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OutLyzer: software for extracting low-allele-frequency tumor 
mutations from sequencing background noise in clinical practice
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ABSTRACT
Highlighting tumoral mutations is a key step in oncology for personalizing care. 

Considering the genetic heterogeneity in a tumor, software used for detecting mutations 
should clearly distinguish real tumor events of interest that could be predictive markers for 
personalized medicine from false positives. OutLyzer is a new variant-caller designed for 
the specific and sensitive detection of mutations for research and diagnostic purposes. It is 
based on statistic and local evaluation of sequencing background noise to highlight potential 
true positive variants. 130 previously genotyped patients were sequenced after enrichment 
by capturing the exons of 22 genes. Sequencing data were analyzed by HaplotypeCaller, 
LofreqStar, Varscan2 and OutLyzer. OutLyzer had the best sensitivity and specificity with a 
fixed limit of detection for all tools of 1% for SNVs and 2% for Indels. OutLyzer is a useful tool 
for detecting mutations of interest in tumors including low allele-frequency mutations, and 
could be adopted in standard practice for delivering targeted therapies in cancer treatment.

INTRODUCTION

The advent of Next Generation Sequencing (NGS) 
during the last decade has been a true revolution both in 
research and diagnostic laboratories. NGS allows DNA 
to be read with greater speed and convenience than ever 
before. The most recent sequencing devices produce the 
equivalent of several entire genomes in a few hours, while 
the sequencing of the first human genome took about ten 
years [1]. NGS is now used daily in clinical laboratories, in 
many fields of medicine, and particularly in oncology and 
the diagnosis of cancer predisposition [2]. The molecular 
typing of tumors in the context of precision medicine 
could benefit from this technology. For example, somatic 
mutations in the EGFR gene are now commonly sought in 
lung cancer [3], KRAS mutations in colorectal cancer [4] 
and BRCA1 and BRCA2 in ovarian cancer [5]. Thanks to 
the panel gene sequencing approach, NGS technologies 

optimize and simplify laboratory processes to the extent 
that it is today possible to sequence the majority of medical 
targets of interest in one experiment, regardless of tumor 
type. When associated with dedicated bioinformatics tools, 
NGS can explore tumoral heterogeneity and characterize 
intra-tumoral clonal subpopulations [6]. The identification 
of sub-clones possibly carrying sensitive or resistance 
mutations to targeted therapies appears to be a key challenge 
for patient support in the context of personalized medicine.

The fine characterization of the mutation profile of 
a tumor with NGS for clinical purposes is a challenge. 
Diagnostic laboratories therefore have to meet a number 
of constraints to satisfy the high level of sensitivity and 
specificity needed for diagnostic tests. Tumoral tissue 
may include many cell subpopulations, so cells carrying 
a mutation of interest may be poorly represented in a 
tumor sample (i.e. low allele-frequency tumor mutations). 
Moreover, tumor cells can be harvested together with 
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healthy tissue, thereby reducing the number of mutated 
alleles by dilution. In view of these constraints, a highly 
sensitive process is required to avoid false negative results. 
The analysis of sequencing can itself be misleading owing 
to a PCR reaction bias during sample preparation [7] or 
to sequencer reading errors [8]. Low level mutations may 
also be difficult to distinguish from a noise background 
generated by such technical limitations. Consequently, 
ensuring a high specificity is critical in diagnostic testing 
to avoid false positives.

Dedicated bioinformatics tools can help to ensure 
good sensitivity and specificity. Detection of mutations 
is a key step in bioinformatics analysis and is performed 
by variant-calling software. An example of the numerous 
variant-callers currently available is HaplotypeCaller in the 
GATK suite [9]. It is a reference in genotyping germline 
genomes but its sensitivity can dramatically decrease when 
faced with low level mutations. Others like Varscan2 [10] 
and LofreqStar [11] have been designed especially for tumor 
sample analysis and the detection of low level mutations 
but are efficient mainly for comparing matched healthy 
and tumor samples. In many diagnostic laboratories a 
matched healthy sample is not available for analysis owing 
to ethical considerations, organizational difficulties or legal 
constraints. Furthermore, even if it were to be available, 
sequencing would be twice as expansive owing to the need 
to sequence two different samples for the same patient.

