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ABSTRACT
Background. Gliomas are the most common primary tumors of the central nervous
system. The complexity and heterogeneity of the tumor makes it difficult to obtain
good biomarkers for drug development. In this study, through The Cancer Genome
Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), we analyze the common
diagnostic and prognostic moleculer markers in Caucasian and Asian populations,
which can be used as drug targets in the future.
Methods. The RNA-seq data from Genotype-Tissue Expression (GTEx) and The
Cancer Genome Atlas (TCGA) were analyzed to identify signatures. Based on the
signatures, the prognosis index (PI) of every patient was constructed to predict the
prognostic risk. Also, gene ontology (GO) functional enrichment analysis and KEGG
analysis were conducted to investigate the biological functions of thesemRNAs. Glioma
patients’ data in the CGGA database were introduced to validate the effectiveness of the
signatures among Chinese populations. Excluding the previously reported prognostic
markers of gliomas from this study, the expression ofHSPA5 andMTPNwere examined
by qRT-PCR and immunohistochemical assay.
Results. In total, 20 mRNAs were finally selected to build PI for patients from TCGA,
including 16 high-risk genes and four low-risk genes. For Chinese patients, the log-
rank test p values of PI were both less than 0.0001 in two independent datasets. And
the AUCs were 0.831 and 0.907 for 3 years of two datasets, respectively. Moreover,
among these 20 mRNAs, 10 and 15 mRNAs also had a significant predictive effect
via univariate COX analysis in CGGA_693 and CGGA_325, respectively. qRT-PCR
and Immunohistochemistry assay indicated that HSPA5 and MTPN over-expressed in
Glioma samples compared to normal samples.
Conclusion. The 20-gene signature can forecast the risk of Glioma in TCGA effectively,
moreover it can also predict the risks of Chinese patients through validation in the
CGGA database. HSPA5 and MTPN are possible biomarkers of gliomas suitable for all
populations to improve the prognosis of these patients.
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INTRODUCTION
Gliomas are the most common primary tumors of the central nervous system (Schneider
et al., 2010; Wen & Kesari, 2008). According to the World Health Organization (WHO)
classification of neurological tumors, theywere classified into grade I–IV (Louis et al., 2007).
The treatment mode is surgical resection combined with chemotherapy and radiotherapy
(Mrugala, 2013). The prognosis of most patients is still poor due to its high incidence, high
recurrence rate, high fatality rate and low cure rate. Epidemiological studies have found
that the median survival time of patients with low-grade gliomas is 6 to 8 years, and that
of patients with glioblastomas is only 12 to 18 months (Yang, Zhou & Lin, 2014).

With the continuous development of genome sequencing technology, a variety of new
treatment methods, such as targeted therapy and immunotherapy, have been adopted
in the first-line treatment. But there is no better way to treat gliomas because of their
own complexity and heterogeneity that makes it difficult to obtain good biomarkers
for drug development. Therefore, based on The Cancer Genome Atlas (TCGA) and the
Chinese Glioma Genome Atlas (CGGA), two important genomic databases of gliomas, this
study analyzes the common diagnostic and prognostic markers in Caucasian and Asian
populations, which can be used as drug targets in the future.

The heterogeneity of gliomas includes histological and genetic complexity. A number of
genetic tests have been included in the latest WHO classification of tumors in the central
nervous system, and some genotypes and phenotypes have been included in the main
diagnostic indicators (Louis et al., 2016). In light of the genetic characteristics, gliomas can
be divided into Isocitrate dehydrogenase (IDH) mutation and O-6-methylguanine-DNA
methyltransferase(MGMT) methylation. The research focuses involve IDH mutation,
1P/19Q combined deletion, MGMT promoter methylation, etc. Many studies have shown
that IDHmutation is a common initial factor in all types of gliomas, and high-grade glioma
patients with IDH mutation have a significantly better prognosis than those without
mutation (Leu et al., 2016). Deletion of chromosome1P/19Q is closely related to the
occurrence and development of oligodendroglioma. Previous studies have confirmed that
1P/19Q combined deletion is not only a favorable prognostic factor in oligodendroglioma,
but also a marker of its sensitivity to radiotherapy and chemotherapy (Zhang et al., 2014).
The occurrence and development of various malignant tumors (such as lymphoblastoma,
lung cancer, esophageal cancer) are related to MGMT protein expression loss and DNA
repair disorder caused by MGMT gene promoter methylation. Multiple studies have
shown that glioma patients with MGMT promoter methylation are more sensitive to
chemotherapy and their survival time is longer than those without methylation (Jiang et
al., 2014). Although a couple of histological subtypes and molecular subtypes are already
found, the prognosis is bad for some glioma patients.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.11350


Studies on protein targets mainly focus on epidermal growth factor receptor, vascular
endothelial growth factor receptor, platelet-derived growth factor receptor, RAS-RAF-
MEK-ERK pathway, PI3K/AKT/mTOR pathway, protein kinase C pathway, and multi-
target kinase inhibitors, etc (Hide et al., 2011; Wick et al., 2011; Sathornsumetee et al.,
2007; Riolfi et al., 2010; Xiao et al., 2020; Lo, 2010; Fan &Weiss, 2010; Huang et al., 2020).
Molecular and genetic analysis to explore the pathogenesis of gliomas and the clinical
application of targeted therapy for each subtype of gliomas is also a current research
hot spot where deletion of PTEN gene, deletion or mutation of cyclin-dependent kinase
inhibitor protein, etc. are studied. The increase of epidermal growth factor receptor protein
is the main manifestation of primary gliomas. Hall et al. suggested that inhibition of P53
and activation of MYC signaling pathways in normal astrocytes exposed to GBM-EVs
might be a mechanism by which glioblastoma(GBM) manipulates astrocytes to acquire a
phenotype that promotes tumor progression (Hallal et al., 2019).

Bioinformatics methods have also been employed to find connections between RNA
and gliomas. Through bioinformatics analysis, Zhang et al. (2010) found that Mir-221/222
might jointly regulate about 70 targeted genes and play a synergistic regulatory function
in gliomas through the Akt signaling pathway. LncRNA including ASLNC22381 and
ASLNC20819 also play important roles in the development and pathological mechanism
of gliomas (Han et al., 2012). In our preceding work, we detected that increased expression
of neuropilin-1 gene indicated poor prognosis for patients (Dai et al., 2017). Our team
also used mRNAseq and micro (mi)RNAseq data to construct a co-expression network
of gliomas and revealed the prognostic molecular signature of grade III gliomas. A total
of 37 mRNAs and 10 miRNAs were identified, which were closely associated with the
survival rates of patients with grade III gliomas (Bing et al., 2016). But non-coding RNAs
were difficult to develop drug. The mRNA encoding protein is more suitable for drug
development. Data mining of public sources of gene expression is an effective way to
identify novel tumor-associated genes, and this work may contribute to the identification
of candidate genes for glioma angiogenesis (Su et al., 2013).

In this study, we identified protein coding gene signature from TCGA and CGGA,
and screened the top-20 differential expression genes that are related to prognosis. By
literature search, we excluded the previously reported prognostic biomarkers of gliomas,
and obtained two gene signatures (HSPA5 and MTPN) that can predict the prognosis of
both white and Asian populations (Norris et al., 2016; Li et al., 2014; Ge et al., 2018; Yan et
al., 2019). We also collected some clinical specimens to verify the expression of HSPA5 and
MTPN in glioma and normal brain tissue. We hope to find biomarkers of gliomas suitable
for all populations to improve the prognosis of these patients.

