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Abstract

Complex diseases and traits are likely influenced by many common and rare genetic variants and environmental factors.
Detecting disease susceptibility variants is a challenging task, especially when their frequencies are low and/or their effects
are small or moderate. We propose here a comprehensive hierarchical generalized linear model framework for
simultaneously analyzing multiple groups of rare and common variants and relevant covariates. The proposed hierarchical
generalized linear models introduce a group effect and a genetic score (i.e., a linear combination of main-effect predictors
for genetic variants) for each group of variants, and jointly they estimate the group effects and the weights of the genetic
scores. This framework includes various previous methods as special cases, and it can effectively deal with both risk and
protective variants in a group and can simultaneously estimate the cumulative contribution of multiple variants and their
relative importance. Our computational strategy is based on extending the standard procedure for fitting generalized linear
models in the statistical software R to the proposed hierarchical models, leading to the development of stable and flexible
tools. The methods are illustrated with sequence data in gene ANGPTL4 from the Dallas Heart Study. The performance of the
proposed procedures is further assessed via simulation studies. The methods are implemented in a freely available R
package BhGLM (http://www.ssg.uab.edu/bhglm/).
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Introduction

Many common human diseases and complex traits are highly

heritable and are believed to be influenced by multiple genetic and

environmental factors. Genome-wide association studies (GWAS)

represent a powerful way for discovering disease-associated factors

and investigating the genetic architecture of complex diseases [1]. In

the past few years, these studies have identified hundreds of

common variants (i.e., genetic variants with minor allele frequency

(MAF) .,5%) associated with complex diseases [2]. However, the

estimated effect sizes for the identified variants are small (most odds

ratios are below 1.5) and explain only a small proportion of the

heritability of complex diseases [2,3], motivating research interest in

finding ‘missing’ genetic factors that contribute to the remaining

heritability [4,5]. Many explanations for the missing heritability

have been suggested [4,5]; one is that many common variants with

much smaller effects are yet to be detected, and another is the

possible contribution of rare variants (MAF ,0.5% or 1%) that are

poorly captured by previous GWA genotyping arrays. Empirical

studies and population genetics theory support the potentially

important role of both rare variants and common variants of very

small effects [6–10]. Several current studies have implicated

association of rare variants with complex diseases and traits [11–18].

Next-generation sequencing technologies have provided unpar-

alleled tools to sequence a large number of individuals in candidate

genes, exomes, or even the entire genome, allowing for

comprehensive studies of both common and rare variants. In

addition to the common problems of handling large numbers of

variants, however, detecting disease-associated rare variants and

common variants of small effects poses unique statistical challenges

[19,20]. As such variants individually contain little variation,

statistical methods that detect association between a single variant

and disease phenotype provide low power with realistic sample

sizes. Therefore, it is necessary to develop sophisticated methods

that can effectively combine information across variants and assess

the collective effect of multiple variants [4].

Several approaches along this line have been proposed [19,20].

The basic procedure of these methods is to construct a linear

combination of multiple variants with fixed weights to summarize

the information across the variants and then estimate its

association with the phenotype [21–25]. Different weights yield

different summaries of the variants and implicate different

assumptions about the relative importance of individual variants

[24,26]. Further, they implicitly assume that all variants affect

phenotype in the same direction. However, there are many

examples in which numerous rare variants detected in a gene or

region may have disparate or even opposite effects on phenotype

[4,11]. Thus, these methods can be suboptimal if the data do not

follow the underlying assumptions. Recently, several methods have

been proposed to deal with variants with opposite effects [26–32],

and to summarize the information across variants using non-linear

functions [33,34].
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All the existing methods have been developed to assess only one

group of variants at a time. Since common diseases are likely caused

by a complex interplay among many genes and environmental

factors, however, it is more appropriate to simultaneously model

multiple groups of variants and covariates [19]. The joint analyses

would improve the power of detecting causal effects and hence lead

to increased understanding about the genetic architecture of

diseases. Such methods are also advantageous for studies involving

only one candidate gene, because numerous variants detected

within a gene can be divided into multiple groups based on their

allelic frequencies (common or rare) and functional annotations of

the genomic regions they reside in (for example, non-synonymous or

synonymous). It has been found in GWAS that the vast majority

(80%) of associated variants fall outside coding regions, emphasizing

the importance of including both coding and non-coding regions in

the search for disease-associated variants [2].

We propose here a comprehensive hierarchical generalized

linear model (GLM) framework for simultaneously analyzing

multiple groups of rare and common variants and relevant

covariates. The proposed hierarchical GLMs introduce a group

effect and a genetic score (i.e., a linear combination of main-effect

predictors for genetic variants) for each group of variants, and

jointly estimate the group effects and the weights of the genetic

scores. This framework includes various previous methods as

special cases, and can effectively deal with both risk and protective

variants in a group and can simultaneously estimate the

cumulative contribution of multiple variants and their relative

importance. The methods are illustrated with sequence data in

gene ANGPTL4 from the Dallas Heart Study, and are further

assessed via simulation studies. Finally, we conclude this article by

highlighting some areas of future research.

Methods

Hierarchical GLMs for Multiple Groups of Rare and
Common Variants

Suppose that a population-based association study consists of n

unrelated individuals, phenotyped for a continuous or discrete

disease trait and genotyped for a number of rare and/or common

genetic variants in one or multiple candidate genes or genomic

regions. The observed values of the response variable are denoted

by y = (y1, ???, yn). We assume that the genetic variants can be

divided into K groups, Gk, k = 1, ???, K, and the k-th group Gk

contains Jk variants, where K$1 and Jk.1. The groups can be

constructed based on candidate genes in which the variants are

located and the types of the variants (e.g., common variants, rare

non-synonymous or synonymous coding variants). We assume that

some non-genetic variables (e.g., gender indicator, age, etc.) are

also measured for each individual and will be included as

covariates in the model to control for possible confounding effects.

