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How can we study reasoning in the
brain?
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The brain did not develop a dedicated device for reasoning. This fact bears dramatic

consequences. While for perceptuo-motor functions neural activity is shaped by the

input’s statistical properties, and processing is carried out at high speed in hardwired

spatially segregated modules, in reasoning, neural activity is driven by internal dynamics

and processing times, stages, and functional brain geometry are largely unconstrained

a priori. Here, it is shown that the complex properties of spontaneous activity, which

can be ignored in a short-lived event-related world, become prominent at the long time

scales of certain forms of reasoning. It is argued that the neural correlates of reasoning

should in fact be defined in terms of non-trivial generic properties of spontaneous brain

activity, and that this implies resorting to concepts, analytical tools, and ways of designing

experiments that are as yet non-standard in cognitive neuroscience. The implications in

terms of models of brain activity, shape of the neural correlates, methods of data analysis,

observability of the phenomenon, and experimental designs are discussed.

Keywords: cognitive neuroscience, reasoning, scaling, non-stationarity, non-ergodicity, characteristic scales,

observation time, resting brain activity

Introduction

Consider an individual trying to solve a problem and reasoning for 10min before attaining a solu-
tion. Take the middle 5min. Clearly, though containing no behaviorally salient event, these 5min
represent a genuine, indeed rather general, instance of reasoning. What do we know about the
brain regime far from its conclusion? Can we use this regime to predict a solution, and a solution
to retrodict this regime?

Here, I concentrate on a form of reasoning, of which the above scenario constitutes an example,
which can broadly be defined as “thinking in which there is a conscious intent to reach a conclu-
sion and in which methods are used that are logically justified” (Moshman, 1995), with no a priori
assumption on the type of reasoning process that may take place during it. It is argued that finding
the generic properties of this form of reasoning entails addressing the following fundamental issues:
What are reasoning’s temporal and spatial scales?When is a given observation time sufficient? How
should we integrate the information contained in various reasoning episodes?

A Mini Literature Review

The neural correlates of reasoning have traditionally been expressed in terms of brain spatial coor-
dinates. Early neuropsychological work viewed reasoning as emerging from global brain processing
(Gloning andHoff, 1969), consistent with evidence indicating that it is negatively affected by diffuse
brain damage (Lezak, 1995). Neuroimaging studies have framed the neural correlates of reasoning
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in terms of local functionally specialized brain activity, either
by taking a normative approach to reasoning (Goel et al., 1997,
1998; Osherson et al., 1998; Parsons and Osherson, 2001; Noveck
et al., 2004; Prado et al., 2011), or by fractionating it into sub-
component processes (Houdé et al., 2001; Acuna et al., 2002;
Kroger et al., 2002; Reverberi et al., 2012). The results often lack
specificity to reasoning (Papo et al., 2007). Most importantly,
these investigations provide a static characterization of reasoning.

The neuroimaging literature mostly focused on short-term
and normative forms of reasoning (Prado et al., 2011; Bonne-
fond et al., 2013, 2014). This minimizes variability in reason-
ing episode length and allows segmenting reasoning episodes
into separable chunks, but does that at the price of limitations
in the phenomenology and ecologic value of its stimuli. Some
neuroimaging (Luo et al., 2004; Subramaniam et al., 2008) and
electrophysiological (Jung-Beeman et al., 2004; Mai et al., 2004;
Kounios et al., 2006, 2008; Lang et al., 2006; Bowden and Jung-
Beeman, 2007; Qiu et al., 2008; Sandkühler and Bhattacharya,
2008; Sheth et al., 2008) studies examined more ecological forms
of reasoning, viz. insight problems (Knoblich et al., 1999). How-
ever, even electrophysiological studies, despite optimal temporal
resolution, adopted an event-related perspective, concentrating
on activity occurring a few seconds before insight emergence,
which only documents the outcome of the reasoning process, not
the process itself.

Event-related neural activity associated with the solution of
riddles with insight was found to be related to properties of
preceding resting activity (Kounios et al., 2006, 2008). These
studies had the remarkable merit of using spontaneous brain
activity to characterize reasoning, but in essence provided a
comparative statics description. Although some behavioral stud-
ies treated reasoning as a dynamical process (Stephen et al.,
2009), a comparable neurophysiological characterization is still
incomplete.