MATERIALS AND METHODS
Data resource and preprocessing
In order to obtain the genes related to the prognosis of GBM patients, the phenotype
information and gene expression data of tumor samples and those of normal samples
were successively collected from TCGA database and The Genotype-Tissue Expression
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(GTEx) project, according to overall survival (OS) of glioblastoma (GBM) patients. The
standardized form of TCGA data were collected from UCSC Xena (http://xena.ucsc.edu),
where gene expression was recorded as the log2 transformed FPKM (Reads Per Kilobase of
exonmodel perMillionmapped reads). To validate whether the gene biomarkers were valid
in Chinese people, two datasets were downloaded from CGGA (http://www.cgga.org.cn/).
The following three kinds of samples were excluded: (1) patients with incomplete
information of either phenotype or gene expression, (2) patients with OS time less than 30
days, (3) patients with recurrent tumor. In the TCGA database, GBM sample included 147
samples and 196 normal tissue that selected from GTEx database. In the CGGA database,
three datasets were included in this database. Of these datasets, CGGA_639 and CGGA_325
were tested by RNA-Seq. Another one was performed by Affymatrix chip. So, we selected
two datasets that used the same platform.

Differential expression analysis
To identify the genes related to overall survival of GBMpatients, the differentially expressed
mRNAs between GBM patients and normal individuals were selected at first. The Limma
package of R 3.6.1 was employed to analyze the data (https://www.r-project.org/). The
threshold was set as follows: the adjusted p value was less than 0.001, abstract of log2-fold-
change was larger than 1, B>5 and AveExpr>5. The p value was calculated via Student-t
test and adjusted by Benjamini–Hochberg method (Puoliväli, Palva & Palva, 2020). The
differentially expressed genes (DEGs) could be explained as genes expressed differently
between GBM and normal tissue.

The predictive prognostic genes
Univariate Cox (Uni-Cox) proportional hazard regression and least absolute shrinkage
and selection operator (LASSO) were employed to screen the genes that are related to
survival among TCGA GBM patients. Uni-Cox was applied to identify the independent
effect related to overall survival of each DEG. The hazard ratio (HR) of each mRNA was
calculated according to following equation:

HR= eβ (1)

where β represents the coefficient from Uni-Cox. Here Survival package of R was applied.
Then to simplify the predictive genes, least absolute shrinkage and selection operator

(LASSO) method was adopted, which further filtered the statistically significant mRNAs
further (Zhang et al., 2019). Package glmnet of R was applied.

Prognostic index model construction
Based on the identified prognostic genes, a risk value named prognosis index (PI) was
calculated for every patient as an integrated signature. PI was calculated as follows:

PI=
m∑
i=1

βi×Ei (2)

where βi represents the coefficient of the involved gene i, and Ei represents the
corresponding gene’s expression level. Then normalized PI was calculated as
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follows:

normalized PIi=
PIi−mean(PI )

sd(PI )
(3)

where mean(PI ) represents the mean and sd(PI ) represents the standard deviation of
all PIs, respectively. The PIs below all referred to normalized PI. In order to classify the
patients of high risks and low risks, the median of PIs was set as a cut-off. If the PI of a
patient is larger than the cut-off, the patient is going to be assigned to high risk group, and
be predicted with a bad OS, otherwise the patient will be predicted to have low risks of
death.

Analysis of clinical confounding factors with PI
Several clinical characteristics might correlate with the OS of GBM patients. In TCGA
database, age, KPS score, cancer status, gender and race were considered as themain clinical
confounding factors affecting prognosis (Xiong et al., 2014). Therefore, we explored the
role of age, KPS score, cancer status, gender, race and PI in TCGA datasets via Uni-Cox.
Following this, multivariable Cox (Multi-Cox) proportional hazard regression was also
conducted to explore the joint effect of these clinical factors and the previously calculated
PI, which allowed comparison of the prognostic value of PI to that of each clinical factor.
In the CGGA database, clinical variables contain more information, which is helpful to
understand the influence of various confounding factors on Cox regression. In the CGGA
database, it mainly includes grade, gender, age, radiotherapy status, chemotherapy status,
IDH mutation status and 1p19q codeletion status. The inclusion and exclusion criteria
of the cases to enter into the multivariable model were listed as follows: (1) patients with
clinical data were selected; (2) untreated, primary (de novo)GBMpatients were selected; (3)
patients with history of neoadjuvant treatment were not admissible; (4) patients more than
30-day survival were selected. Variables with p-values < 0.05 were selected as candidates
entering into the multivariable model.

Survival analysis and model test
To evaluate the predictive effect of PI, Kaplan–Meier survival curves were created.
According to the log-rank test, the PI is considered as a good predictor if the p value
is less than 0.05. Package Survminer of R was used.Then the time-dependent receiver
operating characteristic (ROC) curve analysis was introduced to assess the model. Package
survival ROC of R was applied and the area under the curve (AUC) was calculated. If AUC
equals to 0.5, it indicates that the predictive effect of the model is tantamount to random
allocation of patients. But if AUC is more than 0.5, it implies that its predictive effect is
superior to random allocation (Kottas, Kuss & Zapf, 2014).

Geno ontology (GO) functional enrichment
To analyze the basic biological function of genes identified in our model, package
ClusterProfiler (Yu et al., 2012) of R was adopted to conduct the GO analysis of functional
process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis. The p-value cut-off is less than 0.05 as significant enrichment threshold.
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Validation in CGGA dataset
Because most of the patients in the sample set is white, and only 8 samples are Asians
(accounting for 5.5% of all samples), whether the model is valid for Chinese patients is
unknown. Therefore, the validation of the model was conducted in two datasets collected
from CGGA, one of which named CGGA_325 (a dataset with 325 Chinese GBM patients)
and the other is CGGA_693 (a dataset with 693 Chinese GBM patients), respectively.
The two datasets contain different sample numbers, among which CGGA_693 contains
693 samples, CGGA_325 contains 325 samples. The two datasets also contain different
types of samples. CGGA_693 database contains primary LGG, recurrent LGG, primary
GBM, recurrent GBM. CGGA_325 database contains primary LGG, recurrent LGG,
primary GBM, recurrent GBM and secondary GBM. The PI of each patient was calculated
according to the mRNAs identified in the model, and then K-M curves and ROC curves
analysis were performed. Meanwhile, several clinical factors recorded in CGGA datasets
were added into multivariable COX model to validate the predictive effects of PI when
adjusted for confounders.

Human tissue samples
A total of 30 glioma tissue specimens and 10 cases of peritumor brain tissue (used control)
resected by corticostomy were collected from Lanzhou University SecondHospital between
October 2019 and May 2020. All these patients did not receive preoperative radiotherapy,
chemotherapy or other immunotherapy, and were confirmed by surgical pathology.
According to the WHO classification, there were 15 cases of WHO Grade II. Among them,
9 cases are of males, 6 cases are of females and the age ranges from 21 to 59 (40.5 ± 9.6).
There were 9 cases with diffuse astrocytoma (A), 4 cases with oligodendroglioma (O),
2 cases with oligoastrocytoma (OA). There were 15 cases of WHO Grade III/IV, among
which 6 cases are of males, 9 cases are of females, and the age ranges from 29 to 69
(47.9± 12.9). There were 4 cases with Anaplastic astrocytoma (AA), 1 case with anaplastic
oligodendroglioma (AO), 4 cases with anaplastic oligoastrocytoma (AOA), 6 cases with
glioblastoma (GBM). Among control groups, 5 cases are of males, 5 cases are of females,
and the age ranges from 31 to 69 (49.7 ± 11.4). This study was approved by the Ethics
Committee of Lanzhou University Second Hospital (2020A-147), and all patients signed
informed consent before surgery.

