC1 are possible diagnostic and 
prognostic biomarkers for ESCC. Then, UALCAN 
database, scRNA-seq and qPCR were conducted to 
validate the expression levels of identified genes. 
Furthermore, we performed immune infiltration 
analysis to gain a better understanding of the function 
of these genes. Our study could provide novel 
biomarkers for ESCC diagnosis and prognosis, and 
potential targets for ESCC therapy. 

Materials and Methods 
Data collection 

The brief flowchart for screening novel 
biomarkers for ESCC is showed in Fig. 1. 

ESCC-related GEO datasets with primary tumor 
tissues and matched normal tissues, principal 
component analysis (PCA) analysis can well 
distinguish tumor samples from normal samples, 
expression profiling by array were enrolled into the 
present study. Thus, the datasets for ESCC (GSE17351, 
GSE20347, GSE23400, GSE100942, GSE38129 and 
GSE77861) were downloaded from the GEO (https:// 
www.ncbi.nlm.nih.gov/geo/) database by R ×64 3.6.0 
with the “GEOquery” R package [11]. The details of 
these datasets are listed in Table 1. TCGA-ESCC 
samples with RNA-seq data and matched clinical 
metadata (including 11 normal and 78 tumor samples) 
were downloaded from the GDC database 
(https://portal.gdc.cancer.gov/). The detailed clinical 
characteristics of the enrolled patients in TCGA are 
shown in Table 2. 

Ethics approval and consent to participate 
The ethics committee at the changhai hospital, 

Second Military Medical University approved this 
study, and written informed consent on the use of 
clinical specimens from all participants. Six patients 
with ESCC who underwent surgical resection of 
tumor tissues without any treatment were enrolled for 
qPCR assay. Paired adjacent nontumor tissues from 
the proximal resection margins (>5 cm away from the 
ESCC sample) were also collected for RNA extraction 
and qPCR assay. The detailed clinic parameters of 
these participants are listed in Table 3. 
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Figure 1. Flowchart for screening novel biomarkers in ESCC. 

 

Table 1. Details of ESCC datasets from the GEO and TCGA database 

GSE Publication Upregulated DEG Downregulated DEG Platform Sample size 
GSE17351 Carcinogenesis 266 426 GPL570 Tumor: 5 

Normal: 5 
GSE20347 BMC Genomics 69 183 GPL571 Tumor: 17 

Normal: 17 
GSE23400 Clin Cancer Res 14 37 GPL96 Tumor: 53 

Normal: 53 
GSE100942 Theranostics 46 83 GPL570 Tumor: 4 

Normal: 4 
GSE38129 BMC Genomics 74 93 GPL571 Tumor: 30 

Normal: 30 
GSE77861 BMC Cancer 88 123 GPL570 Tumor: 7 

Normal: 7 
TCGA  1268 1383 IlluminaHiSeq Tumor: 78 

Normal: 11 
 
 

Overlapping DEG analysis 
The GEO datasets (GSE17351, GSE20347, 

GSE23400, GSE100942, GSE38129 and GSE77861) and 
TCGA datasets were processed using the “Limma” R 
package [12]. A P‐value < 0.05 and |FC| > 2 were 
used as the threshold to identify DEGs. Next, we used 

an online tool, jvenn (http://jvenn.toulouse.inra.fr/ 
app/index.html) to find overlapping DEGs in at least 
two of the GEO datasets [13]. Finally, the overlapping 
DEGs were analyzed to identify the most commonly 
deregulated genes across datasets. 
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Table 2. Clinical characteristics of the enrolled patients in TCGA 

Characteristics Number of sample size (%) 
Age (years)  
<50 15 (18.5) 
≥50 66 (81.5) 
Gender  
Female 12 (14.8) 
Male 69 (85.2) 
Stage  
IA 3 (3.7) 
IB 4 (4.9) 
IIA 35 (43.2) 
IIB 13 (16.1) 
III 9 (11.1) 
IIIA 8 (9.9) 
IIIB 3 (3.7) 
IV 5 (6.2) 
NA 1 (1.2) 
T classification  
T1 8 (9.9) 
T2 28 (34.6) 
T3 40 (49.4) 
T4 5 (6.1) 
N classification  
N0 46 (56.8) 
N1 25 (30.9) 
N2 5 (6.2) 
N3 1 (1.2) 
Nx 4 (4.9) 
M classification  
M0 71 (87.6) 
M1 5 (6.2) 
Mx 5 (6.2) 
Radiotherapy  
Yes 37 (45.7) 
No 44 (54.3) 
Chemotherapy  
Yes 29 (35.8) 
No 52 (64.2) 
Vital status  
Dead 16 (19.8) 
Alive 65 (80.2) 
Abbreviation: NA, not available. 

