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Abstract: Aptamers are high affinity single-stranded DNA/RNA molecules, produced by a
combinatorial procedure named SELEX (Systematic Evolution of Ligands by Exponential enrichment),
that are emerging as promising diagnostic and therapeutic tools. Among selection strategies,
procedures using living cells as complex targets (referred as “cell-SELEX”) have been developed
as an effective mean to generate aptamers for heavily modified cell surface proteins, assuring the
binding of the target in its native conformation. Here we give an up-to-date overview on cell-SELEX
technology, discussing the most recent advances with a particular focus on cancer cell targeting.
Examples of the different protocol applications and post-SELEX strategies will be briefly outlined.
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1. Introduction

Nucleic acid-based aptamers are single-stranded DNAs or RNAs able to bind with high affinity
(dissociation constant in nanomolar/picomolar range) and specificity to a given target by folding in
tridimensional structures. They are also called “chemical antibodies” and possess many advantages
over antibodies as tools in research, diagnosis, and therapy. Indeed, aptamers are not immunogenic,
have small size, a superior chemical stability and versatility, as well as an easy production. Aptamers
are selected by Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology, that
was introduced for the first time by Tuerk and Ellington about thirty years ago [1,2]. The procedure is
based on the isolation of high affinity ligands from a combinatorial single-stranded nucleic acid library
through repeated cycles of binding, partitioning, and amplification (Figure 1). Following SELEX cycles,
the final aptamer pool is subjected to sequencing for the identification of the best binding sequences.

So far, the SELEX strategy has been applied to a wide range of targets, including purified proteins,
small molecules, live cells, tissues, and microorganisms. Traditionally, soluble purified proteins are
the most common targets used in SELEX. This strategy continues to be largely applied since it is very
simple and can be conducted under well-controlled conditions. However, the selection is performed
in a non-physiological context and recombinant proteins often cannot fold into the correct structure.
Consequently, it might be possible that selected aptamers failed to recognize their targets in the native
conformation. The use of whole living cells (cell-SELEX) as a complex target has the advantage to
overcome this limitation, permitting the selection of aptamers in a physiological context. Therefore,
differently from protein-based SELEX, during the cell-SELEX procedure all molecules are in their
natural folding structure and distribution enhancing the possibility of success in selecting aptamers
for in vivo use. For this reason, cell-SELEX has been the first choice to select aptamers against cell
surface proteins for both diagnostic and therapeutic application. Another advantage of the cell-based
procedures is that they may be employed for the targeting of a specific cell type, without any prior
knowledge of the specific target, leading to identify multiple aptamers able to recognize specific cell
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phenotypes and discover new cell biomarkers. To date, aptamers have been developed for different
cell types and other complex systems, especially for live cancer cells, by applying several selection
protocols that have undergone progressive changes and improvements.

Figure 1. Scheme of the SELEX process. The procedure involves repeated cycles of: 1. Incubation of the
high complexity library with the targets (binding); 2. Removal of unbound sequences and recovery of
the bound oligonucleotides (partitioning); 3. Amplification of the bound sequences by PCR (for DNA
library) or RT-PCR and transcription (for RNA library).

In this review, we will give an overview of the most important developments of the cell-SELEX
methodology, discussing the recent progress with a particular focus on cancer-related aptamers.
We will provide examples of aptamer applicability and of post-SELEX modifications that may be
introduced into aptamer sequences to improve their in vivo use. Finally, strategies aimed to make the
selection process much more rapid and cost-effective will be also discussed.

2. Aptamers versus Antibodies

Nucleic acid aptamers act like antibodies and can rival them as cell specific targeting molecules.
Indeed, antibodies and aptamers have similar recognition properties with high affinities (in the low
nanomolar to picomolar range), but aptamers show a number of important advantages [3]. Indeed, they
have superior specificity, simple and cost-effective production, and are resistant to harsh environments
(pH and temperatures). Additional advantages of aptamers over antibodies include the possibility to
be chemically synthesized once selected, with high purity and very low inter-batch variability, and the
easy way by which they may be chemically modified. Modifications (discussed in Section 6) can be
done to further improve their stability, bioavailability, and pharmacokinetics, or to allow their simple
immobilization or labeling for their use in diagnostic assays. Further, as compared to antibodies,
aptamers have smaller sizes (20- to 25-fold as compared with full-sized monoclonal antibodies),
allowing improved tissue penetration. Most importantly, they are not immunogenic, thus permitting
the safe administration of repeated doses that are precluded for antibodies, unless they are humanized
or fully human produced.

