www.bjcancer.com

Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies

LS Velentzis^{*,1}, MM Cantwell², C Cardwell², MR Keshtgar³, AJ Leathem¹ and JV Woodside⁴

¹Department of Surgery, Breast Cancer Research Group, University College London, Charles Bell House, 67-73 Riding House St, London W I W 7EJ, UK; ²Cancer Epidemiology and Prevention Research Group, Centre for Public Health, Queen's University Belfast, Mulhouse Building, Grosvenor Road, Belfast BT I 2 6BJ, UK; ³Department of Surgery, Royal Free Hospital, Pond St, London NW3 2QG, UK; ⁴Nutrition and Metabolism Group; Centre for Public Health, Queen's University Belfast, Mulhouse Building, Grosvenor Road, Belfast BT I 2 6BJ, UK

Phyto-oestrogens are plant compounds structurally similar to oestradiol, which have been proposed to have protective effects against breast cancer. The main class of phyto-oestrogens in the Western diet is lignans. Literature reports on the effect of lignans in breast cancer risk have been conflicting. We performed three separate meta-analyses to examine the relationships between (i) plant lignan intake, (ii) enterolignan exposure and (iii) blood enterolactone levels and breast cancer risk. Medline, BIOSIS and EMBASE databases were searched for publications up to 30 September 2008, and 23 studies were included in the random effects meta-analyses. Overall, there was little association between high plant lignan intake and breast cancer risk (11 studies, combined odds ratio (OR): 0.93, 95% confidence interval (95% CI): 0.83 - 1.03, P = 0.15), but this association was subjected to marked heterogeneity ($l^2 = 44\%$). Restricting the analysis to post-menopausal women, high levels of plant lignan intake were associated with reduced breast cancer risk (7 studies, combined OR: 0.85, 95% CI: 0.78, 0.93, P < 0.001) and heterogeneity was markedly reduced ($l^2 = 0\%$). High enterolignan exposure was also associated with breast cancer (5 studies, combined OR: 0.73, 95% CI: 0.57, 0.92, P = 0.009) but, again, there was marked heterogeneity ($l^2 = 63\%$). No association was found with blood enterolactone levels (combined OR: 0.82, 95% CI: 0.59 - 1.14, P = 0.24). In conclusion, plant lignans may be associated with a small reduction in post-menopausal breast cancer risk, but further studies are required to confirm these results.

British Journal of Cancer (2009) **100**, 1492–1498. doi:10.1038/sj.bjc.6605003 www.bjcancer.com Published online 31 March 2009 © 2009 Cancer Research UK

Keywords: plant lignans; enterolignans; breast cancer risk

High levels of endogenous circulating oestrogens (Hankinson and Eliassen, 2007) and use of exogenous oestrogens (Beral, 2003) have both been associated with increased breast cancer risk. Isoflavones and lignans are plant compounds structurally similar to 17β -oestrodiol known as phyto-oestrogens, capable of oestrogen receptor binding (Kuiper *et al*, 1998; Mueller *et al*, 2004). Isoflavones are mostly found in soybean products, which are a staple of the Asian diet, whereas lignans are the principal group of phyto-oestrogens in Western diets. Lignans are more widespread in foods than isoflavones and are present in grain cereals, vegetables, seeds, tea and coffee (Mazur, 1998a; Mazur *et al*, 1998b). Microflora in the colon (Setchell *et al*, 1981) convert plant lignans into enterolignans, which are detectable in blood and urine. Their levels have been correlated with the amount of plant lignans ingested (Nesbitt *et al*, 1999).

In a recent meta-analysis, an inverse dose-response relationship was shown between breast cancer risk and soy-food intake in Asian, but not in Western women (Wu *et al*, 2008). Lignans have been shown to exhibit anti-carcinogenic properties (Wang *et al*, 1994; Prasad 2000; Bergman Jungeström *et al*, 2007), and it is hypothesised that exposure to high levels may be associated with a reduction in breast cancer risk. However, results from a number of studies in Western populations have been variable. The aim of our systematic review was to establish whether an association exists between lignan exposure and breast cancer risk, and to quantify the association through meta-analyses to inform evidence-based dietary guidelines.

MATERIALS AND METHODS

A systematic search of Ovid Medline (US National Library of Medicine, Bethesda, MD, USA), BIOSIS (Thompson Reuters, NY, USA) and EMBASE (Reed Elsevier PLC, Amsterdam, The Netherlands) databases for relevant studies published up to and including the date, 30 September 2008 was carried out. Relevant studies included at least one keyword or Medical Subject Heading from each of the following; (i) plant lignans (matairesinol, secoisolarisiresinol, pinoresinol and lariciresinol), (ii) enterolignans (enterolactone and enterodiol) and (iii) breast cancer. The search strategy excluded reviews, animal and cell culture studies but did not impose any language restrictions.

