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Engineering systems are typically governed by
systems of high-order differential equations which
require efficient numerical methods to provide
reliable solutions, subject to imposed constraints. The
conventional approach by direct approximation of
system variables can potentially incur considerable
error due to high sensitivity of high-order numerical
differentiation to noise, thus necessitating improved
techniques which can better satisfy the requirements
of numerical accuracy desirable in solution of
high-order systems. To this end, a novel inverse
differential quadrature method (iDQM) is proposed
for approximation of engineering systems. A
detailed formulation of iDQM based on integration
and DQM inversion is developed separately for
approximation of arbitrary low-order functions
from higher derivatives. Error formulation is further
developed to evaluate the performance of the
proposed method, whereas the accuracy through
convergence, robustness and numerical stability
is presented through articulation of two unique
concepts of the iDQM scheme, known as Mixed
iDOM and Full iDOM. By benchmarking iDQM
solutions of high-order differential equations of
linear and nonlinear systems drawn from heat
transfer and mechanics problems against exact
and DQM solutions, it is demonstrated that iDQM
approximation is robust to furnish accurate solutions
without losing computational efficiency, and offer
superior numerical stability over DQM solutions.
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1. Introduction

Engineering systems are typically governed by complex high-order differential equations which
require numerical methods to provide accurate solutions. To approximate such systems, the
domain of interest is discretized by means of interpolation (shape) functions and its higher
derivatives, which are defined over a subdomain of interest called elements. Examples of
methods available in this context are element-based methods such as finite-element method [1-3],
boundary element method [4,5], finite difference method [6-8] or finite volume method [9,10]. On
the other hand, a class of high-order mesh-free methods such as radial basis function networks
(RBEN) [11-13], element-free Galerkin method [14-16], diffuse element method [17], or high-
order collocation methods such as the Chebyshev method [18-20] and the differential quadrature
method (DQM) [21-27], have been widely applied for solving engineering and science problems.
In all of these methods, target derivatives of an arbitrary function are directly approximated
as a weighted sum of the function in the domain. According to Mai-Duy & Tran-Cong [28],
in the process of differentiation, errors of function approximation may amplify significantly as
influenced by local effects of the approximant. With respect to analysis of engineering structures,
such error amplification can affect the accuracy of high-order secondary variables including
strains, stresses, moments, and shear forces. To this effect, indirect radial basis function networks
(IRBEN) were proposed in [29]. In contrast to the RBFN approach, IRBEN approximate a
derivative function using RBEN and then recover the original function by integration, which is
less sensitive to noise.

DQM as proposed by Bellman and others [21,22] has received widespread attention in the
research community due to spectral accuracy and fast convergence that make it desirable for
vast engineering applications. For example, in the field of structural mechanics, the DOM
approach has been explored for static analysis [30-32], free vibration analysis [33-35], buckling
analysis [29,36] and large deflection post-buckling analysis [37]. In the context of fluid mechanics
applications, DQM has been widely applied to obtain solutions of convection problems [38-40]
and Navier-Stokes equations [41,42], heat transfer analysis [43,44], and magnetohydrodynamic
duct flow problems [45]. It is instructive to note that in [38-40,42] the so-called localized DQM
is adopted in combination with RBF since this strategy allows versatility in using meshes or
meshless systems [46]. Financial engineering is another area where the merits of DQM have been
explored for computational analysis [47].

To generalize DQM for engineering applications, Shu [23] proposed a general approach which
admits the use of different base polynomials for computation of DQM weights. According
to Shu’s approach [23], computation of the differential quadrature (DQ) weights for first-
order and higher-order derivatives can be generalized by appropriate choice of base vectors
in the linear vector space. Furthermore, Quan & Chang [48] as well as Wang [49] contended
that explicit formulation of the weighting coefficients by using test functions can overcome
the ill-conditioning arising from a large number of grid points. In this regard, to allow
for explicit computation of the DQ weights, setting the base vectors as base polynomials
(such as Lagrange polynomials, Chebyshev polynomials or Legendre polynomials) in a
linear vector space in the so-called polynomial-based differential quadrature (PDQ) method
is recommended [23,48,49]. To mitigate the sensitivity of DQM solutions to grid spacing
to the Runge phenomenon, Wang [49] noted that non-uniform grid distribution is required
to obtain reliable solutions. Readers are referred to Wang [49] for classical examples of
non-uniform grid distributions that guarantee good accuracy, numerical stability and fast
convergence. On the other hand, for applications like wave propagation in space where
uniformly distributed grid points are required for accurate numerical estimation, the localized
DQM (LDQM), which applies DQM approximations within a small neighbourhood of the
point of interest, is crucial to keep the balance between the accuracy and stability of
the numerical estimates [25]. In recent times, remarkably in computational fluid mechanics
applications, the so-called RBF-based DQ method, as well as the LDQM variant, are increasingly
being adopted to extend the merits of the DQM, as already noted in [38-40,42]. For the
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purpose of the current work, the PDQ-based approach with a non-uniform grid structure is
adopted.

Despite the positive contributions of DQM to various engineering fields, application to
high-order systems may suffer from numerical inaccuracy and instability on account of error
accumulation in the process of differentiation. According to error analysis outlined in Shu [23], the
process of differentiation via DQM may incur multiple orders of inaccuracy which increasingly
deteriorates for higher-order approximations, especially at the domain boundaries. Relying on
the gains of IRBFN, Wu & Ren [50] proposed a ‘differential quadrature method based on
approximation of the highest derivative’ (DQIHD) to reformulate some engineering problems
which yielded accurate solutions. Like IRBFN, and in contrast to DQM, DQIHD approximates
the highest derivative in a system and obtains lower-order functions by integration of the high-
order primary estimate. Although Wu & Ren [50] associated this method, i.e. DQIHD, with DQM,
we cannot find any empirical relationship between DQIHD and DQM apart from the use of
Lagrange polynomials for computation of weights, as also done by DQM. Moreover, the two
methods use different routines to determine the weights, and the properties of resulting matrices
for DOM and DQIHD are fundamentally different. In addition to this, Wu & Ren [50] did not
provide comparative analysis with DOM to demonstrate the performance of DQIHD. As a result,
given the DQM scheme, which primarily estimates the lowest order function in a system, and
the DQIHD scheme, which primarily estimates the highest order function in a system, it is not
apparent which is the best approach to adopt for system solutions.

Consistent with the idea of indirect approximation, we propose a novel inverse differential
quadrature method (iDQM) for system approximation. The proposed iDOM formulation
provides a general framework for approximating arbitrary functions of any order in a system and
either recover lower-order functions from high-order functions by iDQM operations or obtain
high-order functions from lower-order ones by DQM operations. In this context, it is possible
to combine the advantages of low-order numerical differentiation and low-order numerical
integration to achieve improved results. A specific case of the proposed iDQM scheme is DQIHD
in which the highest order derivative in a system is approximated.