RNA extraction and qRT-PCR
Total RNA from all cells and tumor tissues were isolated using Trizol reagent (Takara,
Dalian, China) and the first-strand cDNA was converted using the PrimeScript RT
reagent Kit with genomic DNA Eraser (Takara). Then, TB Green Premix ExTaq
(Takara) was used to perform qRT-PCR (Bio-Rad CFX96). Based on the results
of differential analysis, GAPDH was selected as reference gene in glioma samples.
Relative gene expression was evaluated by a comparative CT method (2-11Ctmethod).
Statistical significance of qRT-PCR data was analyzed using IBM SPSS Statistics 22.0
software(Armonk, NY, USA) and determined by the Student’s t -test. p< 0.05 was
considered to be statistically significant. Primers used were as following: HSPA5 forward:
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5′-GACATCAAGTTCTTGCCGTTCA-3′, HSPA5 reverse: 5′-CCAGCAATAGTTCCAGCG
TCTT-3′; MTPN forward: 5′-CGGAGACTTGGATGAGGTGAA-3′, MTPN reverse:
5′-AGAGCTTTGATTGCCTGGTTG-3′; GAPDH forward: 5′-GGAAGCTTGTCATCAAT
GGAAATC-3′, GAPDH reverse: 5′-TGATGACCCTTTTGGCTCCC-3′.

Western blot assay
Tissue samples were lysed in RIPA lysis buffer, and lysates were harvested by centrifugation
(12,000 rpm) at 4 ◦C for 30 min. Western blot was performed in accordance with the
protocols as described above, using β-actin as the internal control. Briefly, the protein
sample was separated by SDS-PAGE electrophoresis and then transferred to a PVDF
membrane. After blocking nonspecific binding sites for 60 min with 5% non-fat milk,
the membrane was incubated with the primary antibody at 4 ◦C overnight. Membranes
were washed three times with tris buffered saline with 1htween-20 and incubated with
horseradish peroxidase-conjugated secondary antibody at 37 ◦C for 1 h. After 3 washes,
the bands were detected by an enhanced chemiluminescence system (WBKLS0500, Merck
KGaA). Band density was measured using ImageJ software (National Institutes of Health,
Bethesda, MD) and standardized to that of β-actin. Antibodies against proteins and
dilution multiples are as follows: HSPA5(ab21685, abcam, USA) (1:1000), MTPN(bs-
11891R,bioss,China) (1:1000), β-actin (service, China)(1:3000).

Immunohistochemical assay
Two-Step method was adopted to detect the expression of HSPA5 and MTPN. Tissue
specimens were fixed promptly with 100g/L formaldehyde solution, embedded in paraffin
and cut into 3 µm sections. All sections were dehydrated with graded alcohol, repaired
with antigen, quenched with peroxidase solution, put into tap water, and washed with PBS.
The slides were incubated in a moist chamber with HSPA5 or MTPN rabbit polyclonal
antibody (1:100) at 37 ◦C for 30min. Then they were incubated in a moist chamber with
the goat polyclonal antibody against rabbit at 37 ◦C for 30min. After being washed in
PBS completely, the slides were developed in 0.05% freshly prepared diaminobenzedine
solution (DAB) for 10 min, and then counterstained with hematoxylin. Finally, the slides
were dehydrated in ascending concentrations of ethanol, airdried, and mounted. The
expression of HSPA5 and MTPN were scored according to the degree of staining and the
number of stained cells. Degree of staining: 0 for non-staining, 1 for light yellow, 2 for
brownish, and 3 for tan. Stained cell counts are defined as follows: Under high power
microscope, 5 fields were randomly selected from each section to count the percentage of
stained cells; 0 point is given to match the stained cells which represent less than 5%; 1
point matches 5% to 25%; 2 points matches 26%∼50%; 3 points matches 51%∼75%; 4
points matches more than 75%. The product of the two scores is scored:0 is negative, 1-3 is
weakly positive, 4-5 is moderately positive, and ≥6 is strongly positive. Negative and weak
positive were classified as negative expression, while moderate positive and strong positive
were classified as positive expression.
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Figure 1 Volcano plots of the DEGs. (A) Blue dots implied the genes were down-regulated and red dots
were up-regulated. The grey plots implied the mRNAs were not differentially expressed significantly. (B)
Blue and red dots indicate genes with an average expression of more than 5.

Full-size DOI: 10.7717/peerj.11350/fig-1

Statistical analysis
Statistical analysis of human tissue data was expressed as mean ± SD (standard deviation)
from three independent experiments. Differences between groups were estimated using the
Student’s t -test. Discrete data values were expressed as rate and analyzed by chi-squared
test. All these analyses were performed using IBM SPSS Statistics 22.0 software (Armonk,
NY, USA) and a two-tailed value of P < 0.05 was considered statistically significant.

RESULTS
DEGs Between GBM samples and Non-GBM samples
By preprocessing, 147 GBM patients with 19,199 genes in TCGA and 196 non-GBM
individuals with 19199 genes in GTEx were collected to do the following analysis.

Through the analysis of differential gene expressions, 581 DEGs were left in the model
according to the threshold. Among them, 138 mRNAs were highly expressed and 443
mRNAs were lowly expressed. Figure 1 shows the volcano plots of the results of DEGs. For
further biological experiment, we filtered average expression more than 5 as threshold. The
gene significantly expression showed in Fig. 1A. Filtering genes were showed in Fig. 1B.

The survival related genes of GBM
Through Uni-cox regression, 50 mRNAs were identified as survival related genes according
to p value less than 0.05 in TCGA database. Then LASSO method was employed and 20
mRNAs were finally selected. The information of these 20 genes were listed in Table 1.
Among them, 16 mRNAs were high-risk genes with HRs from 1.230 to 2.039, which meant
that the higher their expression, the worse OS the patient might have. In contrast, 4 genes
were protective factors with HRs from 0.789 to 0.552.

PI construction
According to Eqs. (2) and (3), the PI of each patient was calculated and the cut-off was set
to 0.207, which implied patients with PIs larger than 0.207 were considered with high risks
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Table 1 Survival related genes (TCGA).

Genes Coefficients of Uni-Cox HR 95%CI for HR p-value

High Risk Genes
RNF10 0.713 2.039 1.013–4.105 0.046*

MTPN 0.593 1.809 1.141–2.868 0.012*

RTN4 0.540 1.717 1.078–2.734 0.023*

HSPA5 0.518 1.679 1.175–2.398 0.004**

PLD3 0.511 1.667 1.134–2.451 0.009**

GRN 0.495 1.640 1.176–2.287 0.004**

FLII 0.467 1.595 1.068–2.383 0.023*

NDUFB2 0.397 1.488 1.026–2.158 0.036*

DKK3 0.365 1.441 1.133–1.831 0.003**

MAP1LC3A 0.361 1.435 1.130–1.822 0.003**

SERPINE2 0.329 1.390 1.079–1.791 0.011*

TTYH3 0.285 1.330 1.056–1.674 0.015*

SCG5 0.258 1.294 1.037–1.615 0.023*

FN1 0.250 1.284 1.047–1.576 0.017*

TAGLN2 0.239 1.270 1.051–1.534 0.013*

LY6E 0.207 1.230 1.017–1.489 0.033*

Low Risk Genes
RPS19 −0.241 0.786 0.620–0.996 0.046*

EIF3L −0.441 0.643 0.469–0.883 0.006**

EIF4A2 −0.447 0.639 0.430–0.951 0.027*

FDPS −0.594 0.552 0.333–0.916 0.021*

Integrated Genes
PI 0.976 2.653 1.780–3.955 <0.001

Notes.
*p< 0.05.
**p< 0.01.

of overall survival. Ordered PIs were depicted in Fig. 2. The HR of PI, which was displayed
in the last line of Table 1, was 2.653 with 95% CI from 1.976 to 4.122. The p-value of
Uni-Cox of PI was less than 0.001.