Abstracts and full texts, where required, were independently screened by two investigators to establish the suitability for inclusion. Studies had to be of case-control or cohort design, evaluating the risk of invasive breast cancer in relation to lignan exposure and reporting odds ratios (ORs) or relative risks, as well as 95% confidence intervals (95% CIs). Cited references were also

^{*}Correspondence: Dr LS Velentzis; E-mail: l.velentzis@ucl.ac.uk Received 22 January 2009; revised 5 March 2009; accepted 5 March 2009; published online 31 March 2009

reviewed for any studies that may have been missed in the database searches.

Eligible publications were then assessed independently by three reviewers. A structured form was used to extract information about the study, subjects' characteristics including menopausal status, confounding factors and results. Wherever multiple publications of the same study were available, the paper with the most complete set of data was chosen.

Studies were then categorised as those: (i) assessing total plant lignan intake or intake of individual plant lignans if the total was not measured; (ii) investigating exposure to enterolignans (enterolactone and enterodiol) by using values produced from food by *in vitro* fermentation models; and (iii) examining enterolactone levels in the blood (either plasma or serum). The blood levels of enterodiol were measured in a small number of studies (Piller *et al*, 2006b; Verheus *et al*, 2007; Ward *et al*, 2008) and were, therefore, not considered for analysis.

Separate meta-analyses were performed for each group of studies described in the Methods section using adjusted ORs or relative risks for the highest vs the lowest categories of exposure. If different levels of adjustment had been carried out, the results from the most fully adjusted model were used.

Random effects models were used to calculate pooled estimates, as we anticipated heterogeneity between observational studies (DerSimonian and Laird, 1986). Study-specific weights in the random effects model were calculated and scaled to percentages. The I^2 -statistic was used to test for heterogeneity (Higgins *et al*, 2003). Publication or selection bias was investigated by checking for asymmetry in funnel plots (Egger *et al*, 1997).

Analysis was repeated and sub-divided by menopausal status (pre- and post-menopausal). Statistical analyses were performed using the STATA version 9.2 software (Stata Corporation 2005, College Station, TX, USA).

RESULTS

Following screening of abstracts and full texts and grouping into categories, 27 of the 33 articles identified were selected for data extraction. Multiple publications were identified for a number of studies. Four articles (Grace *et al*, 2004; McCann *et al*, 2006; Thanos *et al*, 2006; Piller *et al*, 2006b) were excluded, as they were based on smaller subgroup analysis of their respective larger studies. The format of certain results prevented their use, but were provided by the authors in a suitable form and therefore included in this study. Overall, 23 publications were used, providing data for 6 cohort, 6 nested case – control and 10 case – control studies. Each article contributed data to one or more meta-analyses resulting in 12 articles on plant lignan intake (see Table 1), 5 on enterolignan exposure (see Table 2) and 9 on blood enterolactone levels

Table I Characteristics of studies included in the review of plant lignans and breast cancer risk