Firstly, a formulation for approximation of arbitrary low-order functions from higher
derivatives (not necessarily the highest order as in DQIHD) is derived in §2. To circumvent
issues arising from computational inefficiency, associated with analytical integration or numerical
complexity due to Gaussian integration, we employ a unique strategy to extract iDQM weights
by inversion of existing DQM formula, leading to a robust and efficient routine described in §2d,
which can admit the use of different base polynomials, like DQM. Then, in §3, formulations
of error estimates are developed for iDQM-by-integration and iDQM-by-inversion, which are
subsequently compared with DQM error estimates developed by Shu [23]. Section 4 is dedicated
to demonstrating the accuracy of the proposed method through basic implementation of iDQM
for functional approximation as well as solution of high-order ordinary and partial differential
equations representing linear and nonlinear systems, with examples taken from heat transfer
and mechanics fields. This process eventually leads to the establishment of concepts of mixed
iDOQM (MiDQM) and full iDQM (FiDQM) described in §4b. Consequently, a comprehensive
error analysis entailing convergence, robustness, and numerical stability of iDQM operation is
illustrated with a boundary value example in §4g and §4h while §5 is dedicated to characterizing
the computational efficiency of iDQM. Finally, conclusions of the present study are considered
in §6.

(a) Brief introduction to differential quadrature method formulation

According to Weierstrass’s first theorem [21], suppose f(£) is a real valued continuous function
defined in a closed interval & € [a b], then there exists a sequence of polynomials P, (¢) which
converge to f(&) as n tends to infinity. Therefore, if f(£) represents the solution of a partial
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differential equation, then it can be approximated by a polynomial of a degree less than N through
the mathematical relation,

N-1

fE~PLE) =) at", (1.1)

k=0

where ¢ represents constant weights to be determined and & k are the linearly independent basis
vectors in the N-dimensional linear vector space, Vy. Adopting Shu’s general approach [23], some
sets of base polynomials can be selected to determine the weights, cx. Furthermore, according
to Shu [23], the numerical difficulty of determining the weights as N becomes large can be
eliminated by considering Lagrange interpolation polynomials as basis vectors in which Py(£)
is then approximated by

N
Pu() = _fili§) + E(&), (1.2)

i=1

where E(£) is the polynomial approximation error, and [;(§) is a (N —1) degree Lagrange
polynomial defined as

M(§)

)= mee —g)

(1.3)

where M(§) = ]_[fil(é — &), and MY (&) = Hszllk;éi(Si — &), and f(&;) is the functional value at a
discrete point i. In line with DQM routines outlined in [23], the first derivative of the function
fé), fi(l), at a discrete point i in the domain £ € [a b] can be realized as follows,

N
=3 alf+ B, forij=1,...,N, (1.4)
j=1

1 1 1 .
where ai)) = (M1 (&)/M)(E)(& — &), and aff) =~ L, ay), fori=].
In equation (1.4), Edlf(l)(s) is the approximation error due to first-order numerical
differentiation of f(£), which is given in [23] as

i KMD(g)
Ed f(l)(g) = N

, (1.5)

where K is a constant implied from Shu [23]. For an arbitrary derivative of order m, the DQM
(m)

approximation is characterized by a weighting coefficient 4; j which is evaluated based on the

recursive formula,

2m=1
(m) _ 1) (m-1) 7 L. . _
ajj _m<aij a;; fi—gj), fori,j=1,..., m=2,3,...,N—1,

N
A=y ul(f). (1.6)
j=1,j#i
In a compact form, the DQM approximation of mth-order derivative of f(£) is represented thus
F") = pMF + g0 =23 ... N-1, (1.7)

where F" ¢ RN*1 is the mth order derivative of the vector function F = [f1.f2, -, fN]T, Fe RN*1
while D" ¢ RN*N represents the DOM coefficient matrix for the mth derivative of F according
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to equation (1.4), and E4f("™) is the approximation error of the mth-order numerical differentiation
of F given as

Edif(m) (E) — [Edif(m) (El ), Edif(m) (52)’ o, Edif(m)(gN)]T, Edif(m) c RNXl (18)

Typically, EY0") << F"), 5o equation (1.8) can be rewritten as

F = DMF 4+ 10" 1=[1,1,...,1]", Ie RN<, (1.9)
where cg") is the mean approximation error of the mth-order numerical differentiation

expressed as

N
1 .
M = < 3 sy, (1.10)
i=1

2. Inverse differential quadrature method

This section introduces the mathematical formulation for the iDQM. The idea of iDQM involves
functional approximation of high-order derivatives of f(£) and the subsequent recovering of low-
order derivatives by integration of the high-order derivatives. Different approaches to achieve this
aim in a computationally efficient and numerically stable manner are presented in the following.

(a) First-order inverse differential quadrature method-by-integration

Suppose we let the first derivative of a function f(£), f M (&), be approximated for a fixed N as in
equation (1.2),

N

0@ =Y FV16) + E1e), 2.1)

i=1

where fl.(l) is the first derivative of f(§) at a discrete point and E;(£) is the polynomial
approximation error for f(). The original function f(§) can then be recovered from f( by
integrating equation (2.1) to get

N .
7€) = [FO@ e =31 [ 160 40+ ET V), 22)
H;(&)

where H;(¢) is a Nth-order polynomial function, ¢g is the constant of integration and Eilm(l)(s) =
[ E1(¢) d&. In a compact form, equation (2.2) gives

F=HOFD 4 Iy + EMY, 5D MO e RN HO e RNN, 2.3)

where FU) = [fl(l), 2(1),. e I(\,l)]T and Eilm(l) = [Eilnt(l)(él), Eilm(l)(‘;‘z), ey Eilnt(l)(EN)]T. Itis convenient
to recast equation (2.3) as:

F= I’:’I(l)if(l) + Eilnt(l), i;;’(l) c R(N+1)><1, ﬁ(l) c RNX(N+1), (2.4)
where ﬁ(l) =[HD 1] and i(l) =[FD ¢]T.

Equation (2.4) represents the iDQM relation which is used to approximate a function from its
first derivative.
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(b) Higher-order inverse differential quadrature method-by-integration

Let the mth-order derivative of a continuous function f(&) be f 1) (&), which is approximated as in
equation (1.2),

N
FE) =" F"ENE) + Em(E),  form> 1. (2.5)

i=1

E(£) is the polynomial approximation error for f"). To obtain f(")(¢) from equation (2.5) requires
mth order integration, which leads to

N .
£& = F"HE) + £V E) + En ), (2.6)

i=1

where H™ is (N + m — 1)th order polynomial functions containing mth order integral of [;(&),
E;{l‘“'” is the mth-order integral of E;;, and f; (m=1); s (m — 1)th polynomial functions of integration
constants given as

m=1) _ oo 4 Z Chpp (2.7)

Note: the subscript and superscript of Eiﬁt(m) refers, respectively, to the order of function, i.e. £,
and the order of integration operation.
In consistency with equations (2.2) and (2.3), equation (2.6) can be recast in a compact form as

F= ﬁ(m)if(m) + E;r;t(m)’ i;;’(m) c R(N+m)x1, ﬁ(m) c RNX(N+m)/ 2.8)

where H®™ = [H (1/(n —1))&""1 (1/(m —2))&" 2.1, HM e RNN, g = [, 8, . ,sN]
£ ERNX1 Emt(m) [Emt(m)(%_ ), Emt(m)(%_ ),. mt(m)(%_ )] 1nt(m) e RNX1 and F(m) [F(m) Cm
Cinp - CO]T (m) c 'R.NXl.