3. Systematic Evolution of Ligands by EXponential Enrichment (SELEX) Library Design

The starting point of the SELEX procedure is the generation of a single-stranded nucleic acid
(RNA or DNA) library with high sequence complexity. Typically, the library contains a random central
region of 20–50 bases, whose randomization generates a complex pool of different sequences with
different conformations and binding abilities. The dimension of this random region is an important
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aspect. Indeed, the use of short SELEX libraries (<50 nucleotides) has the advantage of giving shorter
aptamers, enabling an efficient and cost-effective chemical synthesis, but at the same time it reduces
the library complexity and might limit the effectiveness of the selection. The central part is commonly
flanked by two constant regions that are required for PCR amplification and transcription (in the
case of RNA library). The length of these primer sequences is an important point in the design
of the library, as well. Given the desire to develop short aptamer molecules, there is a growing
interest to use libraries with less or no primer sequences. In addition, since the primers may cover
more than half of the total aptamer sequence, they may largely influence the library complexity and
aptamer-target interaction. Protocols employing shorter conserved sequences (7–10 nucleotides) have
been developed [4,5]. Such strategies include the use of self-complementary sequences to sequester
the constant regions, thus reducing their influence on aptamer-target interaction. No-primer library
selections employing enzymatic reactions have been also proposed [6,7]. For example, Pan et al.
used endonuclease cleaving of the double stranded DNA to remove primers before each SELEX
cycle and a ligation with primer sequences to reconstitute the library after the selection [6]. Even if
these procedures are more laborious and not yet applied to cell-SELEX, they may provide interesting
alternatives to the standard protocol.

Another factor to consider in the library design is the choice between RNA or single-stranded DNA
aptamers. In general, the amplification protocol for a DNA library is simpler than for a RNA-based
pool, and DNA oligonucleotides are more stable and cost-effective. On the contrary, RNAs have
several advantages as compared to DNAs. First, RNA molecules are more flexible allowing a higher
complexity of folding. In addition, RNAs may be easily modified to reach a stability comparable or
even better than ssDNAs. So far, both RNA and DNA libraries continue to be used and no significant
differences between DNA or RNA aptamer specificity and affinity have been reported [8].

4. Cell-Based SELEX Methods

4.1. Whole-Cell SELEX Strategy

The use of complex target for aptamer selection was introduced for the first time by Morris et al. [9]
in 1998. They used human red blood cell membrane preparations (RBC ghosts) instead of purified
membrane proteins to isolate multiple ssDNA molecules with high affinity for different cell membrane
targets. This work opened the path to the development of whole, living cell SELEX protocols. Generally,
these protocols have been adopted to isolate aptamers able to recognize a known target of interest
or a specific cell phenotype (Figure 2a,b). In both cases, a fundamental aspect is the inclusion of a
counter-selection step to avoid the parallel enrichment of aptamers for unwanted targets. The negative
selection step is introduced before the positive selection at each round, allowing filtering out sequences
against those molecules commonly expressed on both the target and control cell lines.

Many cell-SELEX strategies have been used to isolate aptamers against a known protein of interest
by using in the positive selection step a cell line over-expressing the target (Figure 2a). For example,
aptamers that specifically recognize the transforming growth factor-β type III receptor (TGFβRIII)
have been generated by such an approach [10]. The authors used Chinese hamster ovary (CHO) cells
ectopically expressing TGFβRIII as target and isolated a RNA aptamer with a very good dissociation
constant (1 nM range), able to efficiently recognize the cell surface receptor. The aptamer is also able to
inhibit the interaction between TGFβRII and TGF-β2 ligand in vitro, showing potential applicability
as a tool to investigate the receptor function and as therapeutic agent.

This strategy employs mock cells for counter-selection. A novel selection protocol, referred
as “Isogenic cell-SELEX” (Icell SELEX), has been recently proposed for the isolation of aptamers
against a known target [11]. The authors used HEK293 cells in which the integrin alpha V (ITGAV),
a transmembrane receptor expressed in almost all cell lines, is depleted (in the counter-selection step)
or over-expressed (in the positive selection step). By such an approach, they easily isolated several
anti-ITGAV aptamers.
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Figure 2. Cell-SELEX variants. Scheme of the two main variants of cell-SELEX: (a) protocol to select
aptamers against a known target by using in the selection step a cell line over-expressing the target;
(b) protocol to identify multiple ligands specifically recognizing a cell phenotype, without prior
knowledge of the target protein.