Clinical factors and their joint effect with PI
Table 2 summarizes the results of clinical factors analysis. Five clinical factors were included
in the analysis according to the characteristics of the original training set. They are age,
karnofsky performance score (KPS), cancer status, gender and race of patients. Based on
Uni-cox and survival analysis, it showed that age, KPS and cancer status were independent
significant factors to OS of GBM patients. Then, through multivariate analysis, only KPS,
cancer status and PI were statistically significant. HR of PI is 2.653 (95% CI [1.780–3.955],
p< 0.001), which demonstrated PI is significant risk factor.

Survival analysis and model test
Figure 3 shows the results of K-M curves of PI. The red line was the survival curve of the
low-risk patients and the green line was that of high-risk patients. For 500 days, 31 patients
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Figure 2 Distribution of patients according to PI value.
Full-size DOI: 10.7717/peerj.11350/fig-2

Table 2 Cox hazard regression of clinical factors and PI.

Factors Uni-Cox Multi-Cox

Numbers Coef HR 95%CI for HR p p

Age (>= 45 VS <45) 128/19 0.982 2.669 1.382–5.155 0.004** 0.202
KPS (>= 50 VS <50) 105/7 −1.606 0.201 0.077–0.523 0.001** 0.001**

Cancer status (WITH TUMOR VS TUMOR FREE) 118/12 1.351 3.860 1.535–9.707 0.004** 0.049*

Gender (male VS female) 95/52 −0.091 0.913 0.624–1.338 0.641 0.555
Race (white VS not white) 133/13 −0.090 0.914 0.444–1.882 0.808 0.375
PI (high-risk VS low-risk) 73/74 0.976 2.653 1.780–3.955 <0.001 <0.001

Notes.
*p< 0.05.
**p< 0.01.

(41%, 31/74) were alive in the low-risk group and 11 patients (15%, 11/73) in the high-risk
group. For 1,000 days, all patients in the high-risk groups were dead, while 10 patients
(13%, 10/74) in the low-risk group were still alive. And the p value of log-rank test was less
than 0.001. The right term of the figure was the ROC curves of our model. The AUCs of
3 years and 5 years were 0.824 and 0.820, respectively, which represented that our model
had a good prognostic effect for GBM.

Results of GO enrichment analysis
According to GO functional enrichment analysis, 8 biological processes were enriched
with adjusted p value less than 0.05 (Fig. 4). They were cell adhesion molecule binding,
chaperone binding, ubiquitin protein ligase binding, ubiquitin-like protein ligase binding,
cadherin binding, translation initiation factor activity, translation initiation factor activity,
translation factor activity-RNA binding and unfolded protein binding. DEGs mainly

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 10/23

https://peerj.com
https://doi.org/10.7717/peerj.11350/fig-2
http://dx.doi.org/10.7717/peerj.11350


Figure 3 Survival analysis results in TCGA. (A) High-risk and low-risk groups showed significantly dif-
ferent survival. (B) ROC curve showed the performance of PI in TCGA.

Full-size DOI: 10.7717/peerj.11350/fig-3

involved in cell adhesion molecule binding, chaperone binding, ubiquitin protein ligase
binding, ubiquitin-like protein ligase binding and cadherin binding. These genes are
engaged in the biological processes of various brain functions such as cerebellum
morphogenesis, hindbrain morphogenesis, cerebellar cortex development and etc. In
molecular function, these genes play a part in binding function.

Validation in CGGA dataset
In validation section, we applied above results from TCGA to test in CGGA datasets. The
Uni-Cox results of 20 mRNAs were listed in Table 3. It showed us that among 20 identified
genes through TCGA, 4 genes (MTPN, RTN4, MAP1LC3A and DKK3) were significantly
associated with OS. Although MTPN is not remarkably associated with OS, the results of
calculation showed that HR>1 of MTPN and p-value showed a significant trend.

Seven of these genes only were statistically significant via Uni-Cox in either CGGA_693
or CGGA_325 (LY6E, FLII, PLD3, EIF4A2, RNF10, RPS19 and NDUFB2). The other 9
genes (TTYH3, TAGLN2, FN1, HSPA5, EI3L, SCG5, SERPINE2, FDPS and GRN) were
still prognostic genes in both CGGA_693 and CGGA_325. Among these nine genes, SCG5
and SERPINE2 showed the opposite effects in CGGA and TCGA, which might because of
racial difference. And the seven genes mentioned above showed the same effects (protective
factor or risk factor) between TCGA and CGGA, which might be the real prognostic genes
of GBM. The HRs of PI in CGGA_693 and CGGA_325 were 5.200 (95%CI [3.872–6.983])
and 6.524 (95%CI [4.496–9.466]), respectively. Thus our 20-gene model still had a good
predictive effect among Chinese GBM patients. As is shown in Table 4, WHO clinical
grade and 1p19q codelection status were also significant high-risk clinical factors of GBM
patients for overall survival. Accounting for clinical confounders, PI was still a critical
prognostic predictor in both CGGA_693 and CGGA_325 datasets.
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Figure 4 GO enrichment analysis. (A) Top eight genes involved in biological process. (B) Top eight
genes involved in molecular function.

Full-size DOI: 10.7717/peerj.11350/fig-4

Verification gene signature performance of CGGA dataset
Gene signature performance was analyzed in two CGGA datasets. Survival curve and
ROC curve were employed to test prediction performance of the gene signature. Figure 5
showed that the p-values of log-rank test of K-M curves were less than 0.0001 both in
CGGA_693 and CGGA_325. In CGGA_693, 185 patients (74%, 185/248) were alive in the
low-risk group and 44 patients (27%, 44/161) in the high-risk group for 1,000 days. And
all patients in the high-risk group were dead, while 11 patients (4%, 11/248) in the low-risk
group were still alive for 3,000 days. In CGGA_325, 104 patients (79%, 104/131) were
alive in the low-risk group and 18 patients (19%, 18/93) in the high-risk group for 1,000
days. And all patients in the high-risk group were dead, while 15 patients (11%, 15/131)
in the low-risk group were still alive for 4,000 days. This implied that the biomarkers
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Table 3 Uni-Cox results in CGGA datasets.