Assuming Emt(m) << F, the error term can be dropped from equation (2.8) to get

F~AMF™, 2.9)

(c) Computational aspects of inverse differential quadrature method-by-integration

The matrix of integral coefficients, H™, can be computed by analytical integration, which
requires a costly symbolic computational operation in MATLAB. Besides, analytical integration
may not be feasible for some vector basis functions, making this approach cumbersome and
undesirable. On the other hand, Gaussian integration can be used to compute H™ efficiently.
However, the numerical accuracy and stability of this operation depends on the number of Gauss
points, which is typically chosen intuitively. The additional computational variable manifested
by Gaussian integration increases the complexity of the iDQM-by-integration especially for high-
order functions. On this basis, to compute H, we seek a novel alternative that, respectively,
resolves the inefficiency and numerical instability bottlenecks of analytical and Gaussian
integrations yet sufficiently preserves the accuracy of both methods.

(d) First-order inverse differential quadrature method-by-inversion

To avoid the deficiency imposed by direct integration or Gaussian integration in the computation
of H™, we now describe an alternative formulation which is computationally efficient and
numerically stable to compute the iDQM coefficient matrix.

51800707 9L i 205§ 20igeds/jeuinof Biobuiysigndkiaposiefol



Assuming the coefficient matrix, D, is invertible, equation (1.7) can be rearranged to make the
vector function, F, the subject, in case of first order as

F=D 'F — [D(’l)Edif(l)] , (2.10)
or alternatively as in equation (1.9),
F=DYFD 115, DeRNN, .11

where D( ) D! and ¢y is the is the mean error distribution for first-order iDQM-by-inversion,
which is expressed as

o= [—ﬁ(l)Edif(l)] . (2.12)

mean

To compare equation (2.11) with equation (2.3), we consider derivation of the constant ¢g in terms
of the integration constant ¢y. Assuming that the function f(£), evaluated at point p in the closed
interval & € [a b], f(§y), approaches the constant ¢y due to the fact that the polynomial function
li(&p) — 0, then

fEp) = co + EMD(g,) st [i(5,) — 0. (2.13)

Now, evaluating f(§,) using equations (2.3) and (2.11), the following relation can be established,

co + EMM(g,) = [5(1)] FD 45, (2.14)
p

where [5(1)]p e RN is the pth row vector of matrix b, Rearranging equation (2.14) in terms
of cg gives

Go=co — [ﬁ(”]p FO 4 g, (2.15)

Substituting equation (2.15) into equation (2.11) gives

Fe (ﬁ(” —1 [ﬁ(”] ) FO 4 1¢p + IEMV(g,), DY e RNV, (2.16)
p
—
ﬁ(l)
which is recast as
F=DVFY + g™0, Dl e RNxN+D), (2.17)

where D" = [D" 1] and F" = [FD ] E/Y0 = 1E[" Mg, ).
Equation (2.17) is the equivalent of equation (2.4), which is numerically stable and
computationally efficient for the approximation of f(£) from its first derivative.

(e) Higher-order inverse differential quadrature method-by-inversion

To obtain higher-order iDOM formulae from the DQM counterpart, we revisit equation (2.17) for
the first-order derivative, explicitly expressed as

F=DYFD 4 Ieo + IEMV(g,). (2.18)

Analogously, we can write derivations of first and second derivatives of f(&) in terms of the second
and third derivatives, respectively, as:

PO =DBVF 4 I + IEM'D(g,) (2.19)
and FO =DVE® 4 1e, + IEM Vg,
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where Eiznt(l) and E;nt(l) are error estimates implied from equation (2.5) after first-order integration,

form=2,3,1i.e.

N
O =Y fPHOE) + ¢ + EMOe)
o (2.20)
and FO© =Y fPHOE) + ¢ + E5De).
i=1

By multiplying the first equation of (2.19) by DY while adding Icg and IEian(l) leads to

DYFD 1 1¢p + IE™D = BYDVE? + DV1e; +10p + DVIENM D (g,) + IEMY,  (2.21)

F

or alternatively as

F=DPF® 4 gc; +1co + (;:Eiz“t“)(g,,) n IEian(l)>, D? e RNXN, (2.22)

inv(2)
EZ

where D® = (D)2 and it can be proved that § = pL Eiznv(2) is the error due to second-order
iDQM-by-inversion operation. Repeating the same operation as in equations (2.21) and (2.22) twice
for the second equation of (2.19), and adding the last three terms in equation (2.22), leads to

DPF? + ey + 1 + EV® = DPDVED + DP1c, + DPIEMD (&) + ey + I + BV,

F
(2.23)
or alternatively as
. 1 1, , .
F=DYF® Egzcz 01 +Ico + (Engg"t(”(g,,) + EIZHV(Z)), D® e RNXN, (2.24)

inv(3)
ES

where D® = (13(1))3 and it can be proved that (1/ 2)E2 = D1 EiSnV(3) is the error due to third-order
iDQM-by-inversion operation.

Equations (2.17) and (2.19) represent the second- and third-order equivalent of equation (2.8)
from which a vector function F can be recovered from its higher derivatives. Accordingly, the
general expression for the mth-order iDQM-by-inversion operation is given as

_ a0 ) 1 1 1 -1 pint(1) inv(m—1)
F=D""F'" + (m_l)!é‘ cm—1+, ..., +&c1 +Ico + (m_l)!’é En "Gp)+E, ,
innlv(m)
_ (2.25)
where Ei;‘v(”” is the error due to mth order iDQM-by-inversion operation. The error term in

equation (2.25) can be dropped since it is very small compared with F. Thus, equation (2.25) is
rewritten as

—~ 1 ~
F~D"™Fm 4 mg’"’lcm,l 4. 4k +1cg. D™ e RNXN, (2.26)

Note: the subscript and superscript of Ei,iw(m) refers, respectively, to the order of function, i.e. f("),

and the order of inverse operation.
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If coordinate transformation is performed for the interval & € [a b] to y € [0 L] while noting
from equation (1.3) that [;(0) = 0, equations (2.9) and (2.26) can be transformed to

F~HMF™ 4 m=1em=1oyt, ., +yfD(0) + 1f© (2.27)

m—17
and

—~ 1
F~D™Em 4 mym-1 =10y, 4+yfD(0) + IO, (2.28)

wherey =[y1,v2,...,yn]’, y e RN*L.
It should be noted that after transformation, point &, =y, = 0. Subsequent derivations will be
presented in the new coordinates, y.