A variant of the cell-SELEX approach, called hybrid- or crossover-SELEX, has been also proposed
in order to enhance the success of the screening and the aptamer specificity for the target, by switching
during the selection from cell-SELEX to purified protein SELEX. Such an approach revealed to
be effective in isolating two high-affinity Tenascin-C (TNC) aptamers [12]. The adapted protocol
included a first enrichment of the pool on U251 glioblastoma cells over-expressing TNC, followed by a
further enrichment against the recombinant purified protein. An inverted two-stage selection scheme,
combining a first selection against the recombinant protein and a subsequent enrichment by cell-SELEX,
has been as well developed to isolate anti-transferrin receptor (TfR) aptamers [13]. The minimized
anti-TfR aptamers were used to functionalize stable nucleic acid lipid particles (SNALPs), containing
targeted siRNA achieving enhanced and specific uptake and silencing. A dual SELEX protocol was also
applied to isolate DNA aptamers targeting the G-protein-coupled cholecystokinin B receptor (CCKBR)
that is constitutively expressed by pancreatic ductal adenocarcinomas (PDACs) [14]. The adapted
selection strategy combines cycles against “exposed” CCKBR peptides and CCKBR-expressing PDAC
cells. Among the isolated sequences, one aptamer (termed AP1153) shows a Kd of 15 pM and is
internalized into target cells in a receptor-mediated manner, efficiently acting as carriers of fluorescent
nanoparticles (NPs) to PDAC tumors in vivo. Similarly, Martínez Soldevilla et al. [15] used a
hybrid SELEX to isolate aptamers targeting the Multidrug Resistant-associated Protein 1 (MRP1),
a 17 trans-membrane protein that has been correlated with resistance to chemotherapy in several
cancers. The developed protocol includes 10 rounds of selection against a MRP1-peptide and a last
round of cell-based selection using the chemotherapy-resistant H69AR cell line, showing a high MRP1
expression, as target. The selected aptamer was then used to generate a MRP1-CD28 bivalent aptamer
to deliver the CD28 costimulatory signal of tumor-infiltrating lymphocytes to MRP1-expressing tumors.
The bi-specific aptamer enhances costimulation in chemotherapy-resistant tumors and reduces tumor
growth in melanoma-bearing mice upon systemic administration. An interesting combinatory screening
in vitro and in vivo has been more recently proposed by Zhu et al. [16] to isolate human epidermal
growth factor receptor 2 (HER2)-targeting DNA aptamers for preclinical HER2 imaging in ovarian
cancer. The authors first performed an in vitro protein-based SELEX on HER2 purified extracellular
domain, and then used the resulting DNA pool for a cell-based selection on HER2- over-expressing
SKOV3 cells. The best candidates have been radiolabeled with 18F and screened in vivo in mice bearing
SKOV3-tumors by PET imaging. This strategy led to isolate two aptamers enabling a rapid visualization
of HER2-positive tumors with a good tumor uptake and tumor-to-muscle ratios.
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An alternative cell-SELEX strategy (referred as “differential cell- SELEX”) (Figure 2b) has been
developed to isolate aptamers able to recognize a specific cell phenotype, rather than a single specific
target of interest. This strategy offers the possibility to select multiple ligands discriminating between
even closely related cell types, without any prior knowledge of the target. Briefly, the procedure
consists of the incubation of the starting library on a non-target cell line (with undesired phenotype,
negative selection step) followed by the recovery of unbound oligonucleotides that are, then, incubated
on cells with the desired phenotype (positive selection step). By using such an approach, ssDNA
aptamers able to specifically distinguish T-cell acute lymphocytic leukemia (ALL) cells from B-cell
lymphoma cells [17] or small lung cancer cells versus large cell lung cancer [18] have been selected.
A similar strategy has been used to isolate aptamer-based probes selective for colorectal cancer cells [19]
or nasopharyngeal carcinoma (NPC) [20]. In the last study, the authors performed a cell-SELEX on NPC
5-8F (target cells) using nonmalignant human nasopharyngeal (NP) epithelial NP69 cells (non-target
cells) in the counter-selection step. They isolated four aptamers able to discriminate between NPC and
NP cells and then employed an aptamer-based affinity purification combined with mass spectrometry,
identifying CD109 as the target of the S3 aptamer.