The Problem(s) with Reasoning

The generalized form of reasoning considered in this study
comes in episodes offering scant behaviorally salient events
with no characteristic temporal length. Each episode is a non-
reproducible instance, as a reasoning task can be carried out in
multiple ways. Brain activity associated with reasoning is not
event-related, and many neurophysiological processes interact in
a wide range of spatial and temporal scales.

These phenomena can all be traced back to a basic fact: the
brain did not develop a dedicated device for reasoning. Hard-
wired partially segregated modules ensure that perceptuo-motor
functions are carried out at great speed, with stereotyped dura-
tion and time-varying profile, and identifiable stages, largely
determined by input statistical properties. Reasoning, on the con-
trary, is associated with an internally-driven dynamics: process-
ing times and stages, and functional brain geometry are largely
unconstrained.

Considering these extraordinary challenges, can we still
find general reasoning properties, over and above specific task
demands and individual differences? What sort of process is rea-
soning in its general form? Is it a series of simpler reasoning

cycles? Can we segment it into stages? What are the best neural
variables and tools to make these properties observable?

Characterizing the Reasoning Process

Robust characterizations of reasoning should incorporate prop-
erties consistently appearing across different subjects and in dif-
ferent periods of time, and select analytical tools accordingly.
For instance, perceptual response sensitivity to incoming sig-
nals, stability against noise, and minimal dependence on ini-
tial conditions favor tools capturing transient dynamics, which
naturally reproduce these properties under appropriate condi-
tions, over tools handling asymptotic activity, which fail to do so
(Rabinovich et al., 2008).

Reasoning’s relative instability and inefficiency suggest that
optimal circuitry may need constant reconstruction and protec-
tion from interference, summoning protracted support of ener-
getically costly long-range communications. Reasoning may be
a sort of resonant regime, where functional efficiency would
be achieved with specific, though unstable, spatio-temporal pat-
terns. This suggests that reasoning should be studied with
tools which can describe spatially-extended dynamic transients
and can quantify information transfer and the corresponding
energetic cost.

Reasoning Dynamics
Each cognitive process can be translated in dynamical terms and
corresponding aspects of neural activity.

Perceptual processes are relaxational, quasi-stereotyped short
duration processes. The brain can prima facie be modeled as
an excitable medium: perturbations above a threshold induce a
dynamical cycle before the system reverts to its initial silent state.

Learning too is a relaxational process. Following a gradient
dynamics, the brain incorporates the environment’s statistical
relationships by representing them in terms of its functional con-
nectivity (Sporns et al., 2000). Cycles can be of much longer
duration and non-trivial shape than perceptual ones. No single
instant summarizes the entire process, and the dynamics consists
of fluctuations much shorter than the whole process.

Reasoning may not be purely relaxational. As in the case of
learning, no instant summarizes the whole dynamics but, con-
trary to learning, there is no clear gradient. Neural activity is an
out-of-equilibrium endogenously modulated spontaneous brain
activity. Its phenomenology is considerably more complex than
the equilibrium event-related short time-scale one of percep-
tion or the gradient-driven regression to equilibrium dynamics
of learning.

To study reasoning, one should therefore first consider prop-
erties of spontaneous activity that are generic (i.e., that hold for
almost all conditions) at long time scales and then see how these
properties are modulated during reasoning (Papo, 2014a).

The Starting Point: Spontaneous Brain Activity
When observed long enough, brain fluctuations appear to be
characterized by structured patterns (Kenet et al., 2003). The tem-
poral sequence with which these patterns are re-edited across the
cortical space also appears to have non-random structure (Beggs
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and Plenz, 2003, 2004; Cossart et al., 2003; Ikegaya et al., 2004;
Dragoi and Tonegawa, 2011; Betzel et al., 2012). The structure
with which these fluctuations appear can be described in the
same way one would describe an object, characterizing its com-
ponent parts, the relationships between them, and the way one
can inspect it. For instance, if we think of brain fluctuations as
the steps of a random walker, one can describe the phase space,
i.e., the space of all states attainable by the system’s dynamics,
but also of traveled distances, times to reach a given target and
memory of previous steps.