(f) Proof of y" = m!ﬁ(m)l

Suppose an mth-order polynomial, f(y) =y can be approximated by DQM as
N
f) =D fuliy) + E), (2.29)
i=1

where [;(y), f(y;) and E(f) are described according to equations (1.2)-(1.5). Differentiating
equation (2.29) once according to DOM approximation leads to the discretized equation,

F) = pWF 4 gdifD), (2.30)

By evaluating the first derivative of the function y" analytically, equation (2.30) can be
rewritten as

my™=D = pOF 4 g, (2.31)
which is further simplified (via inversion) after rearrangement in line with procedures in §d as
F=mD"y=D 4 1. 2.32)

In line with equation (2.13), if a point exists in the closed interval y € [0 L] where f(0) equals
the constant ¢, then ¢y can be derived in terms of ¢ as

Go=co—m [ﬁ(”]l g, (2.33)

Note that equation (2.33) is exact since integration of f(y) =y is exact. Additionally, p=1
since i, =0 is the first point in the interval y € [0 L]. Then, equation (2.33) can be substituted into
equation (2.32) to give

_ (D _ [0 (m—1)
F= (D I [D ]1) my ™D 1 Ieq, (2.34)
—_———
B
which is now simplified as
F=mDVy™m=D | I, (2.35)

where ¢ is the intercept of f(y). Since f(y) = y™, such that the intercept cg = 0, then equation (2.35)
becomes

F=y"=mDVy"™ D, form=1,2,... (2.36)

By considering that y = DI from equation (2.36), we can recast equation (2.36) after successive
expansion as

y" =mD", (2.37)

where D™ = (ﬁ(l))m. This completes the proof.

51800707 9L i 205§ 20igeds/jeuinof Biobuiysigndkiaposiefol



3. Inverse differential quadrature method error

Itis important to formulate an iDQM error estimate to describe the performance of iDQM in terms
of numerical accuracy and numerical stability. Since iDQM-by-inversion is adopted in this work to
circumvent computational issues arising from analytical or numerical integration, there is also a
need to quantify the error estimate due to DQM inversion in order to assess the approximation
quality of the proposed iDQM-by-inversion. Moreover, as the DQM coefficient matrix is used to
compute iDQM weighting factors, a comparison of discrepancy between DQM and iDQM-by-
inversion error estimates is necessary to confirm improvements and drawbacks of the proposed
method.

(a) Error formulation of inverse differential quadrature method-by-integration
Consider a continuously differentiable function up to mth degree, f(y), where m is very high,
fo)=y™, form=>1. 3.1)

Approximation of the first-order derivative of f, f @, according to equation (2.1) gives

(1) (y) ~ Zf(l)l (), st N<<m. (3.2)
i=1

To determine the approximation error, a function, F(z), is defined such that

F@) =V @) - f(2) - bMy(2), (3.3)

where My (y) is a N degree polynomial defined in equation (1.3), and b is a constant. It is noted that
when z=1y1,¥2,...,yN, F(z) =0. So, by setting F(y) =0, the approximation error is estimated as

Ex) =D ) - A7) = bMn (). (3.4)

Considering equation (3.3), it is noted that F(z) has N roots, y1,¥2, . .., YN, in the domain y € [0 L].
Applying Rolle’s theorem [51] repeatedly leads to the Nth-order derivative of F(z), EN(z), which
has at least one root, u, between y; and yy leading to

F¥(w)=0, (35)
while noting that f]ill )(z) is a polynomial of (N — 1) degree. In this instance,
A
b= NT (3.6)
Substituting equation (3.6) into equation (3.4) gives
N+1
W
Ew =" ). 67)

In general, u is a function of y.
It is noted in equation (3.7) that E1(y;) =0, since Mn(y;) =0. In line with equation (3.7), let

us denote the maximum error of f) approximation for a fixed order of y as Ej,, which is
expressed as R
KiMN(y)
Etna ) = — 7, (3.8)

where El = [fN+1(u)|max. Now, the maximum error estimate of the original function, f(y),
recovered via applying iDQM-by-integration to equation (3.7) is obtained thus
KMy V)

N! !

mt(l)

1m'n(

W) = (3.9)

int(1) 1nt(1)

where My’ and E; " are the first-order integrals of Mn(y) and Eq,,, respectively. Since Ky
and N are constants it can be stated that the total error arising from numerical integration
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is constrained by Mili,lt(l). To have a clearer understanding of the implication of equation (3.9),
consider a specific case of Chebyshev grid distribution, where y; are the roots of the Chebyshev
polynomial, Ty(y), of order k. In this context, y; can be expressed as

yi=cosb;, N6;=ir fori=0,1,...,N. (3.10)

In connection with equation (3.10), the polynomial, My(y), can be expressed in terms of Ty (y) as
(see [23])

Mn() =1 =10 W), (3.11)

where TS)(y) is the first-order derivative of Tn(y). Setting y=cos® and Tn(y) =cosN6O in
equation (3.11) leads to,

Mn(y) =Mn(0) = Nsin6 sin N6. (3.12)
The first-order integral of My (y) in equation (3.12) is expressed as
0 for N=0

N cos N6 B N cos(NO — 260) B N cos(NO + 20)
2N 4N —8 4N +8

—sin%0 for N =2.

M}f}tﬂ)(y) _ for N+#£0,2 (3.13)

Subject to equation (3.10), equation (3.13) can be recast in terms of y; at the grid points as:

0 for N=0
_ 1 221 2 -1
M}gt(l)(}/z‘) — IN(=1) (ZN — m — 4Z\Zl+ 3 for N#£0,2 (3.14)
—-(1- .‘/12)2 for N=2.

As M}i}t(l)(yi) varies in N by order O(N/N) in equation (3.14), it can be deduced that for a
fixed order of y, the accuracy of iDQM operations is not substantially affected after first-order
integration as N increases, since O(N/N) is mutually compensating (i.e. varies directly and
inversely equally in order of N).
The error for recovering f from its second-order derivative, f?), can be obtained by redefining
equation (3.3) as
F@) =fP@) - £ (2) - bMn(2). (3.15)

Then, repeating the procedures of equations (3.4)-(3.8) leads to the maximum error for f
approximation from f® as

_ KaMn(y)

B W) =" (3.16)

where fg = |fN+2(/,L)|maX‘ The maximum iDQM error estimate of the original function, f(y),
recovered via second-order iDQM-by-integration gives

KoMy )
N! '
Adopting a Chebyshev grid representation as applied in equations (3.10)—(3.14) results in

int2) (N _ iV 3 A 1 ' 11
My (yi) = ( 1)8[(4% 3y,)[(N_3)2 (N+3)2]+3yl[(N+1)2 (N—l)ZH' (3.18)

A similar approach can be used to recover the maximum iDQM approximation error of f(y) from
its third-order derivative, f®, as,

Fint®

2max

)= (3.17)

E;nt(3) )= K3M1Ar}t( )

moe =N (3.19)
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where K3 = [fN 3(14) | max, and Mmt(3 (y) in the context of Chebyshev grid is given by

in i : 1
MY (i) = (=1)' = [ (8%1‘85”2“)[@—4)3+(N+4)‘°’]

5 1 1 6
+4Q2y; — 1) [(N oy + N1 2)3:| - ﬁ} (3.20)
Equations (3.18) and (3.20) show that Mjlf;t(z) varies in N by order O(N/N 2) while Mi;}t(S) variesin N
by order O(N/N?3). This observation illustrates that, for high-order approximation due to iDQM-
by-integration, the approximation error is scaled by a function which varies inversely in multiple
orders of N. Therefore, subject to a fixed order of y, high-order iDQM-by-integration operation is
potentially stable numerically as N increases.