First author/ (year)/ country	Parent study	Study design (follow-up)	Cases	Controls/ cohort size	Menopausal status	Lignans measured	Dietary assessment	Adjusted confounders
Horn-Ross et al (2002) United States	Califomia Teachers Study	Prospective cohort (222 249 person-years; 2 years**)	711	111526	Pre-M and Post-M	M, S	Self-reported 113-item FFQ	Age at 1st birth and menarche, BMI, daily caloric intake, ethnicity, family history, menopausal status, nulliparity, physical activity
Touillaud et al (2006) France	E3N Study	Prospective cohort (117 652 person-years; 4.2 years*)	402	26 868	Pre-M	M, S, P, L	Self-reported 208-item FFQ	Age at 1st birth and at menarche, alcohol, BBD, BMI, education, family history, energy, geographic area, height, OC, parity
Touillaud et al (2007) France	E3N Study	Prospective cohort (383 425 person-years; 7.7 vears*)	1469	58 049	Post-M	M, S, P, L	Self-reported 208-item FFQ	Age at 1st birth, at menarche menopause, alcohol, BBD, BMI, energy, family history, height, HRT, OC, parity, smoking
Hedelin et al (2008) Sweden	SWLH cohort	Prospective cohort (13 years)	1014	1014	Pre-M and Post-M	M, S, P, L, Sy, Med	Self-reported 80-item FFQ	Age at menarche and 1st pregnancy, alcohol, BMI, energy, family history, OC, parity. saturated fat
Suzuki et <i>al</i> (2008) Sweden	SMC Study	Prospective cohort (430 339 person-years; 8.3 years**)	1284	51 823	Post-M	M, S, P, L	Self-reported 67-item FFQ (1987), 93-item FFQ (1997)	Age at 1st birth, menarche and menopause, alcohol, BBD, BMI, education, energy, family history, height, HRT, OC, parity
Horn-Ross <i>et al</i> (2001) United States	Bay Area Breast Cancer Study	Population-based case – control	1272	1610	Pre-M and Post-M	M, S	Self-reported 94-item FFQ	Age, age at menarche, BBD, BMI, daily caloric intake, education, family history, HRT, lactation, menopausal status, parity, race
dos Santos Silva et <i>al</i> (2004) United Kingdom		Case-control (GP's patient lists)	240	477	Pre-M and Post-M	M, S	Interviewed 207-item FFQ	Age at 1st birth and at menarche, education, family history, lactation, menopausal status, parity
Linseisen <i>et al</i> (2004) Germany		Population-based case – control	278	666	Pre-M	M, S	Self-reported 176-item FFO	Alcohol, BMI, education, energy, family history, lactation, parity
McCann et al (2004) United States	WEB Study	Population-based case – control	1122	2036	Pre-M and Post-M	M, S	Self-reported 98-item FFQ	Age, age 1st birth, at menarche and menopause, BBD, BMI, education, energy, age at menopause, parity, race, smoking
Fink et <i>al</i> (2007) United States	LIBCSP Study	Population-based case-control	1434	1404	Pre-M and Post-M	M, S	Self-reported 94-item FFQ	Age and energy
Cotterchio et al (2008) Canada	Ontario Women's Diet and Health Study	Population-based case – control	3063	3370	Pre-M and Post-M	M, S, P, L	Self-reported 178-item FFQ	Age, age at 1st live birth, BBD, dietary fibre intake, family history, HRT
Torres-Sanchez et al (2008) Mexico		Hospital based case-control	141	4	Pre-M and Post-M	m, s, p, l	Interviewed 100-item FFQ	Age, energy, lifetime lactation, menopause status

BBD = benign breast disease; BMI = body mass index; E3N = French Component of the European Prospective Investigation into Diet and Cancer (EPIC) Study; FFQ = food frequency questionnaire; GP = general practitioner; HRT = hormone replacement therapy; L = lariciresinol; LIBCSP = Long Island Breast Cancer Study Project; M = matairesinol; Med = medioresinol; OC = oral contraceptive; P = pinoresinol; Peri-M = peri-menopausal; Pre-M = pre-menopausal; Post-M = post-menopausal; S = secoisolariciresinol; SMC = Swedish Mammography Cohort; SWLH = Scandinavian Women's Lifestyle and Health Cohort; Sy = syringaresinol; WEB = Western New York Exposure and Breast Cancer Study. *Median follow-up; **Mean follow-up.

1494

(see Table 3). Details of the adjustments made in each study (the most fully adjusted model was used in the meta-analysis) are shown in Tables 1-3.

There was no association between plant lignan intake and risk when 11 studies were combined, although there was a slight protective effect. The risk in the highest intake group was 0.93 times (95% CI: 0.83 - 1.03, P = 0.15) that of the lowest intake group (see Figure 1). When studies were analysed by menopausal status, a statistically significant reduction in risk was seen with the highest intake category of plant lignans vs the lowest intake in postmenopausal women (7 studies, combined OR: 0.85, 95% CI: 0.78, 0.93, P < 0.001), with little sign of between-study heterogeneity

Table 2 Characteristics of studies included in the review of mammalian enterolignans (enterolactone and enterodiol) and breast cancer risk

First author/ (year)/ country	Parent study	Study design (median follow-up)	Cases	Controls/ cohort size	Menopausal status	Diet assessment	Adjusted confounders
Keinan-Boker et al (2004) The Netherlands	Prospect- EPIC	Prospective Cohort (5.2 years)	280	80215	Pre-M, Peri-M and Post-M combined	Self-reported 178-item FFQ	Age at 1st birth and study entry, education, energy, height, HRT, marital status, OC, parity, physical activity, weight
Touillaud et al (2006) France	E3N Study	Prospective Cohort (4.2 years)	402	117652	Pre-M	Self-reported 208-item FFQ	Age at 1st birth and menarche, alcohol, BBD, BMI, education, energy, family history, geographic area, height, OC, parity
Touillaud et al (2007) France	E3N Study	Prospective cohort (7.7 years)	1469	383 425	Post-M	Self-reported 208-item FFQ	Age at 1st birth, at menarche and menopause, alcohol, BBD, BMI, energy, family history, geographic area, height, HRT, OC, parity, smoking
McCann et al (2002) United States	WEB Study	Population-based case – control	301 439	316494	Pre-M Post-M	FFQ	Age at menarche, BBD, BMI, education, energy, family history, parity; further adjusted for age at menopause
Linseisen et al (2004) Germany		Population-based case – control	278	666	Pre-M	Self-reported 176-item FFQ	Alcohol, BMI, breast-feeding, education, energy, family history, parity; controls matched by exact age to cases

BBD = benign breast disease; BMI = body mass index; E3N = French Component of the European Prospective Investigation into Diet and Cancer (EPIC) Study; FFQ = food frequency questionnaire; HRT = hormone replacement therapy; OC = oral contraceptive use; Peri-M = Peri-menopausal; Pre-M = pre-menopausal; Post-M = post-menopausal; Prospect-EPIC = Dutch Cohort of EPIC Study; WEB = Western New York Exposure and Breast Cancer Study.