We extend the hierarchical generalized linear model (GLM) of

Yi and Zhi [26] to simultaneously fit covariates and multiple

groups of rare and common variants. A generalized linear model

consists of three components: the linear predictor g, the link

function h, and the data distribution p [35,36]. The linear

predictor of individual i is expressed as the multiplicative form:

gi~
XJ0

j~0

xijbjz
XK

k~1

gk

XJk

j[Gk

ajzij

0
@

1
A ð1Þ

where b0 is the intercept, xij and bj represent covariate j and its

coefficient, respectively, zij is the main-effect predictor for

individual i at genetic variant j in group Gk, equaling to the

number of minor alleles for an additive coding (for a rare variant,

the additive coding is approximately equivalent to a dominant

coding because the frequency of the minor allele is very low), the

common coefficient gk represents the group effect for Jk variants in

the k-th group, and the individual coefficients aj can be interpreted

as the weights or relative effects of individual variants.

The common coefficient gk represents the association between

the phenotype and the linear combination
XJk

j[Gk

ajzij of Jk individual

main-effect predictors for variants in group Gk. The linear

combination provides a way to combine the genetic variation

across the Jk individual variants, referred to as genetic score.

Therefore, the common coefficient gk represents the cumulative

importance of the Jk individual variants in the k-th group, hence

referred to as the group effect, and the weights aj , j[Gk, give the

relative importance of the individual variants in group Gk.

The mean of the response variable is related to the linear

predictor via a link function h:

E(yijgi)~h{1(gi) ð2Þ

The data distribution (likelihood) is expressed as

p(yjg,w)~ P
n

i~1
p(yijgi,w) ð3Þ

where w is a dispersion (or variance) parameter, and the

distribution p(yijgi,w) can take various forms, including Normal,

Gamma, Binomial, and Poisson distributions.

Our main goal is to estimate the group effects gk and to test the

hypotheses gk = 0, k = 1, ???, K. We treat the weights aj ’s as

unknown parameters and estimate them along with the group

effects and other parameters from the data. But we cannot simply

use classical framework (equivalent to setting uniform distributions

on the aj ’s from a Bayesian perspective), since this would result in a

nonidentifiable model [37,38]. An approach to overcoming the

problem is to use an informative prior for aj . We use the following

Author Summary

Complex diseases and traits are likely influenced by many
common and rare genetic variants and environmental
factors. Next-generation sequencing technologies have
provided unparalleled tools to sequence a large number of
individuals, allowing for comprehensive studies of both
common and rare variants. However, detecting disease-
associated rare variants and common variants of small
effects poses unique statistical challenges. We propose
here a comprehensive hierarchical generalized linear
model framework for simultaneously analyzing multiple
groups of rare and common variants and relevant
covariates. The proposed hierarchical generalized linear
models introduce a group effect and a genetic score for
each group of variants, and jointly they estimate the group
effects and the weights of the genetic scores. This
framework includes various previous methods as special
cases, and it can effectively deal with both risk and
protective variants in a group and can simultaneously
estimate the cumulative contribution of multiple variants
and their relative importance. The methods are illustrated
with sequence data in gene ANGPTL4 from the Dallas Heart
Study and are further assessed via simulation studies. The
methods have been implemented in a freely available R
package BhGLM (http://www.ssg.uab.edu/bhglm/).

Hierarchical GLMs for Rare and Common Variants
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hierarchical prior distribution:

aj

��t2
aj
*N mj ,t

2
aj

� �

t2
aj

���s2
aj
*Inv{x2 1,s2

aj

� �

s2
aj

���bk j½ �*Gamma 0:5,bk j½ �
� �

p log bkð Þ!1

ð4Þ

where the prior means mj are prefixed and will be discussed in

detail later, and the subscript k[j] indexes the group k that variant j

belongs to.

The above hierarchical prior assumes that aj follows a scale

mixture of normals with unknown variable-specific variance t2
aj

.

The prior distribution for taj
is a hierarchical formulation of the

half-Cauchy distribution, which has desirable properties, such as

an infinite spike at the prior mean and very heavy tails, and also

facilitates efficient computation [39,40]. An attractive feature of

our hierarchical prior is that it is free of user-chosen tuning

parameters and introduces group-specific parameters bk and

variable-specific parameters taj
and saj

. The group-specific

parameters provide a way to pool the information among variables

within a group and also to induce different shrinkage for different

groups, while the variable-specific parameters allow different

shrinkage for different variables. Yi and Zhi [26] set the scale

parameters saj
to a known value for all the weight parameters and

recommended saj
= 0.5 as default. However, it would be more

reasonable to estimate the scale parameters from the data.

If the number of groups is not large, the group effects gk usually

can be estimated classically. However, low allelic frequencies can

yield very small variances for the predictors of gk, i.e.,
XJk

j[Gk

ajzij ,

and as a result the classical procedure can result in numerically

instable estimates for the group effects gk. To overcome this

problem, we can place a weakly informative prior on gk that

constrains gk to a reasonable range [41]. We use the following

hierarchical prior distribution:

gkjt2
gk
*N 0,t2

gk

� �

t2
gk

���s2
gk
*Inv{x2 1,s2

gk

� �
s2

gk
*Gamma 0:5,0:5ð Þ

ð5Þ

This hierarchical prior distribution includes group-specific param-

eters s2
gk

, which can induce different shrinkage for different group

effects gk. The group-specific parameters s2
gk

are assumed to follow

a weakly informative prior Gamma(0.5, 0.5). This weakly

informative prior does not strongly shrink gk towards zero, but

can constrain gk to lie in a reasonable range [41].

For the covariate effects bj , we also use the above weakly infor-

mative prior (5), i.e., bjeN(0,t2
bj

),t2
bjeInv-x2(1,s2

bj
),s2

bjeGamma(0:5,

0:5). For the intercept b0 and the dispersion parameter w, we can use

any reasonable non-informative prior distributions; for example,

p(b0)~N(0,t2
0) with t2

0 set to a large value, and p( log w)!1.

Model Interpretation
Our hierarchical GLMs include multiplicative parameters, a

common coefficient gk for a group of variants and a weight

parameter aj for each variant. As explained earlier, the common

coefficient gk represents the overall association of the Jk individual

variants in group k with the disease. In our hierarchical model, the

multiplicative term gk

XJk

j[Gk

ajzij can be expressed as
XJk

j[Gk

(gkaj)zij ,

and thus the predictor zij ultimately gets the coefficient gkaj , which

represents the main effect of that variant. The coefficient gkaj is

affected by the prior mean of aj . Therefore, we define the adjusted

main effects as gk(aj{mj), which represent the effects of individual

variants.