More recently, Yoon et al. [21] applied a “blind” SELEX protocol to pancreatic cancer using Huh7
(hepatocarcinoma cells) as negative cells and PANC-1 cells as positive selection. By chromatography
tandem mass spectrometry, the authors demonstrated that one of the aptamers (P15) binds the
intermediate filament vimentin, a biomarker of epithelial–mesenchymal transition, and significantly
inhibits cell invasion. In addition, the differential cell-SELEX strategy has been applied to discriminate
between cell types with different properties (i.e., tumorigenesis and metastatic potential). In this
context, our laboratory reported the isolation of a panel of aptamers able to bind human malignant
glioblastoma (GBM) cells, discriminating them from non-tumorigenic GBM cells [22]. More recently,
Li et al. proposed metastatic-cell-based SELEX to isolate aptamers specific for metastatic cancer cells.
The authors applied this strategy to colon cancer, using as target of the selection SW620 cells, derived
from metastatic site lymph node. By such an approach, they identified an aptamer (XL-33-1) with
high affinity and selectivity for target cells [23]. Most importantly, tissue imaging experiments with
FAM-labeled XL-33-1 revealed its ability to specifically identify the metastatic tumor or lymph node
tissues, thus showing its great potential as a molecular imaging agent for early detection of colon
cancer metastasis. Similarly, Yuan et al. [24] used metastatic colorectal carcinoma cell line LoVo as
selection target and non-metastatic colorectal carcinoma cell line SW480 for the counter-selection,
identifying a new aptamer (J3) able to recognize a metastasis-related membrane protein. This aptamer
was labeled with Cy5 and used as effective imaging contrast for colorectal carcinoma metastasis with
a detection rate of 73.9%. Aptamers able to discriminate high metastatic versus low/non metastatic
cells derived from prostate cancer or hepatocellular carcinoma, have been also recently selected by
cell-SELEX [25,26]. Selected aptamers were labeled and successfully used for metastatic tissue imaging.
Then, Kim et al. [27] proposed an interesting differential protocol, performing repeated cycles of
positive selection on tumor-initiating cells (TICs) and negative selection for non-TICs and human
neural progenitor cells. This strategy led to isolation of a pool of sequences able to specifically bind
to and internalize into TICs, thus showing a potential applicability for TIC targeting and imaging.
Further, a DNA aptamer (MS03) specifically recognizing mammospheres was isolated following
13 rounds of selection on MCF-7-derived mammospheres. In the proposed protocol, normal breast
epithelial MCF-10A and Salinomycin-treated MCF-7cells were used in the counter-selection step [28].
The authors demonstrated that MS03 aptamer was effective in isolating breast CSCs by flow cytometry.
More recently, a modified cell-SELEX method has been applied also to stem-enriched cancer cells in
pancreatic cancer by performing positive selection on spheres derived from pancreatic cancer cell line,
HPAC, and negative selection on pancreatic normal cell line, HPDE. The approach led to the isolation
of two sequences with high specificity and good affinity for the CSC population [29]. Notably, one of
the sequences (labeled with Cy5) allows detection of CSC marker over-expressing circulating tumor
cells, isolated from blood samples of metastatic pancreatic cancer patients.
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In order to investigate cancer cell drug resistance, Zhang et al. [30] applied a differential SELEX
protocol using doxorubicin-resistant MCF-7R breast cancer cell line as target of the selection and
its parental cell line (MCF-7) for counter-selection. Interestingly, by such an approach the authors
isolated an aptamer (M17A2) able to recognize intercellular connections (tunneling nanotubes), thus
representing a novel probe for cell-cell communication studying.

All these differential cell-SELEX approaches have the potential to provide multiple targeting
ligands with a great applicability as specific probes and tools for biomarker discovery. Nevertheless,
a limit arises from the absence of notion of the target recognized by the selected aptamers. Therefore,
subsequent target identification strategies based on proteomics analysis [31,32], which are often very
complicated and time-consuming, are required.

4.2. Cell-SELEX Variants

Currently, several additional new screening methods have emerged to optimize the selection
process, some interesting examples are briefly describe below.