CGGA_693 CGGA_325

Genes Coef HR 95%CI for HR p Coef HR 95%CI for HR P

TTYH3 0.452 1.571 1.391–1.775 <0.001 0.729 2.072 1.743–2.464 <0.001
TAGLN2 0.423 1.526 1.406–1.656 <0.001 0.652 1.919 1.707–2.158 <0.001
FN1 0.336 1.399 1.301–1.504 <0.001 0.484 1.623 1.479–1.781 <0.001
HSPA5 0.235 1.265 1.113–1.438 <0.001 0.783 2.188 1.843–2.597 <0.001
EIF3L −0.156 0.856 0.810–0.904 <0.001 −0.772 0.462 0.358–0.597 <0.001
SCG5 −0.088 0.916 0.863–0.972 0.004** −0.194 0.823 0.739–0.917 <0.001
SERPINE2 −0.128 0.880 0.806–0.961 0.005** −0.691 0.501 0.395–0.635 <0.001
LY6E −0.136 0.873 0.802–0.949 0.001** 0.027 1.028 0.841–1.257 0.789
FDPS −0.158 0.854 0.775–0.941 0.001** −0.569 0.566 0.365–0.877 0.011*

GRN 0.135 1.145 1.018–1.287 0.023* 0.930 2.534 2.116–3.034 <0.001
FLII 0.127 1.136 0.997–1.294 0.056 1.463 4.318 3.239–5.756 <0.001
MTPN 0.102 1.107 0.959–1.279 0.166 0.148 1.160 0.858–1.568 0.335
PLD3 0.059 1.061 0.928–1.213 0.388 0.480 1.615 1.294–2.017 <0.001
EIF4A2 −0.002 0.998 0.913–1.091 0.967 −0.557 0.573 0.412–0.798 0.001**

RTN4 −0.014 0.986 0.870–1.117 0.820 −0.240 0.787 0.537–1.153 0.219
RNF10 −0.033 0.968 0.850–1.103 0.624 1.123 3.075 2.253–4.198 <0.001
RPS19 −0.034 0.966 0.915–1.020 0.218 0.850 2.340 1.852–2.955 <0.001
NDUFB2 −0.046 0.955 0.907–1.005 0.078 0.543 1.721 1.282–2.309 <0.001
MAP1LC3A −0.049 0.953 0.880–1.031 0.228 −0.009 0.991 0.851–1.154 0.912
DKK3 −0.074 0.929 0.822–1.049 0.235 −0.015 0.985 0.832–1.165 0.859

Integrated Genes
PI 1.649 5.200 3.872–6.983 <0.001 1.875 6.524 4.496–9.466 <0.001

Notes.
*p< 0.05.
**p< 0.01.

could efficiently classify the Chinese GBM patients into good and poor prognosis groups.
ROC analysis represented that the AUCs of CGGA_693 were 0.831 and 0.808 for 3 and
5 years, respectively, and AUCs of CGGA_325 were 0.907 and 0.912 for 3 and 5 years,
respectively. Therefore, our forecasting model for GBM had a good classificaion ability in
CGGA datasets. To test the predictive effects of our 20-gene model among Chinese GBM
patients further, K-M curves and ROC analysis were conducted.

The expression of mRNA HSPA5 and MTPN by PCR
By real-time quantitative PCR detection, compared with normal brain tissue (0.96± 0.28),
the expression of mRNA HSPA5 in WHO II gliomas and WHO III/IV glioma tissue both
increased significantly (1.25 ± 0.32,1.85 ± 0.70), and the differences were statistically
significant (P < 0.05, Fig. 6).

Compared with normal brain tissue (0.60 ± 0.28), the expression of mRNA MTPN in
WHO II gliomas and WHO III/IV glioma tissues also increased greatly (0.95 ± 0.19,1.01
± 0.39), and the difference was statistically significant (P < 0.05, Fig. 6).
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Table 4 Validation in CGGA datasets adjusted for clinical factors.

CGGA_693 CGGA_325

Coef HR 95%CI for HR P Coef HR 95%CI for HR P

PI
(high-risk VS low-risk)

0.884 2.422 1.577–3.718 <0.001 0.667 1.948 1.185–3.202 0.009**

Grade
(WHO III VS WHO II)

1.260 3.524 2.091–5.939 <0.001 1.129 3.094 1.716–5.580 <0.001

Grade
(WHO IV VS WHO II)

1.731 5.648 3.097–10.301 <0.001 1.380 3.974 2.150–7.348 <0.001

Gender
(Male VS Female)

−0.009 0.991 0.702–1.399 0.960 −0.064 0.938 0.643–1.370 0.742

Age
(>= 45 VS <45)

0.385 1.469 1.025–2.107 0.036* 0.203 1.224 0.805–1.862 0.344

Radio_status
(Radio_therapy VS Non-Radio_therapy)

−0.659 0.517 0.305–0.877 0.014* −0.102 0.903 0.489–1.667 0.745

Chemo_status
(Chemo_therapy VS Non-Chemo_therapy)

−0.186 0.830 0.518–1.330 0.439 −0.359 0.698 0.452–1.079 0.106

IDH_mutation_status
(Wildtype VS mutant)

0.336 1.400 0.897–2.184 0.139 0.143 1.153 0.703–1.893 0.573

1p19q_codeletion_status
(Non-code VS Codel)

1.081 2.947 1.510–5.751 0.002** 1.491 4.442 2.106–9.369 <0.001

Notes.
*p< 0.05.
**p< 0.01.

We filtered all gene signature in three datasets. All genes were significantly changed in
three datasets. These genes included six genes (TAGLN2, HSPA5, FN1, TTYH3, GRN and
MTPN). Of these genes, TAGLN2 (Beyer et al., 2018;Han et al., 2017), FN1 (Yu et al., 2020;
Gu, Gu & Shou, 2014; Guo, Heller & Thorslund, 2016; Liao et al., 2018), TTYH3 (Weinberg
et al., 2020), GRN, (Ness, Riemenschneider & Baches., 2009; Trigos et al., 2019) have been
reported in GBM.

Western blot analysis
Western blotting showed HSPA5 protein level in WHO II glioma tissue and WHO III/IV
glioma tissue were both elevated obviously compared with normal brain tissue. MTPN
protein expression in WHO II glioma tissue and WHO III/IV glioma tissue were also
significantly higher than normal brain tissue (Fig. 7).

Immunohistochemical analysis
HSPA5 protein was mainly expressed in the cytoplasm while MTPN protein was expressed
in the nucleus and cytoplasm.

Immunohistochemical results indicated that compared with normal brain tissue, the
positive expression of HSPA5 protein in gliomas rose obviously. For the most part, the
expression of protein was strongly positive in grade III/IV glioma tissue, moderately
positive in grade II glioma tissue, and mostly negative or weakly positive in normal brain
tissue (Figs. 8A–8C, 8G). It is equally true of the expression of MTPN protein in gliomas
(Figs. 8D–8F, 8H).
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Figure 5 K-M curves and ROC analysis of our signature in CGGA datasets. (A) and (B) shows the K-M
curves of our signature in CGGA_693 and CGGA_325 datasets, respectively; (C) and (D) shows the ROC
curves of our signature in CGGA_693 and CGGA_325 datasets, respectively.

Full-size DOI: 10.7717/peerj.11350/fig-5

Figure 6 The expression of mRNAHSPA5 andMTPN. (A) The expression of mRNA HSPA5. (B) The
expression of mRNAMTPN *represents p< 0.05 and **represents p< 0.01.

Full-size DOI: 10.7717/peerj.11350/fig-6
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Figure 7 The expression of HSPA5 andMTPN byWestern blot. (A) The expression of HSPA5 protein.
(B) The expression of MTPN protein.