For the multiplicative model to be useful, we need informative

prior distributions on the multiplicative parameters that allow us to

distinguish between the group effects and the individual weights.

The prior means mj and the variances t2
aj

in the normal prior

distributions of the weights aj (i.e., ajeN(mj , t2
aj

)) are the key

components to interpret our hierarchical model. The variances t2
aj

directly control the amount of shrinkage for aj . If t2
aj

= 0, the

coefficient aj equals the prior mean mj . If t2
aj

= ‘, gkaj is actually

estimated using least squares and the parameters gk and aj cannot

be distinguished. If t2
aj

is finite, the coefficient aj is shrunk towards

but not identical to the prior mean mj . Therefore, the prior

distributions bridge the gap between the two extremes of simply

using the fixed weighted sum
XJk

j[Gk

mjzij of the Jk variants as a

predictor (t2
aj

= 0), and including them as Jk independent

predictors (t2
aj

= ‘) [37,38]. This interpretation can be more

explicitly understood by the identity

gk

XJk

j[Gk

ajzij~gk

XJk

j[Gk

mjzijz
XJk

j[Gk

a�j zij

0
@

1
A ð6Þ

where a�j ~aj{mjeN(0,t2
aj

). The second term in the right side is

controlled by the variances t2
aj

, and represents the deviation from

the fixed weighted sum
XJk

j[Gk

mjzij . Most of existing methods for

analyzing rare variants proceed to construct a linear combination

(genetic score) of rare variants with fixed weights [21–25], and thus

can be viewed as special cases of our model.

The prior means mj represent the prior relative importance of

the individual variants and can be specified in various ways. The

weights proposed by previous methods [21–25] can be used as the

prior means mj in our hierarchical model. The simplest way is to

set all mj = 1, resulting in the simple sum
XJk

j[Gk

zij , and incorporating

no prior information about the relative importance of rare variants

into the model. But our method can estimate the weights from

data and produce different weights to different variants based on

their contributions to the phenotype. Therefore, our model uses a

previous score (i.e.,
XJk

j[Gk

mjzij ) as the baseline, and improves the fit

by accounting for the variation among individual variants.

An alternative choice of the prior means is to set all mj = 0. With

this choice, the weights are shrunk towards zero, and variants with

small effects can be essentially removed from the model. This

seems to be reasonable, especially for the situations with non-

functional variants. However, we don’t recommend this approach

for rare variants for several reasons. First, most of rare and

common variants have small effects, but they can be cumulatively

important. In order to detect the cumulative effect, therefore, it

would be better to include all the small effects in the model.

Hierarchical GLMs for Rare and Common Variants
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Second, the estimated group effect can be less interpretable and

accurate, if only one or a few variants are included in the model.

Third, our hierarchical model can estimate the weights of

individual variants from the data, and thus can deal with non-

functional variants and disparate effects.

Model Fitting and Inference
Our Bayesian hierarchical GLMs can be fitted using Markov

chain Monte Carlo (MCMC) algorithms that fully explore the

joint posterior distribution by alternately sampling each parameter

from its conditional posterior distribution [36]. However, it is

desirable to have a faster computation that provides a point

estimate (i.e., the posterior mode) of the coefficients and their

standard errors (and thus the p-values). Such an approximate

calculation has been routinely applied in statistical practice [41].

We develop our mode-finding algorithm by modifying the

standard iterative weighted least squares (IWLS) for fitting classical

generalized linear models [42,43].

Our algorithm updates the coefficients aj and gk using an

iterative procedure. Conditional on the current estimates ĝgk, we

update aj by running the generalized linear model with the

proposed prior distributions for aj and other corresponding

parameters:

gi~
XJ0

j~0

xijbjz
XK

k~1

XJk

j[Gk

ẑzijaj ð7Þ

where ẑzij~zij ĝgk, and then conditional on the current estimates âaj ,

we update gk by running the generalized linear model with the

proposed prior distributions for gk and other corresponding

parameters:

gi~
XJ0

j~0

xijbjz
XK

k~1

T̂Tikgk ð8Þ

where T̂Tik~
XJk

j[Gk

âajzij . We fit these two hierarchical generalized

linear models by incorporating a flexible expectation-maximiza-

tion (EM) algorithm into the iteratively weighted least squares

(IWLS) for fitting classical generalized linear models. We describe

our EM-IWLS algorithm in detail in Text S1.

We initialize our iterative algorithm by setting the parameters

(b,a,g,w,t2,s2,b) with some plausible values. For example, we can

start with bj = 0, aj = mj , gk = 1, w = 1, bk = 0.5, saj
= taj

= 0.5, and

sgk
= tgk

= sbj
= tbj

= 1. We then update the parameters by

iteratively running the hierarchical generalized linear models (7)

and (8) until convergence. Instead of doing a nested converged

EM-IWLS for each of the two models, we can run one step of the

EM-IWLS at each iteration, thus taking less computing time to

ultimately achieve convergence by not wasting time running many

steps of the EM-IWLS within each iteration. To assess

convergence, we use the standard criterion for analysis of classical

generalized linear models (as implemented in the R function glm),

i.e., d (t){d (t{1)
�� ��= 0:1z d (t)

�� ��� �
ve, where d (t) is the estimate of

deviance (i.e., {2 log p(yjg,w)) at the tth iteration, and e is a small

value (say 1025).

At convergence of the algorithm, we summarize the inferences

using the latest estimates of the coefficients (b̂b,âa,ĝg) and their

standard errors. Based on these outputs, we can calculate

approximate p-values as in the classical framework for testing

whether a coefficient is significantly different from zero, for

example, the hypothesis gk = 0. The adjusted main effects

gk(aj{mj) are then estimated as ĝgk(âaj{mj), and the approximate

standard error for ĝgk(âaj{mj) can be obtained by using the delta

technique:

Var(ĝgk(âaj{mj))~ĝg2
kVar(âaj)z(âaj{mj)

2Var(ĝgk) ð9Þ

Therefore, we can calculate the approximate p-value for testing

the hypothesis gk(aj{mj) = 0.