Table 3 Characteristics of studies included in the review of enterolactone exposure as measured in blood and breast cancer risk

First author/ (year)/ country	Parent study	Design (follow-up)	Cases	Controls/ cohort size	Method	Menopausal status	Mean ENL cases (nmol/l)	Mean ENL controls/cohort (nmol/l)	Adjusted confounders
Boccardo et al (2003) Italy		Prospective cohort (6.5 years after cyst aspiration)	18	383	TR-FIA	Pre-M and Post-M	14.7	19.6	Age, cyst type and family history
Hultén e <i>t al</i> (2002) Sweden	VIP, MONIKA and MSP studies	Nested case – referent	248	492	TR-FIA	Pre-M and Post-M	26.8 VIP and MONIKA 19.3 MSP	22.9 VIP and MONIKA 20.4 MSP	BMI, menopausal status, smoking
Kilkkinen e <i>t al</i> (2004) Finland	Cross-sectional population surveys	Nested case- control	206	215	TR-FIA	Pre-M and Post-M	25.2	24.0	None
Olsen e <i>t al</i> (2004) Denmark	Diet, Cancer and Health Study	Nested case– control	381	381	TR-FIA	Post-M	Not provided	Not provided	Age, HRT (through matching of controls)
Zeleniuch-Jacquotte et al (2004) United States	NYU Women's Health Study	Nested case- control	417	417	TR-FIA	Pre-M Post-M	18.3 18.6	15.1 18.9	Age at 1st live birth and menarche, In(BMI), family history, In(height), nulliparity
Verheus et al (2007) The Netherlands	Prospect-EPIC	Nested case- control	383	383	LC/MS	Pre-M/Peri-M Post-M	2.98 (ng/ml) 2.71 (ng/ml)	2.66(ng/ml) 2.65 (ng/ml)	Age at menarche and family history (Pre-M) Crude OR (Post-M).
Ward et al (2008) United Kingdom	EPIC-Norfolk	Nested case – control (9.5 years; 11261 person- years)	219	891	LC/MS	All	5.83 (ng/ml)*	5.00 (ng/ml)*	Age, age at menarche, breast-feeding, energy, family history, fat, HRT, OC, menopausal status, parity, social class, weight
Pietinen <i>et al</i> (2001) Finland	Kuopio Breast Cancer Study	Population-based case – control	194	208	TR-FIA	Pre-M Post-M	16.6 21.2	20.7 28.9	Age at 1st birth and at menarche, alcohol, area, BBD, BMI, education, family history, HRT, OC, physical activity, smoking, waist to hip ratio
Piller et <i>a</i> l (2006a) Germany		Population-based case–control	192	231	TR-FIA	Pre-M	11.6	12.2	Age at menarche, alcohol, BMI, breast-feeding, day of analysis, education, family history, OC, parity, time difference between surgery and blood sampling day

BBD = benign breast disease; BMI = body mass index; ENL = enterolactone; HRT = hormony replacement therapy; LC = liquid chromatography; MONIKA = Monitoring of Trends and Cardiovascular Disease Study; MS = mass spectrometry; MSP = Mammary Screening Project; NYU = New York University; OC = oral contraceptive; Peri-M = peri-menopausal; Pre-M = pre-menopausal; Post-M = post-menopausal; Prospect-EPIC = Dutch Cohort of the European Prospective Investigation into Diet and Cancer (EPIC) Study; TR-FIA = time-resolved fluoroimmunoassay; VIP = Västerbotten Intervention Project. *Median values. Mean values not provided.

x, test for heterogeneity _Q=17.9, df=10, P=0.056; l^2=44% (95% Cl; 0-72%) β , levels for matairesinol only

NP, not provided

Figure I Forest plot of highest vs lowest plant lignan intake and breast cancer risk.

 $(I^2 = 0\%, 95\%$ CI: 0, 71, P = 0.46) (see Figure 2). The same effect was not observed in pre-menopausal women (7 studies, combined OR: 0.97, 95% CI: 0.82, 1.15, P = 0.73). The funnel plot of studies examining plant lignan intake and overall breast cancer risk showed symmetry, suggesting a lack of publication bias.