Here we present OutLyzer, a new variant-caller 
which was validated in a local diagnostic setting to fit 
ISO15189 quality requirements. It has been designed for 
non-matched tumoral sample analysis and it is based on 
statistic and local evaluation of sequencing background 
noise. It was validated by analyzing paired-ends Illumina 
data from the targeted resequencing of a gene panel 
enriched by capture from colorectal, lung, ovarian 
and breast cancer paraffin-embedded tumors already 
genotyped during initial diagnostic of cancer. Its analytic 
performances were compared to those of Varscan2, 
LofreqStar and also to the well-known HaplotypeCaller 
(Pubmed: 2222 citations). It produces a powerful, simple 
and comprehensive analysis with an assessment of 
sensitivity limits for use in routine practice.

RESULTS

After sequencing, targeted regions were covered 
with an average depth of 2111× and 99.46% of nucleotides 
were covered with a depth > 200×. The 130 samples 
were analyzed by four different variant-callers, including 
OutLyzer, to highlight both Single Nucleotide Variations 
(SNVs) and Insertion-Deletion (Indels) events. 

A total of 12747 SNVs with an allele ratio higher 
than 1% was identified on coding regions (Figure 1A) and 
53 indels with an allele ratio higher than 2% (Figure 1B). 
SNVs and Indels were processed in two separate benchmark 
analyses. Regarding SNVs, most mutations detected by 

all variant-callers were from a probable germline origin 
with an allele ratio around 50 (heterozygous) or 100 % 
(homozygous). Among the 30 SNVs detected by both 
HaplotypeCaller and Varscan, 28 represented one same 
recurrent event located in an area with mapping issues 
associated with poor quality metrics. The 16 SNVs detected 
only by HaplotypeCaller also had a low Phred Score with 
mapping issues, just like the 60 SNVs, corresponding to 
10 unique variants detected by Lofreq alone. Other SNVs 
found by OutLyzer only, Lofreq and Varscan, OutLyzer 
and Varscan, or Lofreq and Varscan and OutLyzer together 
were low allele-ratio events with good quality metrics. 
SNV found by Varscan only showed lower quality metrics 
and some were highly recurrent events between samples 
(190 variants for 5 unique variants). 

To enhance the clarity of indel analysis, comparative 
data were firstly cleaned manually to remove two recurrent 
false-positives with a low allele ratio (detected by all 
variant-callers) that were induced by mapping issues and 
were present in most patients. All the expected events in 
this dataset were detected by all variant-callers, so their 
levels of performance were similar (Figure 1B). The 
5 indels detected by all of them except HaplotypeCaller 
were mutations recovered with a low allele ratio and 
probably of somatic origin. Among the 2 indels identified 
only by Varscan, one was an artefact caused by a 
homozygous deletion on the adjacent nucleotide, and 
the other was a low allele-ratio deletion also identified 
by OutLyzer but below the limit fixed at 2%. The last 
indel identified only by Lofreq was also a low allele-
ratio deletion supported by only 4 reads. Sensitivity and 
specificity were then calculated to evaluate and compare 
performances of each variant-caller. 

Sensitivity was evaluated on all events previously 
genotyped, including 51 SNV and 27 indels from 1.3% 
to 93% of allele-ratio (Figure 2). OutLyzer had the best 
sensitivity with Varscan in identifying 100 % of the tested 
mutations, while, as awaited, HaplotypeCaller performed 
least well owing to a loss of sensitivity in the detection of 
low allele-frequency variants (Figure 2 and Figure 3). To 
evaluate the impact of coverage on outLyzer sensitivity, 
we used a sample built from the DNA of 11 tumors 
harbouring already known mutations. The 11 DNA were 
mixed in order to obtain a unique sample of DNA with 11 
low allele-ratio mutations (from 1 to 10% of allele-ratio). 
This mixed sample was sequenced 10 times in independent 
experiments (reproducibility tests) and BAM files obtained 
were used to simulate different coverage conditions. For 
each BAM some “reads” were randomly selected in silico 
to divide by 2, 4 and 10 the initial depth of coverage, 
in order to obtain five ranges of depth of coverage on 
the genomic loci of the mutations (< 150×, 150–300×, 
300–600×, 600–1000×, > 1000×). The sensitivity was 
calculated for each range of depth of coverage (Figure 4).  
As expected, a low coverage condition (< 150×) 
demonstrated a loss of sensitivity and is harmful for the 
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Figure 2: Allele-ratio of mutations tested for sensitivity evaluation. Mutations are gathered by gene, and positioned along an axis 
which represents the observed allele ratio. SNV are represented with a green dot and indels with a yellow dot. All mutations are annotated with 
HGVS nomenclature. These mutations were detected previously in the time of the diagnosis by specific methods (see Materials and Methods).