4.2.1. Fluorescence-Activated Cell Sorting (FACS)-SELEX

An extension of the cell-SELEX strategy is a fluorescence-activated cell sorting (FACS)-based
protocol that allows to select aptamers targeting a specific subpopulation [33]. In this strategy, once
a fluorescently labeled aptamer library is incubated on target cells, a cell-sorting device is used to
differentiate and separate the cell subpopulations that are bound or unbound to the aptamers. Bound
aptamers are, then, eluted and amplified (Figure 3). The protocol permits to eliminate dead cell
population that, absorbing single-stranded nucleic acid molecules, may negatively influence the
selection procedure. In addition, such an approach has two additional advantages. First, it allows
the reduction of experimental steps, incorporating in one round both positive and negative selection.
Second, it allows to simultaneously monitor the selection process during the rounds without the need
of additional binding assays. The FACS-SELEX strategy has been, for example, successfully applied
by Kim et al. [34] to select an aptamer (EP166) against the transmembrane protein EpCAM that is
over-expressed on the surface of most adenocarcinomas and cancer stem cells. The EP166 aptamer can
distinguish cells expressing EpCAM from negative control cells and can bind to the mouse embryonic
stem cell line J1ES, thus providing a novel stem cell probe.

Figure 3. Scheme of FACS-based SELEX. Fluorescently labeled aptamer library is incubated on target
cells. A cell-sorting device is used to isolate aptamer-target cells subpopulations and then bound
aptamers are eluted for the following cycle.
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4.2.2. Cell Internalization SELEX

In recent years, aptamers are emerging as one of the most promising tools for the specific
deliver to diseased cells of secondary reagents. Indeed, it has been shown that upon binding to
their targets, aptamers can be rapidly internalized, allowing the tissue specific internalization of
active therapeutic substances, including nanoparticles [35,36], anti-cancer therapeutics [37], toxins [38],
enzymes [39], radionuclides [40], viruses [41], small interfering RNAs (siRNAs) [42–54], microRNAs,
and anti-microRNAs [55–57]. This permits the exposition to secondary reagents only of target cells,
increasing the efficacy and reducing the toxicity of the therapy. Based on these considerations, several
groups have attempted to develop modified cell-based selection approaches to isolate internalizing
aptamers, eliminating those sequences that do not, or very slowly, internalize (Figure 4). In this
regard, Thiel et al. [53] proposed a cell-internalizing protocol based on a stringent high salt wash step
to remove cell surface bound aptamers and recover only the internalized sequences. The protocol
has been applied to a cell line over-expressing HER2, a transmembrane receptor over-expressed in
breast cancer and associated with a poor prognosis. The authors successfully isolated RNA aptamers
with high specificity for HER2-expressing breast cancer cells and with a good internalization rate.
These molecules were efficiently used for the delivery of therapeutic siRNAs to HER2-expressing
breast cancer cells. A variant of internalizing SELEX has been then developed in our laboratory [58].
The library coming from 13 rounds of differential cell-SELEX on U87MG cells [16] were subjected to
2 more rounds of a cell-internalization SELEX protocol based on a proteinase K (PK) treatment to
remove surface-bound aptamers. The adapted strategy was aimed to preserve the glioma specificity
and isolate a pool of sequences with a rapid internalization rate into GBM target cells. By such an
approach, we isolated a novel internalizing aptamer (GL53) that was demonstrated to target the
insulin receptor.

Figure 4. Scheme of protocols to isolate cell internalizing aptamers. Following the selection step,
high salt washes or PK treatment are performed to remove cell surface bound aptamers and recover
internalized sequences.

The use of an RNAse cocktail to remove surface-binding aptamers and recover cell-internalizing
aptamers was more recently proposed [59]. Further, an interesting protocol to successfully enrich
for aptamers that internalize via the endosomal pathway has been proposed by Ranches et al. [60].
The proposed strategy is based on the isolation of the endosomal fractions by cell homogenization,
followed by sucrose gradient centrifugation at each selection cycle.
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4.2.3. Ligand-Guided Selection (LIGS)

In order to select aptamers against known epitopes of interest, a variant of the basic live cell-SELEX
(referred as ligand-guided selection, LIGS) has been recently developed. The protocol is based on the
use of a high affinity secondary binder for the chosen target, such as a monoclonal antibody, that can
compete with bound aptamers, displacing them and allowing their elution (Figure 5). In the first report,
this approach has been successfully used to select aptamers against two markers on B-cell lymphoma
and T cell leukemia, IgM and CD3, respectively [61,62]. The LIGS approach expands the capabilities of
cell-SELEX, introducing a very simple method for a selective elution of bound aptamers. Nevertheless,
its use is limited to known markers for which high-affinity secondary ligands are available.