There was a statistically significant inverse association between enterolignan exposure and overall risk (combined OR: 0.73, 95% CI: 0.57, 0.92, P = 0.009) (Figure 3), although there was marked heterogeneity ($I^2 = 63\%$, 95% CI: 0.0, 88, P = 0.04), but there was no association between exposure and risk by menopausal status (pre-menopausal breast cancer risk: 3 studies, combined OR: 0.67, 95% CI: 0.44 – 1.02, P = 0.06; post-menopausal: 2 studies, combined OR: 0.85, 95% CI: 0.72 – 1.01, P = 0.06).

There was no association between blood enterolactone and breast cancer risk (combined OR: 0.82, 95% CI: 0.59–1.14, P=0.24) (Figure 4). Results of analysis by menopausal status

were similar for both pre-menopausal women (5 studies, combined OR: 0.85, 95% CI: 0.45–1.59, P=0.61) and post-menopausal women (6 studies, combined OR: 0.86, 95% CI: 0.66, 1.14, P=0.28).

DISCUSSION

This is the first systematic review and meta-analysis of exposure to lignans and breast cancer risk based on studies using dietary assessments and serum measurements. Although exposure can be assessed by urine analysis, few studies have used this methodology and therefore, these were not included (Ingram *et al*, 1997; den Tonkelaar *et al*, 2001; Dai *et al*, 2002). The results show that there was no association between plant lignan intake and overall risk, and this association was subjected to marked heterogeneity.

Lignans and breast cancer risk

LS Velentzis et al

* Test for heterogeneity Q= 8.2, df = 3, P= 0.043; I²=63% (95% CI; 0-88%)

NP, values not provided

However in post-menopausal women, there is a small but significant reduction in risk and a reduction in heterogeneity. A significantly decreased risk with increasing enterolignan exposure was also found. However, there was significant heterogeneity between studies making it difficult to draw clear conclusions, and the effect did not persist when analyses were stratified by menopausal status, although the number of studies included in these stratified analyses was very small. Finally, there was no association between enterolactone concentrations in blood and overall risk, or when analysis was stratified by menopausal status.

The protective action of plant lignans against breast cancer in post-menopausal, but not in pre-menopausal women, would suggest that lignan activity has a physiologic effect only at low oestradiol levels. One of the mechanisms of action may be greater sex hormone-binding globulin production and binding of free oestradiol (Adlercreutz *et al*, 1989, 1992; Zeleniuch-Jacquotte *et al*, 2004; Low *et al*, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz *et al*, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz *et al*, 1993; Saarinen *et al*, 2007). Enterolactone has been shown to decrease local oestrogen production by inhibiting 17-hydroxysteroid dehydrogenase type I and aromatase (Wang *et al*, 1994; Brooks and Thompson, 2005).

The apparent protective effect of dietary plant lignans in postmenopausal women is not supported by the findings from the meta-analysis of studies that measured the enterolactone levels in their blood. It would be expected that women consuming larger amounts of plant lignans would have a higher circulating concentration of enterolactone. There are a number of possible reasons for this disparity. Dietary intake of plant lignans was assessed on the basis of the subjects' self-reported dietary intake ranging from 6 months before study entry (Hedelin *et al*, 2008) to 3 years before breast cancer diagnosis, (dos Santos Silva *et al*, 2004) and thus, it reflects long-term intake. Enterolactone concentration that is measured in a single blood sample may be more indicative of recent dietary habits. There may also be a significant intra-individual variation in serum response to dietary intake of plant lignans (Hausner *et al*, 2004). For example, blood levels of enterolactone can be modulated by age, smoking, frequency of defecation, weight-obesity-body mass index and regular alcohol intake (Kilkkinen *et al*, 2001, 2002; Horner *et al*, 2002; Milder *et al*, 2007), and these factors could potentially differ by menopausal status (in particular, age and body mass index). As bacterial enzymes are involved in lignan metabolism, the use of antibiotics has also been shown to affect enterolactone serum concentration (Kilkkinen *et al*, 2002); antibiotic use was generally not controlled for in these studies.

It is also possible that the protective effect is caused directly by the plant lignans or chemicals within the metabolic pathway other than enterolactone, or even by a synergistic effect between plant lignans and enterolignans. However, other food constituents found to be associated with plant lignans may exert the effect. For example, α -linoleic acid, which is also thought to have anti-cancer effects (Thompson, 2003; Bougnoux and Chajes, 2003, p. 232), is found in very high levels in flaxseed, the richest source of plant lignans (Thompson *et al*, 1991).