In the equilibrium world of perceptual scientists, brain steps
are Gaussian distributed, and memory of past steps is lost so
rapidly that no structure is apparent when considering the time
course of activity. Spontaneous activity has no evident temporal
structure and can be treated as a null state to which the brain
reverts in the absence of stimulation.

At the long time scales of reasoning, the random walker
takes steps from a non-Gaussian distribution. Like a fractal
object, it displays similar properties at all scales (Novikov et al.,
1997; Linkenkaer-Hansen et al., 2001; Gong et al., 2002; Free-
man et al., 2003; Stam and de Bruin, 2004; Expert et al., 2010;
van de Ville et al., 2010; Fraiman and Chialvo, 2012). While
self-similarity may not be exact (Suckling et al., 2009; Zilber
et al., 2012), these scaling patterns indicate that activity at differ-
ent temporal scales is characterized by non-trivial relationships
between them (Bacry et al., 2001; Friedrich et al., 2011; Papo,
2013b). Not all regions of the phase space are equally visited,
with some taking an extremely long time to be reached (Bianco
et al., 2007). Transitions from one region to the other depend
on past history of the dynamics (Gilboa et al., 2005). Memory
of past steps decays so slowly that the time it takes two time-
points to totally decorrelate may diverge, so that a characteristic
time ceases to exist (Grigolini et al., 1999; Fairhall et al., 2001;
Gilboa et al., 2005; Lundstrom et al., 2008). Temporal correla-
tions are not stationary, but time-dependent (Bianco et al., 2007).
If, rather than an ordinary watch, one measured time with a
watch ticking at every step taken by the walker, the passage of
time would appear to be highly irregular and clustered, alter-
nating between relatively quiet phases and more turbulent ones
(Gong et al., 2007; Allegrini et al., 2010).

The temporal structure can be used to define landmarks
within time-windows where no behaviorally salient event occurs.
This can be done by identifying segments that can be consid-
ered stationary (Kaplan et al., 2005). The distribution of these
segments’ durations and their correlations and specific sequences
may help clarify whether reasoning far away from both problem
presentation and solution is merely a repetition of simple cycles
seen inmore controlled forms of reasoning, or is of a qualitatively
different nature, and if so, may help determine the time scales at
which simpler cycles are reedited.

To fully describe the phase space, one needs to consider that
the brain as a whole consists of a great number of local ran-
dom walkers. Local walkers interact to form transient patterns
of connectivity. These patterns can be endowed with topological
properties at all spatial scales by resorting to complex networks
theory (Bullmore and Sporns, 2009). Eventually, one deals with
an abstract structure consisting of spatial patterns endowed with

topological properties, the temporal evolution of which displays
the complex properties described above.

Overall, the space in which the random walker turns out to
live, and which reflects the brain’s dynamical repertoire, can be
represented as a complex spatio-temporal structure (Zaslavsky,
2002). This structure can be described in terms of symmetries and
universal properties, which are robust with respect to the nature
of microscopic details, by resorting to a variety of methods, e.g.,
algebraic and differential topology, renormalization group meth-
ods etc. (Lesne, 2008; Petri et al., 2014). Using these methods
it is possible (1) to partition the phase space, (2) to identify
dynamical pathways leading to specific regions of this space, and
(3) to relate descriptions of the same brain at different scales
and of different brains exhibiting the same large-scale behavior
(Lesne, 2008).

From Spontaneous Activity to Reasoning
Cognitive processes can be thought of as selections and orches-
trations of cortical states already present in spontaneous activity
(Kenet et al., 2003; Fiser et al., 2004; Luczak et al., 2009). Each
process reveals a specific part of the phase space, and can be asso-
ciated with its own topological properties and symmetries, and
characteristic kinematics, memory, aging properties, degree of
ergodicity, and internal clock (Papo, 2014a). For example, dif-
ferent conditions under which subjects carried out a reasoning
task were shown to modulate the scaling regime of fluctuations of
the corresponding brain activity (Buiatti et al., 2007), suggesting
that reasoning may modulate not brain activity’s amplitude but
its functional form (Papo, 2014a), e.g., by forcing the system’s sta-
tionary distribution to equal a target one. Thesemodulationsmay
correspond to cross-overs between universality classes, resulting
from transitions between different dynamical regimes (Burov and
Barkai, 2008).