(b) Error of inverse differential quadrature method-by-inversion
According to equation (2.17), the approximation error for first-order iDQM-by-inversion reads
W = M), (3.21)

Noting equation (3.9), the maximum approximation error for first-order iDQM-by-inversion
becomes

Emv 1) Klet(l)(O)

Lo N1 , (3.22)
where Milf}t(l)(O) given in the context of Chebyshev polynomials reads
0 for N=0
MO0y = I N(=1) 1 + 1 4 ! for N+#£0,2 3.23
v 0= 2N TaN-8 AN +8 / (5.23)
-1 for N=2.

As in equation (3.14), Mint(l)(O) varies in N by order O(N/N) implying that, as N increases, the

contribution of Mmt(l)(O) to the total approximation error in equation (3.22) is expected to be

minimal. In the same vein, the second-order approximation error according to iDQM-by-inversion
is obtained according to equation (2.22),

Ey"Pw) = yEy D0 + E"M(0). (3.24)

By substituting for Eiznt(l)(O) and Eilnt(l)(O) in equation (3.24) using equations (3.9) and (3.17), the
maximum approximation error due to second-order iDQM-by-inversion operation gives

oA gint(1 T A gint(1
g _ KoMy | KaMy o)
2 N! Nt

(3.25)

To establish a relationship between K; andKj, consider the Nth derivative of f(y) expressed as

N m!
FW=6= N),y (3.26)

Furthermore, a recursive relation can be established between a derivative and its lower-order

derivative as

A (y) = m! m-N-1_ (m— N)

N
N o) (3:27)

and
m! _(m-N-2)

N+2 _ : m—N-2 N+1
)= N2 — W) (3.28)
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Noting this relation, it can be established that

(m—N —

() = Dener (3.29)

and
~ m—N—1)~
_—7( )K

3.30
2= (3.30)

Substituting equation (3.30) into equation (3.25), the approximation of the second-order iDQM
inversion gives

pinv@ _ (y(m —-N-1) N 1) KlM;\f;t( )(0)

’ 3.31
2o w0 NI &30
which is further simplified to
i -N-1) inv(1)
EIv@ _ (y(m + 1) O, 3.32
2max M(y) Tmax ( )

Applying similar procedures as in equations (3.24)—(3.32) leads to the approximation error for the
third-order DQM inversion:

™ (3.33)

pinv@) _ yi(m—N —23)("1 -N-2) ym-N-1) 1) EVO),
max wA(y) w(y)

According to equations (3.31) and (3.33), high-order approximation by iDQM-by-inversion incurs
progressive error, which increases successively by order N.

(c) Comparison of inverse differential quadrature method error with differential
quadrature method error

As noted in Shu [23], the attributable error as a result of first-order DQM approximation is
given by

()
NI

Ey)= Mn(y), (3.34)

where p is a function of y. Considering equation (3.8), the maximum error of function
approximation by DQM is analogously expressed as

KiMn(y)

Emax(]/) = NI ’

(3.35)

where Ki = [fN(14)|max. By differentiating equation (3.35) to obtain the error due to first-order
numerical differentiation, we get

dif(1)
i KMy~ (v)
B == 2, (336)

where ngif(l)(y) and Eiﬁ@ are the first derivatives of My(y) and Emax, respectively. According

to equation (3.36), the error arising from first-order DQM differentiation is constrained by
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Mi]if(l)(y), since K1 and N are constants. Adopting Chebyshev grid representation, considering
equations (3.11)—(3.12), the first derivative of My(y) is expressed as

i Nsin N6 cos 6 + N? cos N§
M;l;f(l) (y) __ sin cos. + cos ' (3.37)
sin 6
Substituting for y; at the Chebyshev grid points while noting equation (3.10) results in
dif(1 —1)y*IN?  fori#0,N
MO gy = 1OV 7 (3.38)

—2N2 fori=0,N.

In the same vein, the maximum error due to second-order DQM approximation is given as

dif(2)
KM@
Fi ) = M), (339)

Evaluating Mg}f(z) (v) in the context of Chebyshev polynomials leads to

dlf(z 2NZ cos N6 cos — N sin N sin @ — N3 sin N6 sin 6
)= sin?
Nsm N6 cos? 6 — N2 cos N6 sin 6 cos 9 (3.40)
sin® @

Substituting for y; in equation (3.40) at the Chebyshev grid points using equation (3.10) gives
2.5 5 .
—§N (1+2N%) fori=0

M@y = L (DN Vly fori#0,N (341)

i
2
(—1)1§N2(1 +2N?) fori=N.

According to equation (3.38), first-order DQM approximation is constrained by Mdlf(1 which

varies in N by order O(N?). For this reason, M if(1) magnifies the total DQM approximation error
subject to first-order numerical d1fferent1at10n Second-order DQM approximation gives rise to
a total approximation error constrained by Mdlf(z) which varies in N by order O(N*) leading
to further magnification of the total error as the order of numerical differentiation increases
to 2. In general, for a fixed order of numerical differentiation or numerical integration, both
DQM and iDQM total errors decrease as N increases as they vary each in N by order O(1 JNN).