Full-size DOI: 10.7717/peerj.11350/fig-7

DISCUSSION
In recent years, the relationship between some genes or signal pathways and the occurrence
and development of gliomas has been discoverd by bioinformatics analysis. In this study,
many prognostic genes of gliomas have been identified from TCGA and CGGA databases
by data mining and biological experiment validation. Of these genes, many biomarkers
have been identified in previous studies. Relevant teams analyzed the glioma data obtained
from TCGA and verified the expression of differential proteins in the tissues or body fluids
of glioma patients, animal models and cell lines. Common targets are GFAP (Wang et al.,
2018), HSP70 (Sharifzad et al., 2020), VEGF (Nicolas et al., 2019), BDNF (Huo & Chen,
2019), ECM (Tejero et al., 2019), FN1 (Yu et al., 2020; Gu, Gu & Shou, 2014; Guo, Heller
& Thorslund, 2016; Liao et al., 2018), CD44 (Mooney et al., 2016), Fransgelin-2, Short
Hairpin RNAGLN and GRN (Ness, Riemenschneider & Baches., 2009; Trigos et al., 2019)
etc. Previous research suggested that TAGLN2 might be involved in progression due to
its higher expression in glioblastomas compared to IDH1/2 WT gliomas of lower grades
(Beyer et al., 2018; Han et al., 2017). A recent study showed that FN1 gene expression was
higher in glioma tissues than in normal tissues. GO enrichment analysis andKEGGpathway
enrichment analysis indicated that FN1 was involved in the synthesis of extracellular matrix
(ECM) components and the PI3K/AKT signaling pathway. It was found that FN1 gene could
inhibit cell proliferation, promote cell apoptosis and senescence, and reduce migration
and invasion through the down-regulation of FN1 gene expression and disruption of
the PI3K-AKT signaling pathway (Liao et al., 2018). Long, H.et al. demonstrated the
importance of some genes, such as COL3A1, FN1, and MMP9 for glioblastoma. Based on
the selected genes, a prediction model was built and its predictive accuracy was found to be
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Figure 8 Immunohistochemical analysis in normal brain tissue and glioma (400×). (A) Strongly pos-
itive HSPA5 expression; (B) Moderately positive HSPA5 expression; (C) Negative HSPA5 expression; (D)
Strongly positive MTPN expression; (E) Moderately positive MTPN expression; (F) Negative MTPN ex-
pression; (G) the positive rate of HSPA5 protein expression (%); (H) the positive rate of MTPN protein
expression (%) *represents p< 0.05.

Full-size DOI: 10.7717/peerj.11350/fig-8

94.4%. These findings might provide more insights into the genetic basis of glioblastoma
(Long et al., 2017).

In this study, we excluded the genes that have been reported and expressed the opposite
effects in CGGA and TGGA, instead we focus HSPA5 and MTPN as important gene
signature in both TCGA and CGGA databases. HSPA5 is GRP78 (Glucoregulated Protein
78), belonging to the heat shock Protein 70 family, usually located in the endoplasmic
reticulum. The role of this gene is to maintain the biological process of endoplasmic
reticulum and homeostasis. It was reported that this gene could protect organs and tissues
from pathological damage. HSPA5 can regulate endoplasmic reticulum stress, initiate
unfolded protein response (UPR), and improve cell viability in case of hypoxia, low
glucose, and other stress states. Moreover, it is not confined to the endoplasmic reticulum
of tumor cells. It can migrate to cell membranes, cell fluids, mitochondria, and nucleus,
and can even be secreted. It was reported that this gene is over-expressed in many types of
cancers however the high expression of HSPA5 in glioma was seldom reported. The results
of the study showed that the gene expression level of HSPA5 increased with the grades of
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gliomas. According to data mining and patient tissue analysis, the expression of HSPA5
is positively correlated with the malignant degree of tumor. In addition, corresponding
peptide drugs would be developed accordingly. Previous studies screened a novel peptide
sequence SNTRVAP (VAP for short) with high binding affinity to HSPA5 in vitro and in
vivo using phage display technology.

MTPN can promote dimerization of NF-kappa-B subunits and regulates NF-kappa-B
transcription factor activity. This gene plays a role in the regulation of the growth of actin
filaments. MTPN has been reported in breast cancer (Muñiz Lino et al., 2014). However, it
has never been reported in gliomas. Bioinformatics analysis and biochemical tests showed
that the gene was also highly expressed in high-grade gliomas, but low in low-grade gliomas
and normal brain tissues.

In this study, we established reliable tumor markers through data analysis combined
with biological experiments to provide scientific basis for future drug development.

CONCLUSIONS
Through analysis of differential gene expressions, 581 DEGs were left according to our
thresholds. Among them, 138 mRNAs were highly expressed and 443 mRNAs with low
expression levels, 20mRNAswere identified as survival related genes. The 20-gene signature
can forecast the risk of Glioma in TCGA effectively, moreover it can also predict the risks of
Chinese patients through validation in the CGGA database. Our study suggests that HSPA5
and MTPN are possible biomarkers of gliomas suitable for all populations to improve the
prognosis of these patients.

ACKNOWLEDGEMENTS
The authors would like to acknowledge TCGA and CGGA pilot project that provide the
genomic data and clinical data of gliomas.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research is funded by the Fundamental Research Funds for the Central Universities
(2019jbkyzy002; lzujbky-2019-ct02; 2020jbkyzx001; lzujbky-2020-kb20). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Fundamental Research Funds for the Central Universities: 2019jbkyzy002, lzujbky-2019-
ct02, 2020jbkyzx001, lzujbky-2020-kb20.

Competing Interests
The authors declare there are no competing interests.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.11350


Author Contributions
• Jieting Liu conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.
• Hongrui Zhang performed the experiments, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.
• Jingyun Zhang, Yingbin Wang and Qiao Li performed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.
• Zhitong Bing analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.
• Kehu Yang conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

This study was approved by the Ethics Committee of Lanzhou University Second
Hospital (2020A-147).

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11350#supplemental-information.

REFERENCES
Beyer SJ, Bell EH, McElroy JP, Fleming JL, Cui TT, Becker A, Bassett E, Johnson B,

Gulati P, Popp I, Staszewski O, Prinz M, Grosu AL, Haque SJ, Chakravarti A. 2018.
Oncogenic transgelin-2 is differentially regulated in isocitrate dehydrogenase wild-
type vs. mutant gliomas. Oncotarget 9:37097–37111 DOI 10.18632/oncotarget.26365.

Bing ZT, Yang GH, Xiong J, Guo L, Yang L. 2016. Identify signature regulatory network
for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis.
IET Systems Biology 10:244–251 DOI 10.1049/iet-syb.2016.0004.

Dai J, Bing Z, Zhang Y, Li Q, Niu L, LiangW, Yuan GQ, Duan L, Yin H, Pan YW.
2017. Integrated mRNAseq and microRNAseq data analysis for grade III gliomas.
Molecular Medicine Reports 16:7468–7478 DOI 10.3892/mmr.2017.7545.

Fan QW,WeissWA. 2010. Targeting the RTK-PI3K-mTOR axis in malignant glioma:
overcoming resistance. Current Topics in Microbiology and Immunology 347:279–296.

Ge L, Tian JH, Li YN, Pan JX, Li G,Wei D, Xing X, Pan B, Chen YL, Song FJ, Yang
KH. 2018. Association between prospective registration and overall reporting and
methodological quality of systematic reviews: a meta-epidemiological study. Journal
of Clinical Epidemiology 93:45–55 DOI 10.1016/j.jclinepi.2017.10.012.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.11350#supplemental-information
http://dx.doi.org/10.7717/peerj.11350#supplemental-information
http://dx.doi.org/10.7717/peerj.11350#supplemental-information
http://dx.doi.org/10.18632/oncotarget.26365
http://dx.doi.org/10.1049/iet-syb.2016.0004
http://dx.doi.org/10.3892/mmr.2017.7545
http://dx.doi.org/10.1016/j.jclinepi.2017.10.012
http://dx.doi.org/10.7717/peerj.11350


GuWT, Gu SX, Shou JJ. 2014. Pathway and network analysis in glioma with the partial
least squares method. Asian Pacific Journal of Cancer Prevention 15:3145–3149
DOI 10.7314/APJCP.2014.15.7.3145.