 
 

Table 3. Clinic parameters of enrolled patients in the current 
study for qPCR assay 

 ESCC01 ESCC02 ESCC03 ESCC04 ESCC05 ESCC06 
TNM T3N0Mx T3N0Mx T3N0Mx T3N0Mx T3N1Mx T3N3Mx 
Stage IIA IIA IIA IIA IIIB IIIC 
Gender Female Male Male Male Male Male 
Age 66 70 61 56 64 71 
Sampling 
Method 

Surgical Surgical Surgical Surgical Surgical Surgical 

Sampling 
Time 

2018.05.31 2018.08.24 2019.01.03 2019.06.27 2019.07.09 2019.07.11 

Treatment Surgery Surgery Surgery Surgery Surgery Surgery 
Vital 
Status 

Alive Alive Alive Alive Alive Alive 

 

Functional annotation and hub genes 
screening 

STRING (https://string‐db.org/) was used for 
Gene ontology (GO), pathway enrichment and 
protein-protein interaction (PPI) analysis [14]. The PPI 
information was downloaded and imputed into 

Cytoscape software (Cytoscape_v3.7.2) to construct a 
PPI network. In addition, cytoHubba (integrated into 
Cytoscape software) was applied to screen hub genes 
using the Maximal Clique Centrality (MCC) method 
[15]. 

Hub gene clinical value analysis 
To evaluate the prognostic significance of 

identified hub genes, a Kaplan Meier survival analysis 
was carried out using Kaplan Meier-plotter (https:// 
kmplot.com/analysis/) [16]. A receiver operating 
curve (ROC) analysis was conducted using the 
“pROC” R package to explore the diagnostic value of 
these hub genes [17]. 

Hub genes mRNA expression validation 
UALCAN (http://ualcan.path.uab.edu/), which 

contains TCGA and MET500 transcriptome 
sequencing data, was used to validate mRNA 
expression of the hub genes [18]. 

The scRNA-seq data (SRP119465) which contains 
three ESCC patients and 208 single cells were 
downloaded from the Sequence Read Archive 
(https://www.ncbi.nlm.nih.gov/sra) [19]. The 
detailed clinical characteristics are shown in Table 4. 
Subsequently, Trimmomatic tool were used to remove 
low quality and adapter reads, and then mapped to 
the human genome GRCh38 transcriptome using 
Bowtie. Cell cluster analysis was performed using the 
“Seurat” R package. Based on the clustering of cell 
subsets and characteristic gene expression, we 
annotated the cell subsets and displayed the 
expression levels of hub genes in all cell subsets. 

 

Table 4. Clinic parameters of enrolled patients in scRNA-seq 
dataset 

 ESCC01 ESCC02 ESCC03 
TNM T3N0M0 T3N1M0 T3N1M0 
Stage IIA IIIB IIIB 
Gender Male Male Female 
Sampling Method Biopsy Biopsy Surgical 
Sampling Time 2015.10.28 2015.10.22 2015.07.30 
Treatment Radiotherapy Radiotherapy Surgery 
Vital Status Alive Alive Alive 

 
 
To detect the mRNA expression of hub genes, 

qPCR was conducted on the LightCycler® 480 II 
real-time PCR system (Roche Molecular Diagnostics 
Inc., South Branchburg, NJ, USA). Briefly, total RNA 
was extracted from 6 ESCC tissues and adjacent 
normal tissues using the Trizol reagent (Thermo 
Fisher Scientific, USA). Single strand complementary 
DNA (cDNA) was synthesized from 0.5 μg of total 
RNA using the transcriptor first strand cDNA 
synthesis kit (Roche Molecular Diagnostics Inc., South 
Branchburg, NJ, USA). qPCR was performed to 
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quantify the hub genes mRNA expression level using 
the LightCycler® 480 SYBR Green I Master kit (Roche 
Molecular Diagnostics Inc., South Branchburg, NJ, 
USA). The primers used are listed in Table 5. Then, 
the following cycling conditions were applied: 95°C 
for 5 minutes, followed by 40 cycles of 95°C for 10 
seconds and 62°C for 30 seconds. GAPDH served as 
an internal control to normalize the expression. The 
2−ΔΔCt method was employed to calculate the relative 
expression level. 