However, the contributions of Mdlf(l)

and M}f}t(l) to the total errors subject to first-order numerical
differentiation and numerical 1ntegration, respectively, affect the overall accuracy and numerical
stability of the approximations. Comparing iDQM-by-integration and DQM error representation
in this regard, it can be deduced that, for a fixed order of y, the resulting error from first-
order iDQM-by-integration is less than the first-order DOM approximation, as the total error
magnification on account of the order of Mdlf(l) and MK]“(D, respectively, in N is higher for
DQM than iDQM approximation. This observatlon is also true for high-order iDQM-by-integration

operation since, given a fixed order of y, the contribution of Mi;;t(l) to the total error is less than the

contribution of Mdlf(1 to the total high-order differentiation error of DQM operations. Although

iDQM-by-inversion operation progressively magnifies the approximation error by order N, the
rate of increase in the order of N for every successive inversion by iDQM operation is less than
the rate of increase in the order of N for every successive differentiation by DQM. Therefore,
iDQM operations in general potentially demonstrate superior numerical stability than DQM
operations.
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4. Numerical results and discussions

In this section, we present some illustrations of the numerical accuracy and numerical stability
of the proposed iDQM for functional approximation as well as solution of ordinary differential
equations (ODEs) and partial differential equations (PDEs) representing linear and nonlinear
systems. We further demonstrate how different schemes of iDQM can be implemented using
several examples. The results obtained are then benchmarked with DQM and exact solutions
to evaluate the performance of iDQM solutions. To show the robustness of iDQM solutions,
numerical analyses based on Lagrange basis polynomials on a non-uniform Chebyshev grid
structure are performed and the errors computed. In addition, a comprehensive error analysis
to examine the performance of iDQM schemes in terms of convergence and error propagation
is performed using a fourth-order boundary value problem (BVP). The results are benchmarked
against DQM and exact solutions to evaluate the gains of iDQM approximations.

Note: all examples performed in this work are implemented using iDQM-by-inversion since it
proves more computationally efficient than iDQM-by-integration.

(a) Approximation of function and its higher derivatives
Consider the function,
£=0.02(12 + 3y — 3.5y% + 7.24%) (1 + cosdry) (1 + 0.8sin3ny), Vye[0 1]. (4.1)

Function f and its derivates up to fourth order are approximated by iDQM schemes of different
orders. The results shown in figure 1 prove the accuracy of iDQM approximation as they agree
satisfactorily with DQM and exact solutions. The measured relative error, €, between iDQM and
DQM estimates and exact solution is computed using the relation,

_ ||f - fapprox||2
[1£112

where f is a vector function consisting of exact values of f evaluated at each point in the domain
while fapprox represents a vector function of approximate estimates of f at each point in the
domain. All error plots presented in subsequent examples are computed using equation (4.2).

According to table 1, iDQM estimates of f in equation (4.1) and its derivatives prove more
accurate than DQM estimates. This observation is more evident for second- and third-order iDQM
schemes in which the total error is less perturbed by numerical differentiation by DQM (to obtain
high-order derivatives) or numerical integration by iDQM (to obtain low-order derivatives).
Depending on the order of iDQM, the accuracy of functional approximations may fluctuate
between low-order derivative approximation and low-order integral approximation, which is
beneficial compared with DQM estimates, which accumulate error subject to successive high-
order numerical differentiation. Apart from this, the rate of decline in numerical accuracy for
DQM estimates is higher than for iDQM estimates, which is a good indication of numerical
stability in favour of iDQM. This aspect is discussed further in §4g.

(4.2)

(b) Solution schemes for systems of differential equations by the inverse differential
quadrature method

By approximation of higher derivatives instead of the original function, the proposed iDQM
formulation presents a unique opportunity to tune the order of a system, which aids in control
of numerical accuracy and numerical stability of the system. In this context, two concepts are
proposed in the following subsections.

(i) Mixed inverse differential quadrature method

This scheme involves combination of DQM and iDQM in a manner that ensures application of
iDQM for approximation of intermediate derivative(s), which is lower than the highest derivative
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Figure 1. iDQM results implemented for approximation of (a) function and (b) fourth derivative. (Online version in colour.)

Table 1. Maximum absolute error (relative error) of iDOQM and DQM estimates for functional approximation.

41 points

fourth-order iDQM
10—12 (10—12)

second-order iDQM
10—14 (10—14)

third-order iDQM
10—14 (10—14)

first-order iDQM
10—15 (10—15)

in a system, such that lower-order functions can be obtained via iDQM integration while higher-
order functions are obtained via DQM differentiation. For example, a fourth-order system of
equations can be represented by approximation of the second-order derivative in a MiDQM
scheme, in which case the first-order derivative and original function are obtained by numerical
integration while third- and fourth-order derivatives are obtained by numerical differentiation.
This strategy leads to reduction in the DQM order required for the system solution and, by
implication, reduction of the order of the DQM approximation error. This approach is highly
promising, and therefore noteworthy, in that it allows tuning of the numerical accuracy of DQM to
achieve improved solution. A demonstration of the implementation of this approach is presented
for one dimension and two dimensions in appendix A.

(ii) Full inverse differential quadrature method

In contradistinction to its DOM counterpart, FIDQM presents an opportunity to approximate the
highest derivative in a system and then apply equation (2.28) to retrieve lower derivatives via
iDQM operation. As established in the previous section, given a geometry, the error accrued by
integrating a high-order function to get low-order estimates is quite stable numerically compared
with differentiating low-order functions to get high-order estimates. As a result, depending on
properties such as geometric specifications, boundary conditions or order of a system, high
numerical accuracy can be achieved potentially by FIDQM schemes compared with DQM.
A demonstration of the implementation of this approach is presented for one dimension and
two dimensions in appendix A.
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Figure 2. Euler cantilever beam under uniform ¢ load. L =10m, b6 =0.01m, h = 0.0Tm, £ =9.05GPa and ¢ = —1N.
(Online version in colour.)
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Figure 3. iDQM results for Euler beam (a) deflection and (b) moment. (Online version in colour.)

(c) Numerical solution of Euler cantilever beam (ODE)

Consider a Euler cantilever beam under a uniformly distributed load, g (figure 2), the governing
equation together with the boundary conditions for the beam deflection, w, reads

1
Y o vye[0L], L=10m
v (4.3)
dw d’w dBw .
and wy=0=0, —| =0, —| =0 —| =0,
dy ly=o dy= y=r dy” ly—r

where E is Young’s modulus of the beam and I is the second moment of area of the beam’s cross-
section. According to [52], the exact solution of the beam deflection is given by

qy*(6L* — 4Ly + 1)

24ET '
Given the iDQM discretization scheme described in appendix A, it is noted that the equations
arising from iDQM constitute an underdetermined system because the number of unknowns
exceed the number of equations. In this context, a pseudoinverse procedure based on truncated
singular value decomposition described in [53] is adopted in this work to solve the systems of
equations.