Figure 1: Venn diagram of mutations found by each variant-caller tested. In both figures, HC = HaplotypeCaller (A) Comparison 
of SNVs identified (B) Comparison of Indels identified.
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detection of low allele-ratio mutations. A coverage in the 
range of 150–300× is sufficient to detect mutations with 
5% of allele-ratio with a good sensitivity. Increasing the 
coverage enhance the sensitivity up to detect mutations 
about 1 or 2% of allele-ratio with a coverage about 1000×.

It is difficult to test with a specific method all 
mutations detected by the variant-callers in order to 
determine their true or false positive nature, specifically 
regarding low allele-ratio variants. Consequently, the 
evaluation of the specificity was therefore restricted to the 
analysis of KRAS mutational hotspots (codon 12 and 13) 
for which a target specific method was already available 

for routine diagnostic purposes. The variant-callers 
detected 35 mutations in KRAS mutational hotspots. 
The corresponding samples were analyzed by Cold-
PCR followed by pyrosequencing to evaluate the false 
or true positive nature of the mutations and then the 
specificity was calculated (Figure 5). OutLyzer also 
showed the best specificity with HaplotypeCaller by 
making no mistakes on the identified mutations, thereby 
establishing a specificity of 100% on these mutational 
hotspots (Figure 3). To illustrate performances of each 
variant-caller, a commercial sample (HorizonDX) in 
which a number of mutations with various allele ratios 

Figure 4: Impact of coverage on sensitivity. Each mutation of interest (y-axis) is ranked according to its average allele-ratio in 
ascending order from top to bottom. Sensitivity is calculated for each mutation at each coverage category (x-axis), and represented by color 
variations from 0 to 100% as shown on color bar on the right.

Figure 3: Sensitivity and specificity evaluation. Sensitivity was calculated by testing previously genotyped samples harboring 
known mutations discovered in the time of diagnosis with contemporary validated methods which were mutation-specific (see Materials and 
Methods and Figure 2 for description of mutations). Specificity is calculated in KRAS codons 12 and 13 for which a sufficiently sensitive 
method was available (Cold-PCR followed by Pyro-sequencing). All variants detected in these specific regions by the variant-callers  
tested were checked for false or true positive nature.
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were known was sequenced and analyzed independently 
from other samples (Figure 6). Only OutLyzer and 
Varscan were able to detect all expected mutations. As 
awaited, HaplotypeCaller did not identify the lowest allele 
frequency mutations (Supplementary Table S1).

DISCUSSION

Highlighting mutational events with a very low 
allele frequency is challenging but essential in oncology 
in the search for somatic mutations characterizing tumor 

Figure 6: Performance of all variant-callers on HorizonDX sample. Red cross means that mutation was not detected by the 
corresponding software. 

Figure 5: Results obtained by NGS and target-specific method. (A) NGS results (IGV visualization): reads aligned along a 
reference genome, illustrating KRAS c.38G > A mutation for Thera41 patient (codon 13). Data are represented in genomic orientation. 
(B) Pyrosequencing results obtained for a healthy patient on KRAS codons 12 and 13 (Wild Type). Data are represented in transcript 
orientation. (C) Pyrosequencing results obtained for Thera41 patient (Supplementary Table S1) with KRAS c.38G > A mutation (green arrow). 
Data are represented in transcript orientation.
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heterogeneity [6]. Next Generation Sequencing (NGS) 
technologies have become powerful tools for helping 
to diagnose pathologies and establishing therapeutic 
strategies. However, it may be difficult to interpret 
their results and to differentiate false and true positives. 
Many tools are available to detect somatic mutations, 
each with its advantages and drawbacks. Tools such as 
HaplotypeCaller [9] were initially designed for discovering 
germline mutations so they are very specific but lack 
sensitivity, especially for detecting low-allele-frequency 
mutations. Other variant-callers have emerged to address 
this issue. Varscan [10] and Lofreq [11] had better 
performance here with almost all the tested mutations. 
However, in our hands they either generated false positive 
or they lose some sensitivity in case of low quality DNA 
samples. Others such as MuTect [12] or JointSNVMix 
[13], which were not tested here  but have been reported 
to have both good sensitivity and specificity, need a paired 
healthy sample for mutation detection analysis. This may 
be problematic for the abovementioned reasons.