Implementation
Our model fitting strategy is based on extending the well-

developed IWLS algorithm for fitting classical GLMs to our

Bayesian hierarchical GLMs. The IWLS algorithm is executed in

the glm function in R (http://www.r-project.org/). We have

implemented the EM-IWLS algorithm by inserting the E-step for

updating the missing values (i.e., the variances t2
j and the

hyperparameters s2
j and bk½j�) and the steps for calculating the

augmented data and the dispersion parameter into the IWLS

procedure (see Text S1). We have created a new R function bglm

by modifying the glm function to implement our EM-IWLS

algorithm that estimates posterior modes and standard deviations

for hierarchical GLMs with the prior distributions proposed here

(see Text S1) and some other hierarchical priors [44,45]. We have

also developed an R function bglm.ex that implements the

iterative algorithm described above for fitting our hierarchical

multiplicative GLMs. Although described in the context of genetic

variants in this paper, the functions bglm and bglm.ex can be used

as general tools for routine data analysis using hierarchical GLMs.

We have incorporated the functions bglm and bglm.ex into the

freely available R package BhGLM (http://www.ssg.uab.edu/

bhglm/) that is an extensible and interactive environment for

genetic association analysis of common and rare variants and

gene-gene and gene-environment interactions.

Alternative Approaches
Our hierarchical multiplicative GLMs include various models as

special cases. Although less comprehensive, these reduced models

can be useful in some situations, and thus can be used as alternative

approaches to analysis of multiple groups of rare and common

variants. We here consider two types of reduced models. The first

ignores the group effects and directly models the main effects of

individual variants. Thus, the linear predictor (1) is reduced to

gi~
XJ0

j~0

xijbjz
XK

k~1

XJk

j[Gk

zijaj , ð10Þ

and the mean and the distribution of the response variable take the

same form of the expressions (2) and (3). In this model, the

coefficient aj represents the main effect of genetic variant j, and

follows the hierarchical prior distribution (4) with the prior mean

mj = 0. This approach can only detect individual variants with

strong effects, and is less powerful in situations where the effects of

all individual variants are small but they are cumulatively

significant.

The second alternative approach is to preset the weights of

individual variants using the previous methods [21–25]. Thus, the

linear predictor (1) becomes

gi~
XJ0

j~0

xijbjz
XK

k~1

Tikgk ð11Þ

Hierarchical GLMs for Rare and Common Variants
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where Tik~
XJk

j[Gk

zijmj with fixed weights mj . This model is

equivalent to setting the priors as aj jt2
ajeN(mj ,t

2
aj

) and

t2
ajeInv-x2(z?,0) (i.e., ajeN(mj ,0)) and thus is a special case of

our hierarchical model. The performance of this method heavily

depends on the quality of the fixed weights.

Results

Application: Population-Based Resequencing of ANGPTL4
and Triglycerides

Description of dataset. Romeo et al. [13] was the first

application of resequencing to a large population to examine the

role of the adipokine gene ANGPTL4 in lipid metabolism. The

study included the 3,551 participants of the Dallas Heart Study

(DHS) from whom fasting venous blood samples were obtained.

The DHS is a population-based random sample of Dallas County

residents, consisting of 601 Hispanic (H), 1,830 African American

(AA), 1,045 European American (EA) and 75 other ethnicities.

The 75 participants from other ethnicities will be excluded from

our analysis. The phenotype analyzed in our study is the log-

transformed plasma levels of triglyceride. The top panel of Figure 1

shows the histogram of this continuous phenotype and the 25th

and 75th percentiles. Following the analysis of Romeo et al. [13],

we also considered a binary trait, coding individuals in the bottom

and top quartiles of the distribution as 0 and 1, respectively, and

excluding other individuals from the analysis. Hereafter, we refer

these two phenotypes as the continuous and binary traits. Our

analyses included race (a three-level factor), age, sex, and BMI as

covariates in the model. We excluded individuals with any missing

values of the covariates from the analysis, resulting in 3008 and

1499 individuals in the analyses of the continuous and binary

traits, respectively.

Romeo et al. [13] sequenced the seven exons and the intron-

exon boundaries of the gene ANGPTL4, and identified a total of 93

sequence variations. After removing variants that were not

segregating in the sample, the numbers of variants reduced to

82 and 63 for the analyses of the continuous and binary traits,

respectively. Most of these variants were rare: only 12 and 13

variants had a minor allele frequency above 1%, and 33 and 26

variants were found only in one object in the two analyses,

respectively (see Figure 1).
The methods. We divided the variants into four groups:

common non-synonymous, common synonymous, rare non-

synonymous, and rare synonymous. We used a minor allele

frequency of 1% as the threshold to distinguish between common

Figure 1. The Dallas Heart Study data set. The top panel: the histogram of the log-transformed plasma levels of triglyceride and the 25th and
75th percentiles (the black dotted lines). The middle panel: the logarithm of the observed count of heterozygotes (Aa) and rare homozygotes (aa) for
each variant in the continuous trait analysis. The bottom panel: the logarithm of the observed count of Aa and aa for each variant in the binary trait
analysis. The gray dotted lines show the four groups: common non-synonymous, common synonymous, rare non-synonymous, and rare
synonymous.
doi:10.1371/journal.pgen.1002382.g001

Hierarchical GLMs for Rare and Common Variants
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and rare variants [21]. Figure 1 displays the four groups of variants

and the logarithm of the observed count of heterozygotes (Aa) and

rare homozygotes (aa) for each variant. The four groups consisted

of 2 (2), 10 (11), 26 (16) and 44 (34) variants for the analyses of the

continuous (binary) traits, respectively. Since there are only two

common non-synonymous variants (i.e., 8155_T266M and

8191_R278Q), we did not estimate their group effect and

instead treated them as two covariates in the models. We coded

the main-effect predictor of each variant using the additive genetic

model, i.e., the number of minor alleles in the observed genotype.

The genotypes of the variants contained ,3%–16% missing

values. For the missing genotypes, we filled in the variables using

the expectation of the observed values in that marker. This simple,

but reasonable, imputation method is computationally much more

efficient than comprehensive methods using MCMC algorithms or

multiple imputations and has been widely used in genetic

association studies. The previous studies and the analyses in this

work show that this imputation method yields a reasonable result

[43].