According to figure 3, all iDQM estimates of the deflection and moment agree well with exact
and DQM solutions showing the accuracy of iDQM solutions. In addition, according to table 2,
the relative errors due to iDQM estimates computed for beam deflection, moment and shear
force show significant improvement over DQM estimates for the same number of points. This
remarkable improvement shows the great potential of iDQM schemes for numerical solution of
ordinary differential equations.

w(y) = (4.4)
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Table 2. Maximum absolute error (relative error) of iDQM and DQM estimates for Euler cantilevered beam.

five points

first-order iDQM second-order iDQM third-order iDQM fourth-order iDQM

deflection 1072107 107810 ") 10-B(1071) 10-B(1071) 10-B(1071)
moment 1072007%) 107810 10~1(10~) 10-1(107) 10~1(107)
shearfore 107 B(107")  107™(10~") 10-%(107) 10-%(107) 10~"(10716)

(d) Nonlinear steady-state solution of heat conduction in slab with temperature-
dependent conductivity (ODE)

The problem involves a steady-state heat conduction in a slab with temperature-dependent
thermal conductivity in which the non-dimensional form of the temperature () governing
equation is expressed as

2
) —0, 0<y <1, 6(y=0)=0, oy =1)=1. (4.5)

2
(1+0)d 0 <d0

a *ay
The exact solution of the problem is given in [54] as

0=—1+/1+3y. (4.6)

The solution of the nonlinear system, i.e. equation (4.5), is obtained based on Newton-Raphson
optimization after iDQM discretization. iDQM results prove accurate with respect to the exact
solution and DQM estimates as temperature profile of the slab as well as its first-order derivative
match satisfactorily (figure 4). As expected, the error estimates reported in table 3 demonstrate
that, although the accuracy of iDQM and DQM estimates of the temperature variable compares
equally, iDQM estimates of higher-order derivatives of the temperature variable proves more
accurate than DQM estimate, suggesting that error propagation during iDQM operations is less
than for DOM operations.

(e) Solution of convection-diffusion equation (PDE)

Consider a steady-state convection-diffusion equation with boundary conditions as follows,
Pu u du

Y __P_ZO/ O< 7 511
3x2+8y2 “ox =%y

u(x,0)=u(x,1)=0, 0<x<1, u(0,y)=sin(wy), u(l,y)=2sin(ry), 0<y <1, 4.7)
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Figure 4. Nonlinear steady-state solution of heat conduction for (a) & and (b) 96 /3. (Online version in colour.)
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Figure 5. DQM and iDQM u(x, y) estimates at y = b/2 for P, (a) 100 and (b) 1000. (Online version in colour.)

where P, is the Peclet number. The exact solution for the given partial differential equation is
given in [55] as

(4.8)

2e((=P2)/2) ginh(ox) + sinh(o (1 — x))
— (PFX/Z) 1
u(x,y)=e sin(ry) ( sinh(o) ,

where o = /72 + P?/4.

According to figure 5, DQM and iDQM values converge to an exact solution of the PDE in
equation (4.7) for a 41 x 41 grid, whereas in figure 5, only second-order iDQM converges to
the exact solution for a 101 x 101 grid. It is quite evident from table 4 that the accuracy of the
numerical values has a strong dependence on the Peclet number. For the case of Pe =1000, DOM
and first-order iDQM do not converge to the exact solution for the 101 x 101 grid and further grid
refinement fails to improve the solution. According to the findings in [38], an upwind scheme is
necessary to obtain accurate solutions for a high Peclet number. Nonetheless, second-order iDQM
furnishes an accurate solution for Pe = 1000 without an upwind scheme, showing the accuracy of
the proposed iDQM. Figure 6 demonstrates the agreement of second-order iDQM with an exact
solution over the entire domain.
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Figure 6. U(x, y) estimate for convection-diffusion equation by iDQM (second order) (31 31grid). (a) Max. Abs. Error= 1071,
(b) Max. Abs. Error=10~"°, () Max. Abs. Error= 10~ and (d) Max. Abs. Error=10">. (Online version in colour.)

Table 4. Maximum absolute error (relative error) of iDOM and DQM u(x, y) estimates.

first-order iDQM second-order iDQM
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Figure 7. Plot of (a) deflection and (b) through-the-thickness shear stress, for isotropic plate. (Online version in colour.)

(f) Solution of simply supported isotropic plate under sinusoidally distributed load (PDE)

We consider a thin isotropic plate with dimensions 2 and b in x and y coordinates, respectively,
simply supported on all the edges and under sinusoidally distributed load. The governing
differential equation and associated boundary conditions are given as follows,

ok T Taay T ap T D ST
w(x,0) =w(x,a) =w(0,y) = w(b,y) =0 4.9)
82w 82 2

92w w 0w
and w(oly):@(uly):aiyz(xlo)zaiyz(x’b)ZO’

where w is the transverse deflection of the mid-plane of the plate under loading g(x,y) =
qo sin(rx/a) sin(wy/b), qo is the amplitude of the sinusoidally distributed load, D is the flexural
stiffness of the plate given as D = (EW3)/(12(1 — v?)), E is Young’s modulus, v is Poisson’s ratio
and £ is the thickness of the plate. Material and geometric properties of the plate are given by
E=200GPa,v=0.3,a=b=1m,h=0.01m and ggp =1Pa.

The Navier’s closed-form solution is simply given by,

— q in (™) sin (7Y
w(x,y) = - (;20+ blz)z s1n( p )sm( p ) (4.10)

Solutions of the plate equation obtained by iDQM and DQM are shown in figure 7 where
deflections and stresses for the plate match DQM and Navier’s solutions demonstrating accuracy
of iDQM. Figure 8 shows the deformed planform of the plate under the loading by fourth-order
iDQM along with the maximum absolute error in the entire domain. Furthermore, the percentage
error of DOM and iDQM estimates in table 5 clearly demonstrates faster convergence for fourth-,
third- and second-order iDQM over DQM, highlighting the computational merits of the proposed
method.

(g) Error analysis (measure of numerical accuracy)

To appropriately examine the convergence of iDQM, it is important to assess the numerical
accuracy of iDQM estimates subject to increased discretization of the domain. In this regard, we
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Figure 8. Transverse displacement w of the isotropic plate (21 x 21 grid). (Online version in colour.)

Table 5. Percentage error of DQM and iDQM estimates for plate solution.
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consider a BVP with the following set-up,

dtu _d*u
——2—+4+U=0, V 04
dy* dy? * yelod
) ) (4.11)
and Uy=0)=0, —= =2, Uly=1)=e¢, —5 =3e.
dyZ y=0 dyZ y=1

The exact solution of equation (4.11) is expressed as U =cosh y + cos y. After solving these
equations using different iDQM schemes in accordance with the implementation procedures
described in the appendix, the convergence of iDQM and DQM solutions for U and its higher
derivatives based on Lagrange polynomial basis are shown in figure 9. According to figure 9,
iDQM estimates provide improved convergence over DQM estimates in all cases considered.
Clearly, DQM estimates show accumulation of error as the order of the numerical differentiation
increases. This observation can be attributed to the perturbation of the total error caused by high-
order derivatives of My(y), which increasingly affects the accuracy of DQM estimates especially
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Figure 9. Relative error of BVP solutions for (a) U and (b) U /0 y“. (Online version in colour.)
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Figure 10. Error propagation of BVP solution based on Lagrange basis polynomial for (a) DOM estimate and (b) iDQM estimate.
(Online version in colour.)

at the boundary, subject to increase in N. On the other hand, iDOM estimates are less perturbed
by a high-order integral of My(y), which varies inversely to a high order of N (as in iDQM-
by-integration) or varies with N at a lesser rate than DQM (as in iDQM-by-inversion), leading to
improved stability of the approximation error.