OutLyzer largely offsets these defects without the 
need for a matched healthy tissue sample by adjusting 
locally its sensitivity threshold depending on the sample 
sequencing quality, in the same way as a biologist 
inspects aligned sequencing data and assesses quality 
and background noise. This leads to better performance 
in terms of sensitivity and specificity and is critical in a 
clinical context, with all the quality constraints imposed 
on diagnostic laboratories nowadays. Evaluating the 
performance of variant-callers remains challenging, 
largely because of the amount of data produced by NGS 
technology. This revolution allows us to explore larger 
genomic regions with hopefully greater sensitivity. But 
all events discovered with this technology cannot be 
checked and compared systematically with conventional 
methods, such as Sanger sequencing, pyrosequencing 
or digital PCR. Therefore it appears critical to exactly 
know the theorical limit of each technology used. In 
order to understand outLyzer’s limitations in its usage, 
in addition to variant-calling analysis, outLyzer is able 
to provide the analysis detection limits in the form of a 
minimum detectable allele ratio. This detection threshold 
is produced per patient, either for each region specified 
in an associated BED (Browser Extensible Data) File or 
for a specific genomic position, such as KRAS mutational 
hotspots. In a second operating mode, it is also able to 
provide immediately the major sequencing features for a 
specified genomic position, including sequencing depth, 
reference and alternative allele (if present), the number of 
forward and reverse reads that carry this alternative allele, 
the average sequencing quality, and an estimation of local 
sequencing background noise. 

OutLyzer estimates the sum of several background 
noise sources, including sequencing mistakes, errors 
generated by sample preparation and bioinformatics 
analysis, based on an outlier detection algorithm. Here, 

detection of outliers is used to highlight true mutations 
but outlying data have to be used carefully depending on 
the experimentation type so as to fit the analysis as well 
as possible [14]. With a high depth of coverage on the 
diagnostic genomic regions, dedicated bioinformatics tools 
can help us to ensure a good sensitivity and specificity. 
Depending of the sensitivity required, the depth of coverage 
can be adapted (Figure 4), but a high sensitivity for 
detection of mutations with an allele-ratio of 1% requires at 
least 1000× of coverage for a robust analysis. Such depth of 
coverage can be helpful to explore tumoral heterogeneity, 
particularly with a low tumor cellularity, or to detect mosaic 
mutations or circulating tumor DNA mutations. 

Despite the fact that bioinformatic, statistical 
and computational methods are constantly evolving, a 
hurdle they face is the nature of processed data, which 
contains errors non-distinguishable from real biological 
events. An important source of false positives lies in 
the sample preservation method, the FFPE (Formalin-
Fixed, Paraffin-Embedded), which is responsible for 
DNA modifications considered as artifacts unrated to 
pathology [15]. This limitation may be not overpassed 
by bioinformatics improvements. Therefore, alternative 
sample preparation before sequencing could limit bias to 
enhance the detection of low allele frequency mutations. 
For example, sample preparation protocols based on the 
use of a random index can simulate the double-stranded 
sequencing of a unique DNA fragment with a suitable 
bioinformatics analysis. Such protocols could eliminate 
PCR and sequencing errors and distinguish true somatic 
mutations occurring on both strands from errors generated 
during the analytical process [16].

Today sequencing technologies make it possible to 
explore numerous diseases and characterize many genetic 
abnormalities. Software such as OutLyzer could prove 
useful by highlighting mainly true positive mutations in 
the sequencing background and focusing only on the most 
relevant information. Outlyzer sources are available on 
https://github.com/EtieM/outLyzer. 

MATERIALS AND METHODS

OutLyzer implementation

OutLyzer is a tool written in Python [17] 
programming language that runs on Linux. It requires the 
SAMTOOLS [18] suite and additional python libraries: 
scpiy, numpy, subprocess, and multiprocessing. It was 
tested on Fedora 21 and CentOS 6.7 Linux distribution 
with SAMTOOLS 1.2 and Python 2.7.8 versions.

OutLyzer has two main operating modes: (i) as 
a classical variant-caller; (ii) as a tool to evaluate local 
quality metrics. By giving it a chromosomal for a given 
sample, it quickly evaluates whether a mutation is present 
at this position, specifies all raw sequencing information 
and evaluates local background noise.



Oncotarget79491www.impactjournals.com/oncotarget

OutLyzer uses BAM (Binary Alignment Map) 
files as input for analysis. It is preferable to use the BWA 
[19] / GATK [9] bioinformatic pipeline to produce BAM 
files, according to the Broad Institute recommendations. 
BAM files are converted into the pileup data format using 
SAMTOOLS [18]. For each genomic position of targeted 
regions, the number and type of alternative events on 
forward or reverse reads and the associated PHRED 
score are stored in memory for a defined genomic region 
to be analyzed together (ex: one exon) in the subsequent 
statistical steps. 