We first analyzed the data using the hierarchical multiplicative

GLMs (Equations 1–3) with the proposed hierarchical prior

distributions (Equations 4 and 5). For comparisons, we then used

three alternative methods: 1) Setting all the scale parameters saj
in

the hierarchical prior (4) to a known value (e.g., 0.5). This is an

extension of Yi and Zhi [26] to multiple groups of variants; 2)

Setting the weights of individual variants to fixed values mj (see

Equation 11). This simply extends the previous Simple-Sum

[22,27] and Weighted-Sum methods [24]; 3) Ignoring the group

effects and directly estimating the main effects of all individual

variants (see Equation 10).

All the analyses simultaneously fitted all the non-genetic

variables (i.e., race, age, sex, and BMI), the two common non-

synonymous variants (i.e., 8155_T266M and 8191_R278Q) and

the three groups of variants. We used a normal regression and a

logistic regression for the continuous and the binary traits,

respectively. We set the prior means mj in two ways; the first is

to set 1 for all the variants, and the second is to set 1 for the

synonymous variants and the predicted functional scores for the

rare non-synonymous variants. The functional scores were

calculated using the software PolyPhen [24,46]. The iterative

EM-IWLS algorithm started from the plausible initial values

described earlier and took 12 (16) iterations to reach convergence

for the analysis of the continuous (binary) trait (,0.1 minutes on a

P4 desktop computer).

Results of data analyses. Figure 2 shows the results from

the analyses of the proposed hierarchical GLMs with prior means

mj set to 1 for all the grouped variants. All the non-genetic covar-

iates and the common non-synonymous variant 8191_R278Q

Figure 2. Analyses of the proposed hierarchical GLMs with prior means mj = 1 for all variants. The top and bottom panels are for the
continuous and binary traits, respectively. The left panel is for the covariates, the two common non-synonymous variants and the three group effects
(G1: common synonymous; G2: rare non-synonymous; G3: rare synonymous). The right panel is for the adjusted main effects (the gray dotted line
shows the two groups G1 and G2). The points, short lines and numbers at the right side represent estimates of effects, 62 standard errors, and p-
values, respectively. Only adjusted main effects with p-value ,0.1 are labeled.
doi:10.1371/journal.pgen.1002382.g002
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were found to significantly affect both the continuous and the

binary traits. These effects were also significant under the other

models considered (see Figure 3, Figure 4 Figure 5, Figure 6).

Although not mentioned in Romeo et al. [13], our analyses

detected the minor allele of the variant 8191_R278Q to

significantly decrease triglyceride levels, consistent with the

finding of King et al. [25]. In addition to the significant non-

genetic and genetic covariates, we identified two significant group

effects, i.e., those of the common synonymous and the rare non-

synonymous variants. These two group effects remained significant

even corrected for multiple testing using the method of Benjamini

and Hochberg [47]. Our results were fairly consistent with the

original analyses; Romeo et al. [13] observed that the number of

individuals with nonsynonymous variants in the bottom quartile

was significantly greater than the number in the highest quartile,

but the number of synonymous variants in the upper and lower

tails of the distribution was identical. Since we divided

synonymous variants into two groups, our analyses produced

additional findings; the group effect of the common synonymous

variants was significant, but that of the rare synonymous variants

was insignificant.

The group effects in our model should be interpreted with

caution; a positive group effect does not necessarily mean that the

variants increase the phenotype, because for some variants the

weights can be estimated to be negative (for example, the rare

variant 1313_E40K in our analyses). The right panel of Figure 2

displays the adjusted main effects of the common synonymous and

the rare non-synonymous variants, thus showing which variants

are more important. Our analyses identified the rare variant

1313_E40K as the most important. The negative adjusted main

effect indicated that the minor allele of 1313_E40K decreases

triglyceride levels. Romeo et al. [13] and King et al. [25] also

found that the variant 1313_E40K significantly decreased

triglyceride levels. Therefore, the proposed method can simulta-

neously identify significant group effects and individual variants.

Figure 3 shows the results for the proposed hierarchical GLMs

with prior means mj set to the functional probabilities for the rare

non-synonymous variants, which were estimated to range from

0.16 to 1. These models produced qualitatively identical results as

the above analyses, but slightly lower p-values for the significant

effects. Price et al. [24] showed that incorporating computational

predictions of functional importance can increase power for

pooled association tests for rare variants.

Figure 4, Figure 5, and Figure 6 display the results from the

three alternative approaches. The models setting all the scale

parameters saj
in the hierarchical prior (Equation 4) to 0.5 (as

suggested by Yi and Zhi [26]) produced results similar to the

previous analyses (Figure 4). However, this alternative method

Figure 3. Analyses of the proposed hierarchical GLMs with prior means mj being the functional probabilities for the rare non-
synonymous variants. The top and bottom panels are for the continuous and binary traits, respectively. The left panel is for the covariates, the two
common non-synonymous variants and the three group effects (G1: common synonymous; G2: rare non-synonymous; G3: rare synonymous). The
right panel is for the adjusted main effects (the gray dotted line shows the two groups G1 and G2). The points, short lines and numbers at the right
side represent estimates of effects, 62 standard errors, and p-values, respectively. Only adjusted main effects with p-value ,0.1 are labeled.
doi:10.1371/journal.pgen.1002382.g003
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inflated the standard deviations for the estimates of the weights.

The second alternative method preset the weights to 1 for all the

variants or the estimated functional probabilities for the rare non-

synonymous variants. But, these simpler models did not detect

any significant group effects (Figure 5). Our third alternative

approach simultaneously fitted the main effects of all the

covariates and common and rare variants. As expected, this

hierarchical model was able to detect only large effects. The

variants 8191_R278Q and 1313_E40K were found to have

strong effects in our previous analyses and thus were also detected

in this alternative analysis.