Immune infiltration analysis 
The correlation of hub gene expression with 

immune infiltration level was performed using the 
Tumor Immune Estimation Resource (TIMER, 
https://cistrome.shinyapps.io/timer/) [20]. The 
TIMER database incorporates 32 cancer types and six 
immune cell types (B cell, CD4 T cell, CD8 T cell, 
neutrophil, macrophage, and dendritic cell). 

Results 
Data preprocessing 

To obtain biological changes in gene expression 
in ESCC, all data were pre-processed. Firstly, we used 
the “Limma” R package to standardize the data and 
eliminate the effects of experimental techniques on 
gene expression. Next, the “factoMineR” and 
“factoextra” R package were used for principal 
component analysis (PCA) for quality control. The 
results showed that all samples (GSE17351, GSE20347, 
GSE23400, GSE100942, GSE38129 and GSE77861) 
were clearly divided into normal and tumor groups, 
except for dataset GSE23400, where four normal 
samples (GSM573926, GSM573867, GSM573888 and 
GSM573889) and three tumor samples (GSM573926, 
GSM573935 and GSM573944) showed no difference 
between normal tissue and tumors; therefore, these 
were removed from further analyses (Fig. 2A-F). 

 

 
Figure 2. Principal component analysis for ESCC datasets from the GEO database. (A) GSE17351. (B) GSE20347. (C) GSE234300. (D) GSE100942. (E) GSE38129. (F) 
GSE77861. 
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Figure 3. Overlap between DEGs across different ESCC datasets. (A) The volcano plots of DEGs obtained from GEO datasets. (B) Venn diagram demonstrating the overlap 
between DEGs in the different GEO datasets. (C) Venn diagram displaying the overlap between DEGs from the GEO and TCGA datasets. 

 

Table 5. Prime sequences 

Target Accession Orientation Primers sequence (5′-3′) 
gene number 
GAPDH NM_001256799 Forward GGAGCGAGATCCCTCCAAAAT 
  Reverse GGCTGTTGTCATACTTCTCATGG 
PBK NM_018492 Forward TAGGAGTCTCTCTACCACTGGA 
  Reverse TCCCACAAAGTAAGGCCAAAG 
KIF2C NM_006845 Forward CTCAGTTCGGAGGAAATCATGTC 
  Reverse TGCTCTTCGATAGGATCAGTCA 
NUF2 NM_031423 Forward TGTTAAGCAATACAAACGCACAG 
  Reverse TGCCTTTTCAATACCGTCGTG 
KIF20A NM_005733 Forward TTGAGGGTTAGGCCCTTGTTA 
  Reverse GTCCTTGGGTGCTTGTAGAAC 
RAD51AP1 NM_001130862 Forward TGGTGGTGTTCAAGGGAAAAG 
  Reverse AGGTGCAAAGTCTGGTTCAGT 
DEPDC1 NM_001114120 Forward ATGCGTATGATTTCCCGAATGAG 
  Reverse CACAGCATAACACACATCGAGAA 

 

Common DEGs in GEO and TCGA datasets 
For GEO datasets, each set of DEGs was screened 

separately. The ggplot2 package was used to display 
the DEGs identified from each dataset (Fig. 3A). 

Table 1 describes details of the DEGs in each dataset. 
Next, an online tool (jvenn) was used to identify 
overlapping DEGs in at least two GEO datasets. We 
found 132 downregulated and 48 upregulated genes 
(Fig. 3B), which were used for identifying common 
DEGs within the TCGA data. For TCGA datasets, we 
found 1383 downregulated and 1268 upregulated 
genes (Table 1). Fig. 3C shows a venn diagram 
demonstrating the common DEGs between the GEO 
and TCGA datasets, 55 downregulated and 27 
upregulated genes were found. 