Figure 5. Scheme of Ligand-Guided Selection (LIGS). An excess of high affinity secondary binder
(i.e., a monoclonal antibody) for the chosen target is added following the selection step, in order to
displace and elute bound aptamers by competing with them.

4.2.4. Microfluidic-Based System

The SELEX-based screening method is generally time-consuming and one challenging aspect is
the automation of the method. In this regard, selection processes based on microfluidic chips have
been proposed to render the SELEX more rapid and efficient [63–66]. These technologies have been
mostly applied to protein-based selection and, only more recently, the Lee group reported a novel
microfluidic system capable of performing automated cell-SELEX [67,68]. The microsystem used
comprises three major modules: 1. a microfluidic control module, 2. a magnetic bead-based aptamer
extraction module and 3. a temperature control system to regulate the reagent temperature and allow
nucleic acid amplification by on-chip PCR. One vacuum pump is employed in the system to control
the sample/reagent flux. Briefly, the procedure (Figure 6) starts with the surface coating of target
and control cells with the magnetic beads and the loading of all the required reagents (coated cells,
library, and buffers) in the storage chambers. During each cycle, the ssDNA library is transported
into the incubation chamber and mixed with the magnetic bead-coated target cells (positive selection).
The unbound sequences are drawn away and after washings, the magnetic-bead complexes are
recovered on the bottom of the incubation chamber by applying a magnetic field. The purified cells
are then subjected to thermal lysis and bound ssDNAs are transported to the incubation chamber and
mixed with magnetic beads-coated control cells (negative selection). Once magnetic beads control
cell-aptamer complexes are collected, the supernatant containing sequences that bind to positive
selection but not to the control cells, are transported to the PCR chamber. Here, sequences are
amplified for the subsequent round. The proposed approach was successfully used to isolate an
aptamer specific for colorectal cancer cells and stem cells [67]. In addition, a similar strategy was
applied to cholangiocarcinoma (CCA) cells, leading to isolation of three specific aptamers (one for
SNU-478 cells and two for HuCCT-1 cells) [68]. The procedure is completely automated and requires
very small volumes and time (only 100 min/round), as compared to standard protocols.
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Figure 6. (a) Schematic representation of the magnetic-bead-based microfluidic chip used in
microfluidic-based cell-SELEX procedure; (b) Fundamental steps of the procedure. Aptamers are
mixed with magnetic beads-coated target cells (positive selection) and the magnetic-bead complexes
are recovered by applying a magnetic field. Bound ssDNAs are then mixed with magnetic beads-coated
control cells (negative selection). Control cells–aptamer complexes are collected and the supernatant
are transported to the PCR chamber for amplification.

4.3. 3D Cell-SELEX and In Vivo SELEX

One of the drawbacks of cell-based selection strategies is that it may happen that in vitro selected
aptamers fail to be effective in vivo. Indeed, it is possible that protein target conformation is affected
by the target’s environment that can change in vivo. In order to mimic the microenvironment in vitro,
recently Souza et al. [69] developed a novel cell-based strategy by using spheroid cells of human
prostate cancer in 3D cell culture as target of the selection. The authors performed a first round of
negative selection against the non-tumor cell line RWPE-1, followed by eight rounds of selection
against PC-3 cell line. By such an approach, they generated an aptamer able to specifically bind
prostate tumor cells, with a dissociation constant in the nanomolar scale and potential application in
screening assays for prostate cancer.