Simulation Studies
Simulation design. We used simulations to validate the

proposed models and algorithm and to study the properties of the

method. Although most published simulation studies of rare

variants generated genotypes assuming a population genetics

model for the propagation of rare variants, the best way will be to

take real sequence data obtained from many individuals and

simulate phenotypes based on variants in those sequences, making

assumptions only about genetic effects of variants [19]. Thus, we

performed simulation studies by taking advantage of the real

genotypes of common and rare variants and also the covariates in

the above large real dataset.

We evaluated some factors that may affect the performance of

the methods:

a) Sample size: We considered two sample sizes, including all

observations in the real data (n = 3008) or individuals in the

bottom and top quartiles of the real continuous phenotype

(n = 1499), respectively.

b) Number of groups and number of variants in each group: We first

considered the three groups of variants (i.e., common

synonymous, rare non-synonymous, and rare synonymous)

as in our real analyses. We then considered the second

scenario with six groups by randomly partitioning each group

into two with equal number of variants.

c) Genetic effect sizes and directions of variants: For each group of

variants, we first assumed the total heritability (h) explained

by the variants and the proportion of negative additive effects

(p.neg) for the variants. We then randomly sampled an

additive effect bj for each variant from the region [0, bh] and

changed the sign of bj with the probability p.neg. The upper

bound bh was calculated using the method of Yi and Zhi [26],

which controlled the total heritability of each group of

variants approximately equal to the assumed value h. We

considered several combinations of different h and p.neg (see

Tables 1 and 2). The assumed total heritabilities were

Figure 4. Analyses of the hierarchical GLMs with fixed scale saj
= 0.5. The top and bottom panels are for the continuous and binary traits,

respectively. The left panel is for the covariates, the two common non-synonymous variants and the three group effects (G1: common synonymous;
G2: rare non-synonymous; G3: rare synonymous). The right panel is for the adjusted main effects (the gray dotted line shows the two groups G1 and
G2). The points, short lines and numbers at the right side represent estimates of effects, 62 standard errors, and p-values, respectively. Only adjusted
main effects with p-value ,0.1 are labeled.
doi:10.1371/journal.pgen.1002382.g004
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approximately equal to the estimated values of significant

groups in our real data analyses.

We simulated a continuous and a binary phenotype. As in our

real data analyses, we simultaneously fitted all the non-genetic

variables (i.e., race, age, sex, and BMI), the two common non-

synonymous variants (i.e., 8155_T266M and 8191_R278Q) and

the grouped variants. We assumed the non-genetic coefficients and

the additive effects of 8155_T266M and 8191_R278Q to be their

estimated values in the continuous trait analysis (see the top panel

of Figure 2). Given the assumed and the simulated coefficients, we

first generated a normal continuous trait by setting the residual

standard deviation to the estimated value in the continuous trait

analysis (<0.2), and then set half of individuals with the 50%

largest continuous phenotype as ‘affected’ (yi = 1) and the other

individuals as ‘unaffected’ (yi = 0) to create a binary trait [26].

For each situation, 1000 replicated datasets were simulated. We

calculated the frequencies of each effect estimated as significant at

the threshold levels of a = 0.05, 0.01, and 0.001 over 1000

replicates. These frequencies corresponded to the empirical power

for the simulated non-zero effects and the type I error rate for

other coefficients, respectively. We compared the proposed

method with the three alternative approaches described in the

above real data analyses. For the proposed method and the

alternative methods with fixed scale parameters or fixed weights,

we can calculate powers or type I error rates for all the covariates

and the group effects. Since the third alternative approach cannot

estimate the group effects, we simply used the minimal p-value to

calculate powers or type I error rates for each group of variants.

For each situation, the iterative EM-IWLS algorithm started from

the plausible initial values described earlier and ran until

convergence.

Results of simulations. Figure 7 and Figure 8 display the

results at the threshold level of 0.01 from simulations with three

groups and sample sizes of 3008 and 1449, respectively. Figure 9

shows the results from simulations with six groups and sample size

of 3008. In all the simulations, the non-genetic covariates (race,

age, sex, and BMI), which were highly significant in the real data

analyses, were detected with high power by all the methods (not

shown in the figures). All the methods also had high power to

detect the significant common variant 8191_R278Q, and low type

I error for the insignificant common variant 8155_T266M,

showing that the genetic effects of common variants can be

effectively estimated in large-scale studies.

In all the simulation scenarios, the proposed method and the

extension of Yi and Zhi [26] were consistently more powerful to

detect the simulated group(s) of variants than the other methods.

As expected, the power drastically increases with larger sample size

and for continuous phenotype. These relationships hold rather

generally for the methods that we examined. In the simulations

with three groups, the group of common variants was detected

with slightly higher power than the group of rare variants (see

Figure 5. Setting the weights of individual variants to fixed values mj . The top and bottom panels are for the continuous and binary traits,
and the left and right panels are for Simple-Sum and Weighted-Sum methods, respectively. The points, short lines and numbers at the right side
represent estimates of effects, 62 standard errors, and p-values, respectively.
doi:10.1371/journal.pgen.1002382.g005
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Figure 7c and 7d, Figure 8c and 8d). However, when the number

of common variants was too small, their group effect was detected

with lower power than the group of rare variants (see Figure 9a).

Our simulations showed that the proposed method and the

extension of Yi and Zhi [26] also well controlled the type I error

for groups with zero effects. This results from the fact that our

Figure 6. Ignoring the group effects and directly estimating the main effects of individual variants. The left and right panels are for the
continuous and binary traits, respectively. The points, short lines and numbers at the right side represent estimates of effects, 62 standard errors, and
p-values, respectively. Only main effects with p-value ,0.1 are labeled.
doi:10.1371/journal.pgen.1002382.g006

Table 1. Simulations with three groups.

Group 1 2 3

Number of variants 10 (11) 26 (16) 44 (34)

Scenario a h = 0% h = 0.5%
p.neg = 0

h = 0%

b h = 0% h = 0.7%
p.neg = 0.4

h = 0%

c h = 0.5%
p.neg = 0

h = 0.5%
p.neg = 0

h = 0%

d h = 0.7%
p.neg = 0.4

h = 0.7%
p.neg = 0.4

h = 0%

e h = 0% h = 0.7%
p.neg = 0

h = 0.7%
p.neg = 0

f h = 0% h = 0.7%
p.neg = 0.4

h = 0.7%
p.neg = 0.4

The number of variants in each group for simulations with n = 3,008 (1,449), the
assumed total heritability (h) explained by each group of variants, and the
proportion of negative additive effects (p.neg) for groups with non-zero h.
doi:10.1371/journal.pgen.1002382.t001

Table 2. Simulations with six groups.