Functional annotation and PPI analysis 
To explore the function of the common DEGs, 

GO, pathway enrichment and PPI analysis were 
conducted using the STRING database. The results 
revealed that most of the upregulated genes are found 
in the nucleus, as membrane-bounded organelles and 
in the intracellular compartment. The upregulated 
genes were mainly involved in positive regulation of 
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cellular process, the mitotic cell cycle and collagen 
metabolic processes. Pathway enrichment analysis 
revealed that the upregulated genes were mainly 
involved in the cell cycle extracellular matrix 
organization and DNA repair (Fig. 4A). Cellular 
component analysis of the downregulated genes 
showed association with contractile fibers, myofibrils, 
and intercalated discs. With regard to biological 
processes, the downregulated genes were associated 
with muscle system processes, regulation of ion 
transmembrane transporter activity and actomyosin 
structure organization. As for pathway enrichment, 
muscle contraction, ion homeostasis and rho GTPases 
activation was enriched (Fig. 4B). A PPI network was 
constructed to screen hub genes using the STRING 
database. Subsequently, the PPI network information 
was imported into Cytoscape and the MCC method in 
cytoHubba was applied to screen hub genes. The 
results showed that PBK, CDC20, KIF2C, BIRC5, 
NUF2, KIF20A, RAD51AP1, RFC4, MCM2, and 
DEPDC1 interact with each other with high scores for 
connectivity (Fig. 4C). 

Kaplan Meier survival and ROC analysis 
To evaluate the clinical value of these hub genes 

in ESCC, Kaplan–Meier survival analysis was 
performed using Kaplan Meier-plotter. Of the 10 
genes, we found that PBK (hazard ratio [HR]=0.25, 
logrank P= 0.00062), KIF2C (HR=0.37, logrank P= 
0.05), NUF2 (HR=0.37, logrank P= 0.011), KIF20A 
(HR=0.4, logrank P= 0.024), RAD51AP1 (HR=0.42, 
logrank P= 0.033), and DEPDC1 (HR=0.41, logrank P= 
0.037) were significantly correlated with overall 
survival (Fig. 5A). ESCC patients with low expression 
levels of these genes generally have worse survival. 
Thereafter, a ROC analysis was conducted to 
investigate diagnostic value. The results showed PBK 
(area under the curve [AUC]= 96.5%), KIF2C (AUC= 
98.8%), NUF2 (AUC= 99.2%), KIF20A (AUC= 99.2%), 
RAD51AP1 (AUC= 96.7%), and DEPDC1 (AUC= 
98.6%) effectively distinguish ESCC tissues from 
normal samples (Fig. 5B). 

Hub gene expression levels validation 
To validate the hub gene expression levels, 

UALCAN ESCA data, which contains 11 normal, 89 
esophageal adenocarcinoma (EAC) and 95 ESCC 
samples, was used for analysis. The results showed 
that the mRNA expression levels of hub genes (PBK, 
KIF2C, NUF2, KIF20A, RAD51AP1 and DEPDC1) in 

 

 
Figure 4. GO, pathways enrichment, and PPI of overlap DEGs in ESCC. (A) GO and pathway enrichment results for up-regulated DEGs. (B) GO and pathway enrichment 
results for down-regulated DEGs. (C) PPI network of overlap DEGs from GEO data and TCGA datasets. 
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tumor samples (EAC, ESCC) were significantly higher 
than in normal samples (P < 0.05) (Fig. 6A). In 
addition, the scRNA-seq analysis showed that the hub 
genes were mainly expressed on carcinoma cells, 
indicating that the identified differentially expressed 
genes were caused by cancer cells (Fig. 6B). To 

eliminate errors caused by sequencing, qPCR was 
performed. We found that all hub genes mRNA 
expression levels were significantly elevated in tumor 
tissues compared to adjacent normal tissues (P < 0.05) 
(Fig. 6C). 

 

 
Figure 5. Kaplan-Meier survival and ROC analysis. (A) Kaplan Meier survival analysis of PBK, KIF2C, NUF2, KIF20A, RAD51AP1 and DEPDC1 in ESCC. HR: Hazard Ratio. (B) 
ROC analysis of hub genes in ESCC. AUC: area under the curve. 
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Figure 6. Expression levels of hub genes. (A) Expression levels of PBK, KIF2C, NUF2, KIF20A, RAD51AP1 and DEPDC1 in UALCAN database. (B) scRNA-seq analysis of hub 
genes in ESCC. (C) The relative mRNA expression of PBK, KIF2C, NUF2, KIF20A, RAD51AP1 and DEPDC1 were confirmed by qPCR (n=6). Data are presented as the means 
± SEM. *P < 0.05 represent significant differences between the indicated groups. 
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Figure 7. Correlation of hub genes expression levels with immune infiltration of B cell, CD4 T cell, CD8 T cell, neutrophil, macrophage, and dendritic cell in ESCC. (A) PBK. 
(B) KIF2C. (C) NUF2. (D) KIF20A. (E) RAD51AP1. (F) DEPDC1. 