For each region stored in memory, OutLyzer 
evaluates background noise locally by using Thompson’s 
Tau Test [20]. This test is a statistical method for deciding 
whether to keep or discard a suspected outlier in a sample 
of a single variable. At each iteration, the sample mean 
x̅ and standard deviation S are calculated. Then for each 
point of the sample, the absolute value of the deviation is 
calculated:

δi = |di |=|xi – x̅ |
The data point most suspected as a possible outlier 

is the data point with the maximum value of δi. The value 
of the modified Thompson τ is calculated from the critical 
value of Student’s t PDF (Probability Density Function):
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Where n is the number of data points in the sample. 
Student’s t value is based on an α risk set by default at 
0.001 (adjustable in settings in OutLyzer) and df (degree 

of freedom) = n–2. The removal or retention of a potential 
outlier is evaluated by the decision rule: if *i Sδ τ> , data 
point is rejected from sample because considered as 
an outlier. Otherwise, the data point is kept. The test 
is performed until no outlier is found in the sample. 
Considering a window of 200 bp centered on potential 
mutations (adjustable according to user preferences), for 
each genomic position, the number of reads containing 
alternative bases is added to a list which forms a local 
sample (Figure 7A and 7B). First, all values equal to zero 
(genomic position that does not contain a mutation) are 
removed from the sample. Then Thompson’s Tau test 
is performed to remove the largest outlier in the sample 
and the test is performed again until no outlier is found. 
The largest data point in the remaining list is then used 
to define the background noise locally (Figure 7B). Back 
to the aligned data, if the number of reads supporting a 
potential variant is higher than the local background 
noise previously defined, the potential variant moves to 
the filtration step. Otherwise it is considered as part of 
the background noise (Figure 7C). For each candidate 
variation kept in the statistical step, several filtration steps 
are performed, all of which are configurable: (i) variation 
rate must be greater than twice the background noise, (ii) 
variation must have an average PHRED score greater than 
20, (iii) the average PHRED score must have a standard 
deviation below 7, (iv) the forward/reverse balance of 
variants should be between 30 and 70%. Variations that 
meet all these criteria are written in a vcf (Variant Call 
Format) file.

Figure 7: OutLyzer analysis. (A) Representation of reads aligned along a reference genome. For each genomic position, the number 
of variant reads is counted and stored in a list (grey banner) (B) Application of Thompson Tau test on list obtained in A (C) The number of 
reads carrying the potential variant is compared to local background noise to evaluate whether the event is a false positive. If the variant is 
above background noise, it will pass through a filtration step based on sequencing quality, and including the reads forward-reverse balance, 
the average PHRED score of mutated bases, and the standard deviation of average PHRED score.
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Tumor samples

Paraffin-embedded tumor samples from 130 patients 
with colorectal (70 samples), ovarian (50 samples), 
lung (4 samples), breast (4 samples), skin (1 sample) 
and stomach (1 sample) cancer, were selected for high-
throughput sequencing analysis (Supplementary Table S1). 
All patients had been previously sequenced by the 
target-specific techniques in the time of the initial 
diagnosis (Sanger sequencing, Cold-PCR followed by 
Pyrosequencing, SNaPSHOT).

Additionally, the Horizon DX Quantitative 
Multiplex Reference Standard (Horizon Discovery Group, 
Cambridge Research Park, Waterbeach, Cambridge, UK) 
was added to the dataset containing miscellaneous SNVs 
(Single Nucleotide Variations), insertion and deletion 
events at various allele frequency.

Sequencing analysis

DNAs were sequenced for a panel comprised 
of 22 genes (Figure 8). Agilent SureDesign (Agilent, 

Santa Clara, CA, USA) was used to create library baits 
covering the exonic regions of these genes. Regions of 
interest were captured with the SureSelect XT Protocol 
(Agilent, Santa Clara, CA, USA) and sequenced on 
Illumina Miseq (Illumina, San Diego, CA, USA) using 
the paired-end 2 × 150 bp program. Bio-informatic 
analysis was performed with the CASAVA Suite v1.8 for 
demultiplexing, followed by BWA 0.7.12 for alignment 
and GATK v3.3 pipeline to produce BAM files, 
according to the Broad Institute recommendations. The 
variant-calling step was carried out by HaplotypeCaller, 
Lofreq v2.1.1 and Varscan v2.3.7 for comparison with 
OutLyzer (settings are described in the Supplementary 
information S1). Only SNVs and Indels with an allele ratio 
respectively greater than 1% and 2% were compared. Venn 
Diagram representations were designed with jVenn [21].
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