Group 1 2 3 4 5 6

Number of
variants

5 (5) 5 (6) 13 (8) 13 (8) 22 (17) 22 (17)

Scenario a h = 0% h = 0.5%
p.neg = 0

h = 0% h = 0% h = 0.5%
p.neg = 0

h = 0%

b h = 0% h = 0.7%
p.neg = 0.4

h = 0% h = 0% h = 0.7%
p.neg = 0.4

h = 0%

c h = 0% h = 0% h = 0.5%
p.neg = 0

h = 0% h = 0.5%
p.neg = 0

h = 0%

d h = 0% h = 0% h = 0.7%
p.neg = 0.4

h = 0% h = 0.7%
p.neg = 0.4

h = 0%

The number of variants in each group for simulations with n = 3,008 (1,449), the
assumed total heritability (h) explained by each group of variants, and the
proportion of negative additive effects (p.neg) for groups with non-zero h.
doi:10.1371/journal.pgen.1002382.t002
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hierarchical priors can shrink the weights of zero-effect variants to

the prior means and thus yield the genetic score approximately

equal to the simple sum or weighted sum. Our simulations also

showed that the method ignoring group effects had the highest

type I error rate.

For the groups in which all variants affected the traits in the same

direction, the summation of the additive-effect predictors could

provide a useful genetic score of these variants, and thus the simple-

sum method had reasonable power to detect the group effect (see

Figure 7a, 7c, 7e; Figure 8a, 8c, 8e; Figure 9a, 9c). Even in this

situation, however, the proposed method and the extension of Yi

and Zhi (2011) [26] were still more powerful than the simple-sum

method. This may result from the fact that these hierarchical models

estimate the weights from data and thus can produce different

weights for different variants based on their contributions to the

phenotype. The simulations further showed that the proposed

method had slightly higher power than Yi and Zhi (2011) [26]. This

is likely the results that the proposed method introduces variable-

specific shrinkage parameters and thus could estimate the weights of

variants more effectively. Finally, we found that the method

ignoring group effects had the lowest power. This is expected

because with the low total heritability the effects of single variants

were very small and could not be detected powerfully.

For the groups in which 60% of variants increase disease risk

and others are disease-protective, the summation of the additive-

effect predictors provides an inefficient genetic score to summarize

the information of the variants, and thus the simple-sum method

had low power to detect the association (see Figure 7b, 7d, 7f;

Figure 8b, 8d, 8f; and Figure 9b, 9d). These results are expected

because using equal weights for disease-causing and disease-

protective variants the information across variants can be

cancelled out and the true association cannot be detected.

However, the proposed method and the extension of Yi and Zhi

(2011) [26] still had reasonable power to detect these multiple rare

and common variants with opposite effects. These hierarchical

models could yield opposite weights for disease-causing and

protective variants, and thus avoid cancellation of individual-

variant variation. Once again, we found that the proposed method

had slightly higher power than Yi and Zhi (2011) [26].

Interestingly, our simulations show that the hierarchical models

of all variants were not influenced by opposite effects, because they

directly estimate the effects of individual variants; for a higher total

heritability of multiple variants, some variants had larger effects

and thus could be detectable individually.

We also evaluated power and type I error at several different

levels (e.g., a = 0.05, 0.001). The conclusions described above

Figure 7. Simulations with sample size n = 3,008 and three groups for the six scenarios (see Table 1). Power or Type I error rate for the
proposed method (#), Yi and Zhi (6), Simple-Sum (D) and All-Variants (+) under the threshold level of 0.01. X8155_T266M and X8191_R278Q are the
two common non-synonymous variants, and G1, G2 and G3 are the three group effects (G1: common synonymous; G2: rare non-synonymous; G3:
rare synonymous). Red and blue symbols represent results for continuous and binary traits, respectively. The dashed line is the nominal 0.01 level.
doi:10.1371/journal.pgen.1002382.g007
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generally held (data not shown). Yi and Zhi [26] found that the

hierarchical GLMs uniformly yielded much lower p-values for the

simulated group effects than the previous methods. This was also

true for the proposed method in our simulation studies. This

indicates that our method usually provides stronger evidence of

association if the variants really influence the disease.

Discussion

We have proposed here a Bayesian hierarchical generalized

linear model framework for simultaneously analyzing multiple

groups of rare and common variants and relevant covariates. Since

complex diseases and traits are likely influenced by multiple

genetic variants and environmental factors, the joint analyses of

multiple groups of genetic variants can improve the power of

detecting causal effects and lead to increased understanding about

the genetic architecture of diseases. The proposed hierarchical

generalized linear models introduce a group effect and a genetic

score for each group of variants, and jointly estimate the group

effects and the weights of the genetic scores. This can produce

‘optimal’ weights to different variants based on their contributions

to the phenotype, yielding an effective summary of the information

across variants. The simulation studies show that the proposed

method can consistently provide reasonable power even in the

presence of both risk and protective variants in a group, and has

better power than existing approaches even when all variants act

in the same direction. Application of the method to a large

published dataset on resequencing of the gene ANGPTL4 and

triglycerides not only confirmed the original findings but also

detected new associations.