 
 

Immune infiltration analysis 
To better understand the function of these genes 

(PBK, KIF2C, NUF2, KIF20A, RAD51AP1, DEPDC1), 
the relationship between their expression and 
immune infiltration was performed. The results 
indicated that tumor purity significantly and 
positively correlated with PBK (R= 0.24, P= 1.13e−03), 
NUF2 (R= 0.267, P= 2.75e−04), RAD51AP1 (R= 0.275, 
P= 1.83e−04), and DEPDC1 (R= 0.166, P= 2.56e−02) 
expression. Infiltration of dendritic cells was 
significantly negatively correlated with PBK (R= 
−0.343, P= 2.42e−06), KIF2C (R= −0.182, P= 1.47e−02), 
NUF2 (R= −0.25, P= 7.15e−04), RAD51AP1 (R= 
−0.193, P= 9.4e−03), and DEPDC1 (R= −0.234, P= 
1.55e−03) expression levels. However, their 
expression had no obvious correlation with 

infiltration of other immune cells (B cell, CD4 T cell, 
CD8 T cell, neutrophil, macrophage) (Fig. 7A-F). 

Discussion 
ESCC is the predominant type of esophageal 

carcinoma worldwide. In China, ESCC is the fourth 
leading cause of cancer-related death [21]. Despite 
recent improvements in diagnosis and treatment, 
ESCC's prognosis is still poor. The 5-year survival rate 
of ESCC patients is less than 30% [2]. Although 
several biomarkers for ESCC have been identified, the 
clinical value of most of them has not been confirmed. 
Thus, screening for more efficient biomarkers for 
ESCC diagnosis and prognosis is urgently required. 

Integrating multiple datasets is considered to be 
a better method to improve the reliability of the 
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results than individual dataset analysis. In our study, 
we integrated six GEO microarray datasets with 
TCGA ESCC dataset to screen the possible biomarkers 
for ESCC. In addition, in order to improve the 
reliability of the results, scRNA-seq and qPCR were 
performed to confirm the expression level of the 
identified genes. We identified six novel biomarkers 
(PBK, KIF2C, NUF2, KIF20A, RAD51AP1, DEPDC1) 
that are related to the diagnosis and prognosis of 
ESCC. 

PBK is a serine-threonine kinase that was 
reported upregulated in breast cancer, and server as a 
therapy target for breast cancer [22]. Moreover, PBK 
was also overexpressed in oral cancer, and is known 
to be a favorable prognostic indicator for oral cancer 
[23]. Ohashi et al found that PBK overexpressed is 
associated with worse outcomes in ESCC [24]. 
However, our results revealed that high PBK 
expression significantly correlated with better 
outcomes (HR=0.25, logrank P= 0.00062). The 
contradictory result may be due to bias in individual 
cohort studies. The detailed reasons need to be further 
validated. In addition, ROC analysis also showed that 
PBK can effectively distinguish ESCC tissues from 
normal samples (AUC= 96.5%), indicating that PBK 
could be an independent diagnostic biomarker for 
ESCC. 

KIF2C, a member of the motor proteins family, 
functions as a microtubule-dependent molecular 
motor [25]. Previous studies have demonstrated that 
high KIF2C expression can serve as an independent 
marker of poor prognosis in several tumors, including 
glioma, colorectal cancer, and gastric cancer [26-28]. In 
contrast, our study showed that low expression levels 
of KIF2C correlated with worse survival (HR=0.37, 
logrank P= 0.05). The diagnostic role of KIF2C in 
ESCC has not been previously reported. Our study 
revealed that KIF2C could be a useful diagnostic 
biomarker for ESCC (AUC= 98.8%). 

NUF2 is a component of a protein complex 
associated with the centromere that plays an 
important role in chromosome segregation [29]. 
Previous studies have shown that NUF2 is an effective 
prognostic molecule for hepatocellular carcinoma 
[30], and silencing NUF2 can suppress human 
hepatocellular carcinoma tumor growth and induce 
apoptosis [31]. In addition, NUF2 overexpression is 
also related to poor prognosis in pancreatic cancer 
[32]. However, the role of NUF2 in ESCC still 
unknown. Our results revealed that low expression in 
ESCC is associated with worse outcomes, and NUF2 
can efficiently distinguish tumor tissues from normal 
tissue (AUC= 99.2%), suggesting its diagnostic value 
for ESCC. 