GuoM, Heller S, Thorslund J. 2016. Understanding the dynamic interplay between
genetically different cancer cell clones in glioblastoma. Cancer Research 76:2385.

Hallal S, Mallawaaratchy DM,Wei H, Ebrahimkhani S, Stringer BW, Day BW, Boyd
AW, Guillemin GJ, BucklandME, Kaufman KL. 2019. Extracellular vesicles
released by glioblastoma cells stimulate normal astrocytes to acquire a tumor-
supportive phenotype via p53 and MYC signaling pathways.Molecular Neurobiology
56:4566–4581 DOI 10.1007/s12035-018-1385-1.

HanMZ, Xu R, Xu YY, Zhang X, Ni SL, Huang B, Chen AJ, Wei YZ,Wang S, Li WJ,
Zhang Q, Li G, Li XG,Wang J. 2017. TAGLN2 is a candidate prognostic biomarker
promoting tumorigenesis in human gliomas. Journal of Experimental & Clinical
Cancer Research 36:155 DOI 10.1186/s13046-017-0619-9.

Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang AL, Jia ZF,Wang GX, Yu SZ, Pu
PY, Dong L, Kang CS. 2012. LncRNA profile of glioblastoma reveals the potential
role of lncRNAs in contributing to glioblastoma pathogenesis. International Journal
of Oncology 40:2004–2012.

Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. 2011. Combination
of a ptgs2 inhibitor and an epidermal growth factor receptor-signaling inhibitor
prevents tumorigenesis of oligodendrocyte lineage-derived glioma-initiating cells.
Stem Cells 29:590–599 DOI 10.1002/stem.618.

Huang Q, Fu YM, Zhang S, Zhang YX, Chen SM, Zhang ZP. 2020. Ethyl pyruvate
inhibits glioblastoma cells migration and invasion through modulation of NF- κB
and ERK-mediated EMT. PeerJ 8:e9559 DOI 10.7717/peerj.9559.

Huo JF, Chen XB. 2019. P2X4R silence suppresses glioma cell growth through BD-
NF/TrkB/ATF4 signaling pathway. Journal of Cellular Biochemistry 120:6322–6329
DOI 10.1002/jcb.27919.

JiangMW, Dong XH, Li JY, Li JQ, Qi JP. 2014. IDH1 mutation and MGMT expression
in astrocytoma and the relationship with prognosis after radiotherapy. Zhonghua
Bing Li Xue Za Zhi 43:668–672.

Kottas M, Kuss O, Zapf A. 2014. A modified Wald interval for the area under the ROC
curve (AUC) in diagnostic case-control studies. BMCMedical Research Methodology
14:26 DOI 10.1186/1471-2288-14-26.

Leu S, Von Felten S, Frank S, Boulay JL, Mariani L. 2016. IDH mutation is associated
with higher risk of malignant transformation in low-grade glioma. Journal of Neuro-
Oncology 127:363–372 DOI 10.1007/s11060-015-2048-y.

Li L, Tian JH, Tian HL, Moher D, Liang FX, Jiang TX, Yao L, Yang KH. 2014. Network
meta-analyses could be improved by searching more sources and by involving a
librarian. Journal of Clinical Epidemiology 67:1001–1007
DOI 10.1016/j.jclinepi.2014.04.003.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 20/23

https://peerj.com
http://dx.doi.org/10.7314/APJCP.2014.15.7.3145
http://dx.doi.org/10.1007/s12035-018-1385-1
http://dx.doi.org/10.1186/s13046-017-0619-9
http://dx.doi.org/10.1002/stem.618
http://dx.doi.org/10.7717/peerj.9559
http://dx.doi.org/10.1002/jcb.27919
http://dx.doi.org/10.1186/1471-2288-14-26
http://dx.doi.org/10.1007/s11060-015-2048-y
http://dx.doi.org/10.1016/j.jclinepi.2014.04.003
http://dx.doi.org/10.7717/peerj.11350


Liao YX, Zhang ZP, Zhao J, Liu JP. 2018. Effects of Fibronectin 1 on cell proliferation,
senescence and apoptosis of human glioma cells through the PI3K/AKT signaling
pathway. Cellular Physiology and Biochemistry 48:1382–1396.

Muñiz LinoMA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat
LA, Ruíz-García E, Astudillo-dela Vega H, González-Santiagoa AE, Flores-Péreza
A, Díaz-Chávezf J, Carlos-Reyesg Á, Álvarez Sáncheza E, López-Camarillo C. 2014.
Comparative proteomic profiling of triple-negative breast cancer reveals that up-
regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9.
Journal of Proteomics 111:198–211 DOI 10.1016/j.jprot.2014.04.019.

Lo HW. 2010. Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for
malignant gliomas. Current Cancer Drug Targets 10:840–848
DOI 10.2174/156800910793357970.

Long H, Liang CF, Zhang XA, Fang LX,Wang G, Qi ST, Huo HZ, Song Y. 2017.
Prediction and analysis of key genes in glioblastoma based on bioinformatics.
BioMed Research International 2017:7653101.

Louis DN, Ohgaki H,Wiestler OD, CaveneeWK, Burger PC, Jouvet A, Schei-
thauer BW, Kleihues P. 2007. The 2007 WHO classification of tumours
of the central nervous system. Acta Neuropathologica 114(2007):97–109
DOI 10.1007/s00401-007-0243-4.

Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee
WK, Ohgaki H,Wiestler OD, Kleihues P, Ellison D. 2016. The 2016 world health
organization classification of tumors of the central nervous system: a summary. Acta
Neuropathologica 131(2016):803–820 DOI 10.1007/s00401-016-1545-1.

Mooney KL, ChoyW, Sidhu S, Pelargos P, Bui TT, Voth B, Barnette N, Yang I. 2016.
The role of CD44 in glioblastoma multiforme. Journal of Clinical Neuroscience
34:1–5 DOI 10.1016/j.jocn.2016.05.012.

Mrugala MM. 2013. Advances and challenges in the treatment of glioblastoma: a
clinician’s perspective. Discovery Medicine 15:221–230.

Ness JS, Riemenschneider MJ, Baches S. 2009. Progranulin (GRN), a protein mutated
in frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U), is
abundantly expressed in human gliomas. Alzheimer’s and Dementia 5:502.

Nicolas S, Abdellatef S, HaddadMA, Fakhoury I, El-Sibai M. 2019. EGF stimulation
regulate VEGF expression in human glioblastoma multiforme (GBM) cells by
differential regulation of the PI3K/Rho-GTPase and MAPK pathways. Cells 8:1397
DOI 10.3390/cells8111397.

Norris SL, Meerpohl JJ, Akl EA, Schünemann HJ, Gartlehner G, Chen YL,Whit-
tington C. 2016. The skills and experience of GRADE methodologists can
be assessed with a simple tool. Journal of Clinical Epidemiology 79:150–158
DOI 10.1016/j.jclinepi.2016.07.001.