In addition to the properties described above, our method has

several remarkable features. First, the proposed method can

simultaneously estimate the group effects of multiple groups of

variants and the individual effects of the variants, allowing us to

not only identify significant genes (or groups of variants) but also

assess the relative importance of single variants. Second, our

hierarchical model includes various existing methods for rare

variants as special cases. This shows that the proposed method is

theoretically more advantageous than the existing methods, and

allows us to conveniently analyze data using different ways. Third,

any external information about variants, for example, the

functional prediction, can be easily incorporated into our

hierarchical model by specifying the prior means of the weights

for variants. By doing so, our approach has the additional

advantage of accounting for uncertainties about the prior

assumptions. Fourth, our approach is based on the generalized

Figure 8. Simulations with sample size n = 1,499 and three groups for the six scenarios (see Table 1). Power or Type I error rate for the
proposed method (#), Yi and Zhi (6), Simple-Sum (D) and All-Variants (+) under the threshold level of 0.01. X8155_T266M and X8191_R278Q are the
two common non-synonymous variants, and G1, G2 and G3 are the three group effects (G1: common synonymous; G2: rare non-synonymous; G3:
rare synonymous). Red and blue symbols represent results for continuous and binary traits, respectively. The dashed line is the nominal 0.01 level.
doi:10.1371/journal.pgen.1002382.g008
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linear model framework and thus can deal with various types of

continuous and discrete phenotypes and covariates, and can fit any

generalized linear models. Finally, the proposed algorithm extends

the standard procedure for fitting classical generalized linear

models in the general statistical package R to our Bayesian model,

leading to the development of stable and flexible software.

Our approach is highly extensible; we have planned several

extensions to the proposed method, some of which have been

initially implemented in our software BhGLM. The key to our

approach is the use of hierarchical prior distributions for the

weights and the group effects, so that these multiplicative

parameters are identifiable and can be simultaneously estimated

from the data. We have proposed to use the hierarchical

expression of the half-Cauchy distribution with the innovation of

introducing both group- and variable-specific parameters. The

half-Cauchy prior is an excellent default choice for many problems

[39,40], and has been shown to perform well for our purposes.

However, other hierarchical priors or penalized likelihood

methods have been developed for high-dimensional data analysis,

including lasso [48,49], adaptive Lasso [50], and the elastic net

[51]. These methods can be expressed as hierarchical models by

assigning certain priors on the variances and other hyperpara-

meters [45,48,52], and can be incorporated into our framework.

Although demonstrated with only several groups of variants, our

method can be adapted to deal with large-scale sequencing data

involving thousands of exomes or candidate genes. For these high-

dimensional settings, we need to modify the prior distributions of

the group effects and the computational algorithm. We can place a

shrinkage prior on the inverse scale in the gamma prior of s2
gk

and

estimate the inverse scale from the data. We can further group the

group effects based on pathways that candidate genes belong to,

and specify the shrinkage priors by incorporating the second-level

hierarchical structure, similar to the hierarchical priors of the

weights. We describe our algorithm by simultaneously estimating

all weights. This method can be very fast when the number of

variables is not very large (say ,2000) and has the advantage of

accommodating the correlations among all the variables. Howev-

er, it can be slow or even cannot be implemented when the

number of variables is large due to memory storage and

convergence problems. We can extend the algorithm to update

coefficients group by group; at each of the iteration, the group-at-

time algorithm proceeds by cycling through all the groups of

parameters and treats the linear predictor of all other groups as an

offset in the model. This method updates coefficients in a

conditional manner, significantly reducing the number of

parameters in each M-step of the EM-IWLS algorithm, and thus

can deal with large number of variables.

Our third extension could incorporate external gene or pathway

level information into the hierarchical model. Candidate genes or

pathways studies usually consist of data at different levels, i.e.,

genetic variants within multiple candidate genes or pathways

which may be functionally related [53]. Most of statistical methods

for association studies consider only individual-level predictors

(i.e., SNPs and covariates) and ignore the hierarchical structure of

the data and gene or pathway-level information. Often, rich gene

or pathway-level information is available [54], including genomic

Figure 9. Simulations with sample size n = 3,008 and six groups for the four scenarios (see Table 2). Power or Type I error rate for the
proposed method (#), Yi and Zhi (6), Simple-Sum (D) and All-Variants (+) under the threshold level of 0.01. X8155_T266M and X8191_R278Q are the
two common non-synonymous variants, and G1–G6 are the six group effects. Red and blue symbols represent results for continuous and binary traits,
respectively. The dashed line is the nominal 0.01 level.
doi:10.1371/journal.pgen.1002382.g009
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annotation or pathway ontologies, functional assays, in silico

predictions of function or evolutionary conservation [55].

Therefore, there is a growing need to develop sophisticated

approaches that model the multilevel variation simultaneously and

incorporate gene or pathway-level data into the model [56,57].

Our hierarchical models provide a natural and efficient way to

incorporate the external information about candidate genes into

the analysis. One way to include the gene-level information in the

hierarchical models is to model the prior means of weights and

group effects using gene or pathway level predictors [38]. This

would allow us to pool the information in the same genes or

pathways and thus would provide more effective inference about

the genetic effects.

Our fourth extension could incorporate genetic interactions

(gene-gene and gene-environment interactions) into the model.

Just as interactions must be considered in standard GWA studies

[57–59], they are also likely to be important in association studies

involving rare variants [19]. In principle, we can extend the

proposed model to include additional groups for interactions for

each pair of groups of main effects and to define an overall effect

and a genetic score for each interaction group. However, it would

be necessary to investigate statistical power for detecting

interactions for rare variants. Finally, we have planned to extend

our method to family-based matched case-control association

studies. So far the existing methods for rare variants have focused

on population-based studies. However, for rare variants, family-

based designs may prove very useful [60]. Not only are they robust

against population stratification, but they may also offer increased

power due to the increased likelihood of affected relatives to share

the same rare disease variants. As the conditional logistic

regression commonly used for matched case-control studies can

be formulated as a Poisson regression [36], our hierarchical

generalized linear models can be applied.

The proposed hierarchical generalized linear models may

provide efficient tools for disease risk prediction and personalized

medicine. GWA studies have raised expectations for predicting

individual susceptibility to common diseases using genetic variants

[61,62]. Previous methods using only a limited number of

significant variants have typically failed to achieve satisfactory

prediction performance [63,64]. Recent studies show that joint

analysis of a large number of genetic variants can improve the

prediction of complex traits [65–67]. It is understood that a model

including as many predictors as possible and fitted appropriately

could provide better prediction. Although the previous studies

have included many genetic variants in a predictive model, they

treat these variants individually and hence could be suboptimal to

efficiently use information of genetic variants with small effects and

low frequencies. The proposed hierarchical models can better deal

with such variants and can integrate external biological knowl-

edge, and therefore may be able to improve the accuracy of

prediction.
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