The statistics of fluctuations can be used to study insight and
to evaluate whether insight occurrence can be predicted. The
sudden onset of insight may be thought of as an extreme event
comparable to earthquakes, financial crashes, or epileptic seizures
(Contoyiannis and Eftaxias, 2008; Osorio et al., 2010), e.g., as a
rupture phenomenon, and the route to it as a long charging pro-
cess, with nested hierarchical “earthquakes.” The probability dis-
tribution of fluctuations gives an estimate of the likelihood of the
occurrence of such events: for a Gaussian distribution, extreme
events are exponentially rare. However, for non-Gaussian dis-
tributions, such events do occur with non-zero probability. It is
tempting to conjecture that, in analogy with results of studies of
these phenomena, insight onset may be predicted by monitoring
changes in anomalous diffusion parameters (Contoyiannis and
Eftaxias, 2008), Gaussianity (Manshour et al., 2009), or frac-
tal spectrum complexity (de Arcangelis and Herrmann, 1989;
Kapiris et al., 2004).

Assessing Reasoning: from Dynamics to

Thermodynamics and Information

Considering the functions reasoning fulfills and the constraints
the brain faces while performing it can shed light on ways in
which brain fluctuations can help quantify how the brain carries
out reasoning.
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Reasoning, as other cognitive processes, e.g., memory recall
(Rhodes and Turvey, 2007; Baronchelli and Radicchi, 2013), can
be represented as a search process similar to that of animals for-
aging in an unknown environment (Viswanathan et al., 2011).
This search process can be characterized in terms of random
walks (Shlesinger et al., 1993; Codling et al., 2008; Lomholt et al.,
2008; Bénichou et al., 2011). Importantly, the statistics of ran-
dom steps and their correlations indicate the extent to which
a given trajectory optimizes search, given the characteristics of
the explored space and the resources available to the individ-
ual (Bénichou et al., 2011). Such a characterisation would allow
assessing in a context-specific way the quality of both the rea-
soning and the “reasoned.” That behavioral aspects of human
cognition (Rhodes and Turvey, 2007; Baronchelli and Radicchi,
2013) and brain activity both show non-Gaussian, heavy-tailed
distributions might indicate search optimality (Lomholt et al.,
2008; Humphries et al., 2012). However, because these properties
are generic in spontaneous activity, reasoning’s quality can only
be described in terms of its modulations, and finding the neural
property and spatial scale showing such scaling modulations are
the crucial steps.

Because it lacks a hardwired structure, reasoning faces both
a stability and an energetic problem. Fluctuation dynamics can
help address the first issue, but may not be sufficient per se to
address the second. While a graph theoretical representation of
functional brain activity may provide indications as to the ways
the brain tackles both problems (Bullmore and Sporns, 2012;
Papo et al., 2014), a direct characterization can be achieved by
considering the brain as a very complex engine and by char-
acterizing its thermodynamics. Crucially, thermodynamics can
be deduced from dynamics (Sekimoto, 1998). Such a charac-
terisation could be used to quantify variations in thermody-
namic variables such as free energy, entropy, or temperature
(Papo, 2013a) during a reasoning task, but also possible tran-
sitions in some other property of neural activity, for particular
values of these variables. For instance, a suitablymodified equilib-
rium temperature accounting for the non-equilibrium nature of
brain activity (Cugliandolo, 2011) can quantify deviations of each
spatio-temporal scale from equilibrium, entropy production, etc.
(Papo, 2014b).

Finally, one may want to quantify reasoning in terms of the
information created, erased, and transferred during its execution.
Simple fluctuations can be thought of as letters of an alphabet,
fluctuation complexes as words, and the reasoning process rep-
resented as a network traffic regulation problem. Characterizing
traffic regulation and phenomena such as overload or jamming
may involve using information-theoretical tools and complex
network theory and understanding the interplay between the
underlying network’s topology, the dynamics of information
packets and the shape of fluctuation distributions (DeDeo and
Krakauer, 2012; Delvenne et al., 2013; Lambiotte et al., 2013).
Although only causal information (Shalizi and Moore, 2003)
may directly serve reasoning purposes, the total information
encoded in the network may describe the noise-control mech-
anisms indirectly optimizing it. Interestingly, non-equilibrium
systems such as the brain, information, and thermodynamics can
be thought of as the opposite side of the same coin (Parrondo

et al., 2015). Ultimately, the information content of reasoning-
related neural activity could be extracted from its dynamics, via
thermodynamics.