Determining plant lignan intake has various limitations, which could lead to an over- or under-estimation of food content. Some food composition databases are incomplete in terms of not containing values for the more recently discovered plant lignans (e.g., medioresinol) or for the whole range of foods consumed by the study population. In addition, there are various analytical methods for determining food values ; hence, databases compiled from published values determined by different methodologies may contain inherent errors. It has also been shown that the amount of lignans in food can differ according to crop variety, location, year of harvest and processing (Thompson *et al*, 1997; Kuijsten *et al*, 2005). Dietary measurement error associated with FFQs (food frequency questionnaires) is also possible. FFQs that were used varied in length, ranging from 67 to 208 items. Only one study validated its FFQ specifically for plant lignan assessment (Torres-Sanchez *et al*, 2008), although a UK study used the combination of an FFQ and 24-h recalls to group participants into quartiles of intake (dos Santos Silva *et al*, 2004). In addition, the possibility of residual confounding cannot be ruled out.

Consumption of soy food, rich in isoflavones, has been shown to reduce breast cancer risk in Asian women but not in Western women (Wu *et al*, 2008), suggesting that ethnicity may play a role in this effect. It is not known whether there are differential physiologic effects of lignans in people of different races, although there is some evidence of variation in the urinary excretion of lignans between white, African American and Latino women (Horn-Ross *et al*, 1997). Of the 23 articles used for the metaanalyses, only 3 American studies provided complete data with regard to ethnicity (Horn-Ross *et al*, 2001, 2002; McCann *et al*, 2004); hence, it was impossible perform sub-analyses for examining this.

In summary, the meta-analyses presented in this study, indicate that plant lignans and enterolignans are unlikely to significantly protect all women against breast cancer development. However, our results suggest that high plant lignan intake is associated with a 15% decreased risk in post-menopausal women, which is a small reduction that could be due to residual confounding. If real, the reason for the selective effect is not clear. Additional studies of the effect of lignan exposure on post-menopausal breast cancer risk are needed to confirm these findings before reassessing the current dietary guidelines.

ACKNOWLEDGEMENTS

Part of this work was supported by funding from the Against Breast Cancer charity (Registered Charity No. 1121258).

REFERENCES

- Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44: 483-525
- Adlercreutz H, Bannwart C, Wähälä K, Mäkelä T, Brunow G, Hase T, Arosemena PJ, Kellis Jr JT, Vickery LE (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44: 147-153
- Adlercreutz H, Hämäläinen E, Gorbach SL, Goldin BR, Woods MN, Dwyer JT (1989) Diet and plasma androgens in postmenopausal vegetarian and omnivorous women and postmenopausal women with breast cancer. *Am J Clin Nutr* **49:** 433–442
- Adlercreutz H, Mousavi Y, Clark J, Höckerstedt K, Hämäläinen E, Wähälä K, Mäkelä T, Hase T (1992) Dietary phytoestrogens and cancer: in vitro and in vivo studies. J Steroid Biochem Mol Biol 41: 331–337
- Beral V, Million Women Study Collaborators (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. *Lancet* **362**: 419-427
- Bergman Jungeström M, Thompson LU, Dabrosin C (2007) Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. *Clin Cancer Res* **13**: 1061–1067
- Boccardo F, Lunardi G, Guglielmini P, Parodi M, Murialdo R, Schettini G, Rubagotti A (2003) Serum enterolactone levels and the risk of breast cancer in women with palpable cysts. *Eur J Cancer* **40:** 84–89
- Bougnoux P, Chajes V (2003) α -Linoleic acid and cancer. In: *Flaxseed in Human Nutrition* Thompson LU, Cunnane SC (eds), pp 232–244. AOCS Press: Illinois, USA
- Brooks JD, Thompson LU (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17beta-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Mol Biol 94: 461-467
- Cotterchio M, Boucher BA, Kreiger N, Mills CA, Thompson LU (2008) Dietary phytoestrogen intake-lignans and isoflavones-and breast cancer risk (Canada). *Cancer Causes Control* **19:** 259-272