Most importantly, even very complex targets, including tumors implanted in mice (in vivo-SELEX),
have been used to select aptamers. For example, Mi et al. [70] screened a nuclease-resistant RNA
library in mice-bearing murine CT26 colon carcinoma liver metastases, identifying an aptamer that
binds to p68, an RNA helicase upregulated in colorectal cancer. The same group has also further
refined the developed strategy in order to develop a more useful reagent for human patients [71].
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As the target they used intrahepatic immunodeficient mice engrafted with two patient-derived cell
lines (designated as 119X and 57X) from liver metastases. One of the selected molecules binds DHX9,
an RNA helicase upregulated in colorectal cancer. As assessed by fluorescence molecular tomography
imaging, this molecule is able to preferentially localize into the nucleus of the cancer cells in vivo
following systemic administration, thus showing a potential use for targeted delivery. An additional
in vivo selection strategy has been recently proposed to isolate aptamers able to cross the blood-brain
barrier (BBB), the brain physiological barrier that protects the brain limiting at same time the therapeutic
interventions in neurological disorders [72]. The selection was developed by performing 14 rounds
in which a 2 -fluoropyrimidine (2′-F-Py)-modified RNA library was administered to wild-type mice
via tail vein injection and brains were harvested for aptamer recovery and amplification. Notably,
among the isolated sequences, the authors found some aptamers able to enter brain endothelia and
parenchymal cells after peripheral injection.

Despite their sophistication, these in vivo approaches have the great advantage that they can
perform the selection in a natural physiological environment. In addition, aptamers are isolated based
on their localization, permitting a “built in” negative selection, directly eliminating those sequences
that disperse to organs/tissues not of interest.

5. Sequencing and Bioinformatic Analysis

At the end of the selection process, a pool of oligonucleotides enriched for aptamers able to
recognize the target is obtained and must be further processed to analyze individual candidate
sequences. Conventionally, the final library is subjected to PCR-amplification and cloning followed
by Sanger sequencing of a small number of positive colonies (50–100) which leads to identifying
the most frequent sequences. By using bioinformatics tools, individual aptamers can be: 1. aligned
in order to identify identical/similar sequences and group them in clusters [73]; 2. analyzed for
their secondary structure to have indications on relevant structures for binding [74–76]. The use of
high-throughput sequencing (HTS) has opened a new path in the aptamer field, allowing to obtain
hundreds of millions of reads from multiple rounds of a selection [77–79]. HTS enables a broader
and more accurate analysis of the obtained aptamers, giving information on their abundance along
with the identification of functional and rare motifs. It also allows study of the evolution of each
oligonucleotide population during the selection process. Nevertheless, given the vast amount of data
generated, more sophisticated bioinformatic methods are required to identify the best candidates
among the hundreds of millions of sequences obtained. Bioinformatic analyses include the processing
of HTS data to remove adapter/barcode/constant region sequences, the cutoff and counting of the
number of identical reads, and the filtering of the sequence clusters. These processes may be time
consuming and almost impractical for many researchers. In this regard, a powerful tool comes
from Hoinka et al. [80]. They developed a new open-source platform (referred as AptaGUI) for the
dynamic visualization of HT-SELEX data by applying AptaTools package [81]. AptaTools includes
algorithms for HTS data preprocessing and allows tracking of the changes of individual aptamers and
clusters, to perform structure-based analysis and identify the best candidate sequences. Very recently,
Thiel and Giangrande [82] have adapted Galaxy Project tools [83,84], originally developed for HTS
genome, exome, and transcriptome dataset analyses, to HTS aptamer data. The authors described
simple methods to use tools within Galaxy to pre-process aptamer HTS data, without the need of
in-depth computational expertise/knowledge. Since aptamer-target interaction depends on aptamer
folding, Pei et al. developed a novel framework to analyze HT-SELEX data that take into account both
sequence and structure components allowing identifying structure motifs enriched or depleted during
the selection process [85].

6. Post-SELEX Modifications Optimization

Once selected, aptamers may be optimized for in vivo applicability in order to: 1. reduce their
length; 2. improve their properties in terms of stability and clearance.
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A critical aspect for aptamer translation to clinic is the necessity of an efficient and cost-effective
chemical synthesis. Long RNA sequences (>60–70 nt) remain difficult to synthesize and have high
costs of manufacturing. On the other hand, the use of short SELEX libraries (<50 nucleotides) reduces
the library complexity, limiting the effectiveness of the selection [86]. Therefore, longer aptamers
are generally selected and then reduced in their length to minimal functional sequences. The most
useful approach to achieve this goal is to adopt a “rational truncation” of the aptamer guided by
its structural prediction [87]. Briefly, several short sequences are synthesized in order to maintain
predicted structural elements and tested for their binding ability. In addition, it has been shown that
information derived from the tertiary structure prediction and docking modelling may be useful to
reveal key nucleotides for aptamer binding.