Puoliväli T, Palva S, Palva JM. 2020. Influence of multiple hypothesis testing on repro-
ducibility in neuroimaging research: a simulation study and Python-based software.
Journal of Neuroscience Methods 337:108654 DOI 10.1016/j.jneumeth.2020.108654.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 21/23

https://peerj.com
http://dx.doi.org/10.1016/j.jprot.2014.04.019
http://dx.doi.org/10.2174/156800910793357970
http://dx.doi.org/10.1007/s00401-007-0243-4
http://dx.doi.org/10.1007/s00401-016-1545-1
http://dx.doi.org/10.1016/j.jocn.2016.05.012
http://dx.doi.org/10.3390/cells8111397
http://dx.doi.org/10.1016/j.jclinepi.2016.07.001
http://dx.doi.org/10.1016/j.jneumeth.2020.108654
http://dx.doi.org/10.7717/peerj.11350


Riolfi M, Ferla R, Del Valle L, Piña Oviedo S, Scolaro L, Micciolo R, Guidi M, Terrasi
M, Cetto GL, Surmacz E. 2010. Leptin and its receptor are overexpressed in brain
tumors and correlate with the degree of malignancy. Brain Pathology 20:481–489
DOI 10.1111/j.1750-3639.2009.00323.x.

Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich
JN. 2007.Molecularly targeted therapy for malignant glioma. Cancer 110:13–24
DOI 10.1002/cncr.22741.

Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R. 2010. Gliomas in adults.
Deutsches Ärzteblatt International 107:799–807.

Sharifzad F, Mardpour S, Mardpour S, Fakharian E, Taghikhani A, Sharifzad A, Kiani
S, Heydarian Y, Łos M, Azizi Z, Ghavami S, Hamidieh A, Ebrahimi M. 2020.
HSP70/IL-2 treated NK cells effectively cross the blood brain barrier and target
tumor cells in a rat model of induced glioblastoma multiforme (GBM). International
Journal of Molecular Sciences 21:2263 DOI 10.3390/ijms21072263.

Su YL, Xiong J, Bing ZT, Zeng XM, Zhang Y, Fu XH, Peng XN. 2013. Identification of
novel human glioblastoma-specific transcripts by serial analysis of gene expression
data mining. Cancer Biomark 13:367–375 DOI 10.3233/CBM-130367.

Tejero R, Huang Y, Katsyv I, Kluge M, Lin JY, Tome-Garcia J, Daviaud N,Wang YS,
Zhang B, Tsankova N, Friedel C, Zou HY, Friedel R. 2019. Gene signatures of
quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche
microenvironment. EBioMedicine 42:252–269 DOI 10.1016/j.ebiom.2019.03.064.

Trigos AS, Pearson RB, Papenfuss AT, Goode DL. 2019. Somatic mutations in early
metazoan genes disrupt regulatory links between unicellular and multicellular genes
in cancer. Elife 8:e40947 DOI 10.7554/eLife.40947.

Wang J, WangML,Wang CH, Sun SY, Zhang HB, Jiang YY, Xu QW,Wang Y, Gu
SX. 2018. A novel functional polymorphism of GFAP decrease glioblastoma
susceptibility through inhibiting the binding of miR-139. Aging 10:988–999.

Weinberg F, Griffifin R, FröhlichM, Heining C, Braun S, Spohr C, IconomouM,
Hollek V, RöringM, Horak P, Kreutzfeldt S, Warsow G, Hutter B, Uhrig S,
Neumann O, Reuss D, Heiland DH, Kalle CV,WeichertW, Stenzinger A, Brors
B, GlimmH, Fröhling S, Brummer T. 2020. Identifification and characterization
of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene
39:814–832 DOI 10.1038/s41388-019-1021-1.

Wen PY, Kesari S. 2008.Malignant gliomas in adults. New England Journal of Medicine
359:492–507 DOI 10.1056/NEJMra0708126.

WickW,Weller M,Weiler M, Batchelor T, Yung AW, PlattenM. 2011. Pathway
inhibition: emerging molecular targets for treating glioblastoma. Neuro-Oncology
13:566–579 DOI 10.1093/neuonc/nor039.

Xiao K, Liu Q, Peng G, Su J, Qin CY,Wang XY. 2020. Identification and validation of
a three-gene signature as a candidate prognostic biomarker for lower grade glioma.
PeerJ 8:e8312 DOI 10.7717/peerj.8312.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 22/23

https://peerj.com
http://dx.doi.org/10.1111/j.1750-3639.2009.00323.x
http://dx.doi.org/10.1002/cncr.22741
http://dx.doi.org/10.3390/ijms21072263
http://dx.doi.org/10.3233/CBM-130367
http://dx.doi.org/10.1016/j.ebiom.2019.03.064
http://dx.doi.org/10.7554/eLife.40947
http://dx.doi.org/10.1038/s41388-019-1021-1
http://dx.doi.org/10.1056/NEJMra0708126
http://dx.doi.org/10.1093/neuonc/nor039
http://dx.doi.org/10.7717/peerj.8312
http://dx.doi.org/10.7717/peerj.11350


Xiong J, Bing ZT, Su YL, Deng DF, Peng XN. 2014. An integrated mRNA and mi-
croRNA expression signature for glioblastoma multiforme prognosis. PLOS ONE
9(5):e98419 DOI 10.1371/journal.pone.0098419.

Yan PJ, Yao L, Li HJ, ZhangM, Xun YQ, Li MX, Cai H, Lu CC, Hu LD, Guo TK, Liu
R, Yang KH. 2019. The methodological quality of robotic surgical meta-analyses
needed to be improved: a cross-sectional study. Journal of Clinical Epidemiology
109:20–29 DOI 10.1016/j.jclinepi.2018.12.013.

Yang LJ, Zhou CF, Lin ZX. 2014. Temozolomide and radiotherapy for newly diagnosed
glioblastoma multiforme: a systematic review. Cancer Investigation 32:31–36
DOI 10.3109/07357907.2013.861474.

Yu GC,Wang LG, Han YY, He QY. 2012. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics-a Journal of Integrative Biology
16:284–287 DOI 10.1089/omi.2011.0118.

Yu SY, Yu XT, Sun LL, Zheng YW, Chen LL, Xu H, Jin J, Lan Q, Chen CC, Li M. 2020.
GBP2 enhances glioblastoma invasion through Stat3/fibronectin pathway. Oncogene
39:5042–5055 DOI 10.1038/s41388-020-1348-7.

Zhang JY, Bing ZT, Yan PJ, Tian JH, Shi XE,Wang YF, Yang KH. 2019. Identification
of 17 mRNAs and a miRNA as an integrated prognostic signature for lung squamous
cell carcinoma. Journal of Gene Medicine 21:e3105.

Zhang ZY, Chan AK, Ng HK, Ding XJ, Li YX, Shi ZF, ZhuW, Zhong P,Wang Y, Mao
Y, Yao Y, Zhou LF. 2014. Surgically treated incidentally discovered low-grade
gliomas are mostly IDH mutated and 1p19q co-deleted with favorable prognosis.
International Journal of Clinical and Experimental Pathology 7:8627–8636.

Zhang JX, Han L, Ge YL, Zhou X, Zhang AL, Zhang CZ, Zhong Y, You YP, Pu PY, Kang
CS. 2010.miR-221/222 promote malignant progression of glioma through activation
of the Akt pathway. International Journal of Oncology 36:913–920.

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.11350 23/23

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0098419
http://dx.doi.org/10.1016/j.jclinepi.2018.12.013
http://dx.doi.org/10.3109/07357907.2013.861474
http://dx.doi.org/10.1089/omi.2011.0118
http://dx.doi.org/10.1038/s41388-020-1348-7
http://dx.doi.org/10.7717/peerj.11350