- Dai Q, Franke AA, Jin F, Shu XO, Hebert JR, Custer LJ, Cheng J, Gao YT, Zheng W (2002) Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. *Cancer Epidemiol Biomarkers Prev* 11: 815-821
- den Tonkelaar I, Keinan-Boker L, Veer PV, Arts CJ, Adlercreutz H, Thijssen JH, Peeters PH (2001) Urinary phytoestrogens and postmenopausal breast cancer risk. *Cancer Epidemiol Biomarkers Prev* **10:** 223-228
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177-188
- dos Santos Silva I, Mangtani P, McCormack V, Bhakta D, McMichael AJ, Sevak L (2004) Phyto-oestrogen intake and breast cancer risk in South Asian women in England: findings from a population-based case-control study. *Cancer Causes Control* **15:** 805-818
- Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315:** 629-634
- Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165: 514–523
- Grace PB, Taylor JI, Low YL, Luben RN, Mulligan AA, Botting NP, Dowsett M, Welch AA, Khaw KT, Wareham NJ, Day NE, Bingham SA (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. *Cancer Epidemiol Biomarkers Prev* **13**: 698–708
- Hankinson SE, Eliassen AH (2007) Endogenous estrogen, testosterone and progesterone levels in relation to breast cancer risk. J Steroid Biochem Mol Biol 106: 24-30
- Hausner H, Johnsen NF, Hallund J, Tetens I (2004) A single measurement is inadequate to estimate enterolactone levels in Danish postmenopausal women due to large intraindividual variation. J Nutr 134: 1197-1200
- Hedelin M, Löf M, Olsson M, Adlercreutz H, Sandin S, Weiderpass E (2008) Dietary phytoestrogens are not associated with risk of overall breast

cancer but diets rich in coumestrol are inversely associated with risk of estrogen receptor and progesterone receptor negative breast tumors in Swedish women. I Nutr 138: 938-945

- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557-560
- Horner NK, Kristal AR, Prunty J, Skor HE, Potter JD, Lampe JW (2002) Dietary determinants of plasma enterolactone. Cancer Epidemiol Biomarkers Prev 11: 121-126
- Horn-Ross PL, Barnes S, Kirk M, Coward L, Parsonnet J, Hiatt RA (1997) Urinary phytoestrogen levels in young women from a multiethnic population. Cancer Epidemiol Biomarkers Prev 6: 339-345
- Horn-Ross PL, Hoggatt KJ, West DW, Krone MR, Stewart SL, Anton H, Bernstei CL, Deapen D, Peel D, Pinder R, Reynolds P, Ross RK, Wright W, Ziogas A (2002) Recent diet and breast cancer risk: the California Teachers Study (USA). Cancer Causes Control 13: 407-415
- Horn-Ross PL, John EM, Lee M, Stewart SL, Koo J, Sakoda LC, Shiau AC, Goldstein J, Davis P, Perez-Stable EJ (2001) Phytoestrogen consumption and breast cancer risk in a multiethnic population: the Bay Area Breast Cancer Study. Am J Epidemiol 154: 434-441
- Hultén K, Winkvist A, Lenner P, Johansson R, Adlercreutz H, Hallmans G (2002) An incident case-referent study on plasma enterolactone and breast cancer risk. Eur J Nutr 41: 168-176
- Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case-control study of phyto-oestrogens and breast cancer. Lancet 350: 990-994
- Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79: 282 - 288
- Kilkkinen A, Pietinen P, Klaukka T, Virtamo J, Korhonen P, Adlercreutz H (2002) Use of oral antimicrobials decreases serum enterolactone concentration. Am J Epidemiol 155: 472-477
- Kilkkinen A, Stumpf K, Pietinen P, Valsta LM, Tapanainen H, Adlercreutz H (2001) Determinants of serum enterolactone concentration. Am J Clin Nutr 73: 1094-1100
- Kilkkinen A, Virtamo J, Vartiainen E, Sankila R, Virtanen MJ, Adlercreutz H, Pietinen P (2004) Serum enterolactone concentration is not associated with breast cancer risk in a nested case-control study. Int J Cancer 108: 277 - 280
- Kuijsten A, Arts IC, van't Veer P, Hollman PC (2005) The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J Nutr 135: 2812-2816
- Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139: 4252-4263
- Linseisen J, Piller R, Hermann S, Chang-Claude J (2004) Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. Int J Cancer 110: 284-290
- Low YL, Dunning AM, Dowsett M, Folkerd E, Doody D, Taylor J, Bhaniani A, Luben R, Khaw KT, Wareham NJ, Bingham SA (2007) Phytoestrogen exposure is associated with circulating sex hormone levels in postmenopausal women and interact with ESR1 and NR1I2 gene variants. Cancer Epidemiol Biomarkers Prev 16: 1009-1016
- Mazur W (1998a) Phytoestrogen content in foods. Baillieres Clin Endocrinol Metab 12: 729-742
- Mazur WM, Wähälä K, Rasku S, Salakka A, Hase T, Adlercreutz H (1998b) Lignan and isoflavonoid concentrations in tea and coffee. Br J Nutr 79: 37-45
- McCann SE, Kulkarni S, Trevisan M, Vito D, Nie J, Edge SB, Muti P, Freudenheim JL (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99: 309 - 311
- McCann SE, Moysich KB, Freudenheim JL, Ambrosone CB, Shields PG (2002) The risk of breast cancer associated with dietary lignans differs by CYP17 genotype in women. J Nutr 132: 3036-3041
- McCann SE, Muti P, Vito D, Edge SB, Trevisan M, Freudenheim JL (2004) Dietary lignan intakes and risk of pre- and postmenopausal breast cancer. Int J Cancer 111: 440-443
- Milder IE, Kuijsten A, Arts IC, Feskens EJ, Kampman E, Hollman PC, Van't Veer P (2007) Relation between plasma enterodiol and enterolactone and dietary intake of lignans in a Dutch endoscopy-based population. J Nutr 137: 1266 - 1271