From Theory to Experiment

Observing Reasoning
Reasoning is a difficult phenomenon to observe: tasks can be exe-
cuted in more than one-way, each possibly corresponding to a
neural phase space with convoluted geometry and the processes
involved in reasoning may evolve over time-scales exceeding
those typical of laboratory testing.

Proper observation of a given process requires that the obser-
vation time bemuch larger than any scale in the system. A process
is observable if it has a finite ratio between the characteristic
time of the independent variable and the length of the available
time series (Reiner, 1964). Factors including long-term memory,
aging and weak ergodicity breaking may result in a diverging
ratio (Rebenshtok and Barkai, 2007).

The observation time should also be much larger than the
time needed to visit the neural phase space. The time needed to
explore this space may far exceed the typical reasoning episode
duration. Cognitive neuroscientists observe phenomena through
experiments where subjects typically carry out given tasks a
large number of times, assumed to be independent realizations
of the same observable, and to adequately sample the phase
space of task-related brain activity. However, in the presence of
complex fluctuations, trials may not self-average, i.e., dispersion
would not vanish even for an infinite number of trials (Aharony
and Harris, 1996). Thus, trials may explore different aspects
of the space of available strategies and may therefore improve
phase space exploration rather than the signal-to-noise ratio
(Ghosh et al., 2007).

Experimental Implications
Reasoning’s characteristics, particularly its lack of characteris-
tic temporal duration, have implications at various levels. First,
episodes cannot be compared in an event-related fashion. Sec-
ond, defining reliable neural correlates of reasoning requires
defining its characteristic temporal scales. Third, measures of
brain activity should be invariant with respect to overall duration.
Scaling exponents, data collapse and universality of fluctuations
statistics (Bramwell et al., 1998; Bhattacharya, 2009; Friedman
et al., 2012), or explicit evolution equations for the parti-
cle’s momenta and for the cross-scale fluctuation probabilities
(Friedrich et al., 2011) can be retrieved from data and applied
to unevenly lengthen trials. Thermodynamic quantities such as
free energy or temperature can also be estimated for stochas-
tic trajectories over finite time durations (Ruelle, 1978; Beck
and Schlögl, 1997; Canessa, 2000; Olemskoi and Kokhan, 2006;
Papo, 2014b). In all cases, the reconstruction of the underlying
dynamics improves with the recording device’s resolution.

Reasoning presents a dilemma between ensuring complete
phase space exploration, which may require extremely long tri-
als, and signal stationarity, which is guaranteed only for time
scales much shorter than the reasoning episodes’ duration. At
fast time scales, the window in which relevant quantities are
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calculated should not introduce spurious time scales, filtering
out genuine ones. Altogether, reasoning’s inherently unstable
nature suggests that describing it may boil down to characterizing
non-stationarities and their aetiologies.

Reasoning tasks may be so difficult that only few partici-
pants manage to produce solutions within a reasonable time.
This represents a shortcoming when trials are considered as inde-
pendent and identically distributed, as the signal-to-noise ratio
improves with the square root of the number of trials. Smooth-
ing response times is a frequent strategy to obviate this prob-
lem, but limits or distorts the reasoning process. Furthermore,
however many, short trials may insufficiently explore the phase
space. Designs with few long trials may express richer spatio-
temporal brain dynamics than many short ones of equivalent
overall length.

Finally, while observed scaling properties may help us under-
stand whether insight is predictable, i.e., whether it is an outlier
or it is generated by the same distribution producing anony-
mous events, predicting insight onset in real data appears to be
a challenging task, as reasoning episodes are various orders of

magnitude shorter than earthquake, financial, or epilepsy time
series (Sornette, 2002).

Conclusions

Reasoning elicits an exceptionally rich repertoire of otherwise
unexpressed neural properties. Its neural correlates are therefore
as helpful to neuroscientists, who are compelled to consider hith-
erto neglected brain properties, as they are to psychologists who
strive to understand its underlying processes.

Defining general and robust mechanistic properties of healthy
and dysfunctional reasoning will require as yet non-standard
brain metrics, experimental designs, and analytical tools, and
may ultimately help us understand and fine-tune the action of
brain enhancers.
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