(h) Error propagation (measure of numerical stability)

As a measure of numerical stability, propagated error arising from approximation of low-order
functions from high-order estimates (by using iDQM) or approximation of high-order functions
from lower-order estimates (by using DOM) is examined in this section. Figure 10 shows error
propagation of the BVP example in §4g, in which high-order functions (labelled superscript d)
are computed from primary estimates (labelled superscript p) using DQM operation. On the
other hand, low-order functions (labelled superscript i) are computed from primary estimates
by iDQM-by-inversion.

According to figure 10, the errors resulting from high-order integration by iDQM-by-
inversion are minimal, indicating numerical stability of iDQM operation. In the case of DQM,
errors propagate by multiple orders for successive differentiation operation. While the error
accumulation for low-order DQM approximations seems tolerable, the multiple order increment
in the error due to high-order differentiation can cause inaccuracy which, in turn, leads to
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Table 6. Computational efficiency of iDQM and DQM approximates.

time requirement (nb?)

DQM first-order iDQM second-order iDQM third-order iDQM fourth-order iDQM
example (4q)

3 The DQM estimates converges to 102,

numerical instability. As already mentioned in §3c, numerical stability of the DQM solution is
significantly affected by the high-order derivative of M(y), which increases geometrically as
the order of N increases. Therefore, on increasing N, high-order derivatives of Mn(y) quickly
offset the total error to reach a lower error bound. However, the lower error bound of low-order
estimates from high-order estimates remains stable after iDQM-by-inversion, indicating low error
propagation and improved numerical stability.

5. Computational efficiency of the inverse differential quadrature method

To measure the computational efficiency of iDQM, we consider a comparison of the time and
space memory requirements for the different benchmark problems to converge to a fixed value of
the maximum absolute error emax for DQM and iDQM estimates. In this regard, the bandwidth
(b) and the total primary degrees of freedom (1) of the final matrix A for a given algebraic system
Ax=b are computed according to table 6.

Some benchmark examples (4c, 4d and 4g) are chosen in table 6 to reflect different types
of analysis, boundary conditions and nonlinearities that directly affect the computational
complexities of a given numerical problem. According to table 6, iDQM approximation preserves
the order of the numerical complexities of the problem in terms of time and space requirements as
DQM. It is worth noting that the DQM estimate for example (4c) fails to converge to the threshold
absolute maximum error emax, i-e. 10713, Thus, it is concluded that iDQM approximation
preserves the computational efficiency of DQM approximation.

6. Conclusion

This study proposes a novel iDQM for numerical analysis of engineering systems. Given a system
of high-order differential equations, the proposed iDQM approximates high-order variables
rather than the original function which can be subsequently recovered by integration. To deal
with issues bordering on computational inefficiency of analytical integration and numerical
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complexity of Gaussian integration, this study develops a novel strategy which relies on
inversion of the existing formula of the DOM to compute the required iDQM weighting factors.
Furthermore, to evaluate the performance of iDQM solutions, detailed derivations of iDQM error
estimates based on integration and DQM inversion are developed in this work, which are then
compared with DQM error estimates outlined in [23]. In the context of the iDQM scheme, two
implementation approaches identified as Mixed iDQM and Full iDQM are proposed to obtain
solutions of the examples provided in this work. Remarkably, the concept of Mixed iDQM
provides an excellent opportunity to control the accuracy of system solutions by combining
the numerical advantages of low-order differentiation and low-order integration to achieve
an improved solution. Subsequently, a demonstration of iDQM implementation for functional
approximation, and numerical solutions of systems of high-order ordinary differential equations
and partial differential equations representing linear and nonlinear systems, prove that iDQM
operations are potentially robust to furnish accurate solutions to numerical systems. Finally,
an appraisal of the convergence and numerical stability of the iDQM approach suggests that,
compared with DQM, improved convergence can be obtained for systems solution and improved
numerical stability is guaranteed by using the proposed method without loss of computational
efficiency.
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Appendix A

(a) One-dimensional inverse differential quadrature method discretization

Consider a fourth-order ordinary differential equation,

(314;; =q (AT)
then the various numerical schemes in discretized form can be realized as follows:
DQM
DYw=q, w=[wy,ws,...,wn]T, =91, 92,...,98]", w,qeRN* (A2)
First-order iDQM
DOWD =q, w=DY%D, #D = [w® w(©0)]”
and w R(N+1)><1/ ﬁ(l) _ [ﬁ(l) 1, ]5(1) e RNX(N+1) (A3)
Second-order iDQM
DOw® =q, w=DP%?, % =[w® w®(0)w©)]’
and w2 e R(N+2)x1, 5(2) _ []3(1) yIl, ]5(2) e RNVx(N+2) Ad
Third-order iDQM
DOWG — q w= ]3(3)W(3), WO — [w(3) w(z)(O) w(l)(O) w(O)]T
(A5)

2
and WO ¢ RIN+B)x1 D® — []3(3) Y7 y I} , p® e RNx(N+3).
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Fourth-order iDQM

Lw® = qQ w= D(4)w(4 w® = [w® w®0) w?(0) w®(0) w(0)]”,

A6
and W@ ¢ RIN+x1 DY — |:]3(3) Yj ﬁ y I} p®W c RNx(N+4) (A6)
! 6 2 ! '

All coefficient matrices used in this section are as defined in §2. I; € RN*N js an identity matrix,
N being the number of points chosen in the domain. D, D matrix and I represent DQM and iDQM
coefficients defined in §2.

(b) Two-dimensional inverse differential quadrature method discretization
Consider a second-order partial differential equation,

2w 92w
—q A7
oz T e q (A7)

then the various numerical schemes in discretized form can be realized as follows:
DQM
DPwIl + L;wD?' =
w(x,y1) o w(x,yn) (A 8)
and w= , we RNN D,=D,=D.
w(xp,v1) .. W (X0, Yn)
First-order iDQM

~ T ~T
DS)Vv(l)Igy) +I$W(1)Df}) _ w0 ¢ RNFDx(N+1)

q,
w(0,0) wy (0,y1) ... wy(0,yn)
w0 _ wx(a'cl,O) wxy(a'cl,yl) wxy(ﬁ,yn) , A9
Wy (x,0)  Way (X, y1) oo Wy (Xn, Yn)
and By =D =1 DY), 1) =1 =[0 1]
Second-order iDQM
fjf’w@nff n I{(ii)wﬂ)f);z) _q, WO e RNFDX(ND),
w(0,0) wy(0,0) W, Oy1) ... Wy (0,yn)
w(0,0) Wyy(0,0) (O 0y1) ... Wy (0,yn)
WO = | we (1,00 wey, (41,00 wepe (x,p1) o wepe (1Y) | (A 10)
W2 (X, 0)  Wey, (X0, 0)  Wy2pp (xmy1) .. W2y (X, Yn)
and BY =By =1y D?), 15 =15 <[00 1]
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