KIF20A (also named RAB6KIFL), has been 

reported overexpressed in many cancers including 
pancreatic cancer, melanoma, breast cancer, and 
glioma [33-37]. Moreover, KIF20A was also reported 
as a prognostic indicator for cervical squamous cell 
carcinoma, ovarian clear‑cell carcinoma, and glioma 
[37-39]. However, the role of KIF20A in ESCC has 
never been reported. In the present study, we found 
that KIF20A is overexpressed in ESCC, and low 
expression was associated with poor prognosis. ROC 
analysis revealed KIF20A is a promising diagnostic 
biomarker for ESCC (AUC= 99.2%). 

RAD51AP1 is a DNA-binding protein, which 
plays a key role in homologous recombination and 
DNA repair [40]. Upregulated RAD51AP1 has been 
reported to be associated with poor prognosis in 
ovarian and lung cancers [41, 42]. In the present 
study, we found that RAD51AP1 is an effective 
diagnostic biomarker for ESCC (AUC= 96.7%). 
Moreover, silencing of RAD51AP1 can inhibit 
epithelial–mesenchymal transition and metastasis in 
non-small cell lung cancer [41, 42]. Therefore, high 
expression of RAD51AP1 may be implicated in ESCC 
development. 

DEPDC1 is a novel cancer-related gene that was 
reported to be overexpressed in many tumors 
including bladder cancer, multiple myeloma, breast 
cancer, colorectal cancer, and hepatocellular 
carcinoma [43-47], and is known to be a poor 
prognostic indicator for these tumors. However, its 
role in ESCC has never been reported. Herein, our 
results revealed that DEPDC1 is a promising 
diagnostic and prognostic biomarker for ESCC. 

So far, a great number of potential biomarkers 
have been identified. However, there is still a great 
gap to put these findings into clinical application. The 
major reason is that the poor reproducibility, small 
overlap between studies, and low sensitivity and 
specificity for diagnosis and prognosis of ESCC. For 
example, Takeshita et al. found that the sensitivity 
and specificity of serum miR-1246 for the diagnosis of 
ESCC were 71.3% and 73.9%, respectively [48]. The 
specificity and sensitivity of miR-146a for diagnosis of 
ESCC were 68.6% and 85.7% [49]. Additionally, 
Adams et al. speculated that the four indicators of 
AHRR, p16INK4a, MT1G and CLDN3 can be 
combined to improve the sensitivity and specificity 
for the diagnosis of ESCC. However, in clinical 
applications, the sensitivity and specificity of the 
combined index in the diagnosis of ESCC were only 
50% and 68%, respectively [50]. In our present study, 
we found that PBK (area under the curve [AUC]= 
96.5%), KIF2C (AUC= 98.8%), NUF2 (AUC= 99.2%), 
KIF20A (AUC= 99.2%), RAD51AP1 (AUC= 96.7%), 
and DEPDC1 (AUC= 98.6%) all with a high sensitivity 
and specificity for the diagnosis of ESCC. However, 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

910 

future work focusing on the in vitro and in vivo 
validation before clinical application is still needed. 

Conclusions 
In conclusion, our study identified six novel 

biomarkers (PBK, KIF2C, NUF2, KIF20A, RAD51AP1 
and DEPDC1) for ESCC. Notably, all of them could be 
independent diagnostic and prognostic indicators for 
ESCC. In addition, scRNA-seq results showed that the 
hub genes is mainly expressed on carcinoma cells, and 
qPCR results also indicated that the expression of the 
hub genes in tumor tissues is significantly higher than 
normal tissues. All these results confirmed the 
reliability of the analysis. Moreover, their expression 
levels were significantly positively correlated with 
tumor purity, and negatively correlated with the 
infiltration of DCs. DCs are the most important 
antigen presenting cells, which play a key role in 
connecting innate immunity with acquired immunity. 
Reducing the infiltration of DCs may affect the 
presentation of antigens, resulting in the inability of 
the host immune response to effectively kill tumor 
cells. This may be one of the underlying molecular 
mechanisms in the tumorigenesis of ESCC. Our 
results indicate that these genes may also be potential 
targets for ESCC therapy. Further experiments are 
required to confirm these findings. 
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