- Mueller SO, Simon S, Chae K, Metzler M, Korach KS (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci 80: 14-25
- Nesbitt PD, Lam Y, Thompson LU (1999) Human metabolism of mammalian lignan precursors in raw and processed flaxseed. Am J Clin Nutr 69: 549-555
- Olsen A, Knudsen KE, Thomsen BL, Loft S, Stripp C, Overvad K, Møller S, Tjønneland A (2004) Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol Biomarkers Prev 13: 2084 - 2089
- Pietinen P, Stumpf K, Männistö S, Kataja V, Uusitupa M, Adlercreutz H (2001) Serum enterolactone and risk of breast cancer: a case-control study in eastern Finland. Cancer Epidemiol Biomarkers Prev 10: 339-344
- Piller R, Chang-Claude J, Linseisen J (2006a) Plasma enterolactone and genistein and the risk of premenopausal breast cancer. Eur J Cancer Prev 15: 225-232
- Piller R, Verla-Tebit E, Wang-Gohrke S, Linseisen J, Chang-Claude J (2006b) CYP17 genotype modifies the association between lignan supply and premenopausal breast cancer risk in humans. J Nutr 136: 1596-1603
- Prasad K (2000) Antioxidant Activity of secoisolariciresinol diglucosidederived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9: 220-225
- Saarinen NM, Wärri A, Airio M, Smeds A, Mäkelä S (2007) Role of dietary lignans in the reduction of breast cancer risk. Mol Nutr Food Res 51: 857-866
- Setchell KD, Lawson AM, Borriello SP, Harkness R, Gordon H, Morgan DM, Kirk DN, Adlercreatz H, Anderson LC, Axelson M (1981) Lignan formation in man-microbial involvement and possible roles in relation to cancer. Lancet 2: 4-7
- Suzuki R, Rylander-Rudqvist T, Saji S, Bergkvist L, Adlercreutz H, Wolk A (2008) Dietary lignans and postmenopausal breast cancer risk by oestrogen receptor status: a prospective cohort study of Swedish women. Br J Cancer 98: 636-640
- Thanos J, Cotterchio M, Boucher BA, Kreiger N, Thompson LU (2006) Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 17: 1253-1261
- Thompson LU (2003) Flaxseed, lignans and cancer. In Flaxseed in Human Nutrition, Thompson LU, Cunnane SC (eds), pp 194-222. AOCS Press: Illinois, USA
- Thompson LU, Rickard SW, Cheung F, Kenaschuk EO, Obermeyer WR (1997) Variability in anticancer lignan levels in flaxseed. Nutr Cancer 27: 26 - 30
- Thompson LU, Robb P, Serraino M, Cheung F (1991) Mammalian lignan production from various foods. Nutr Cancer 16: 43-52
- Torres-Sanchez L, Galvan-Portillo M, Wolff MS, Lopez-Carrillo L (2008) Dietary consumption of phytochemicals and breast cancer risk in Mexican women. Public Health Nutr 23: 1-7
- Touillaud MS, Thiébaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2007) Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99: 475-486
- Touillaud MS, Thiébaut AC, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2006) No association between dietary phytoestrogens and risk of premenopausal breast cancer in a French cohort study. Cancer Epidemiol Biomarkers Prev 15: 2574-2576
- Verheus M, van Gils CH, Keinan-Boker L, Grace PB, Bingham SA, Peeters PH (2007) Plasma phytoestrogens and subsequent breast cancer risk. J Clin Oncol 25: 648-655
- Wang C, Mäkelä T, Hase T, Adlercreutz H, Kurzer MS (1994) Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes. J Steroid Biochem Mol Biol 50: 205-212
- Ward H, Chapelais G, Kuhnle GG, Luben R, Khaw KT, Bingham S, European Prospective into Cancer-Norfolk cohort (2008) Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. Breast Cancer Res 10: R32. In press
- Wu AH, Yu MC, Tseng CC, Pike MC (2008) Epidemiology of soy exposures and breast cancer risk. Br J Cancer 98: 9-14
- Zeleniuch-Jacquotte A, Adlercreutz H, Shore RE, Koenig KL, Kato I, Arslan AA, Toniolo P (2004) Circulating enterolactone and risk of breast cancer: a prospective study in New York. Br J Cancer 91: 99-105