In addition to length, aptamer properties may be easily improved. Indeed one main advantage of
aptamers is that they can be modified in order to optimize their in vivo stability and persistence in
biological fluids. Selections performed with RNA aptamers generally employed libraries containing the
substitution at the 2′-ribose of the pyrimidines with 2′-fluoro and 2′-amino groups that greatly enhance
nuclease resistance of RNA aptamers [88,89]. A special mutant form of the T7 RNA polymerase
(Y639F) is available that allows the introduction of these modifications in the transcription reaction
during the selection process [90]. Moreover, other modifications may be introduced in the aptamer
sequences by chemical synthesis post-selection. A further increase of nuclease resistance can be
achieved by introducing 2′-O-Metyl purines [91], phosphorothioates, the capping at the oligonucleotide
3′-terminus [92], or locked nucleic acids (LNAs). LNAs contain a methylene bridge to connect the
2′-O to the 4′-C that increases the thermo-stability of oligonucleotides [93], enhancing the resistance to
nucleases. An alternative is represented by next generation aptamers, called spiegelmers, developed
by Noxxon Pharma. They are artificial oligonucleotides containing L-ribose instead of its natural
counterpart, D-ribose [94], thus showing high physico-chemical stability and resistance to all types
of nucleases.

Other modifications have been developed to increase aptamer clearance. Indeed, an aptamer’s low
molecular weight allows cost-effective chemical synthesis and good target accessibility, but facilitates
rapid renal filtration. The most common used modification to reduce this effect is the conjugation with
polyethylene glycol (PEG) [95] to increase the aptamer size.

All the described modifications greatly improve aptamer applicability. One concern that needs to
be underlined is that the employment of post-SELEX modifications can affect an aptamer’s affinity
to its target. Therefore, aptamer binding ability need to be monitored following the introduction of
each modification.

7. Clinical Applications of Aptamers

Aptamers selected by cell-SELEX show high affinity and specificity for their targets and excellent
features for their development as diagnostic tools. Indeed, aptamers can efficiently distinguish
between normal and tumor tissues, as well as between different tumor types. In addition, as discussed,
nucleic acid aptamers show the advantage of predictable secondary structure and easy chemical
modification. Therefore, they can be functionalized with fluorescent probes or nanoparticles for
in vivo imaging. Differently labeled aptamers have been developed as innovative tools for magnetic
resonance, computed tomography, positron emission tomography, and optical imaging, revealing
excellent diagnostic sensitivity for accurate and early diagnosis.

Of note, a vascular endothelial growth factor (VEGF) receptor 2-specific aptamer was conjugated
with magnetic nanocrystals for glioblastoma diagnosis through magnetic resonance imaging (MRI)
and tested both in vitro and in vivo in glioblastoma-bearing mice [96]. Moreover, an aptamer
targeting tenascin-C protein, a biomarker over-expressed on different tumor types, was conjugated
with carbon nanodots for optical imaging of cervical cancer [97]. In another study, an anti-mucin
(MUC) 1 DNA aptamer, conjugated through phosphorothioate linkers with quantum dots (QDs) and
optimized for in vitro and in vivo imaging, was described. The generated molecule exhibited increased
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photo-stability and reduced toxicity, compared to QDs alone, resulting in strong fluorescence capability
in xenograft mouse models [98].

Aptamer-conjugated gold nanoparticles (Apt-AuNPs) have been also generated and used for a
colorimetric assay for rapid, simple, direct, and sensitive detection of cancer cells [99]. In addition,
using the two-photon scattering (TPS) technique, Lu et al. [100] developed multifunctional (monoclonal
anti HER2/c erb 2 antibody and S6 RNA aptamer) AuNP conjugates in which oval-shaped instead of
spherical AuNPs were used. This approach proved improved sensitivity for detection of the SK BR 3
breast cancer cells.

Conjugation of aptamers with radioisotopes to develop computed tomography imaging probes
has been also achieved. Anti-nucleolin aptamer-functionalized, ultra-small, monodisperse silica
nanoconjugates labeled with 64Cu radioisotope have been generated and tested in vivo for the
identification of lymph nodes in metastatic tumors [101]. In a more recent report, aptamers targeting
the human epidermal growth factor receptor were tethered with hollow gold nanospheres (HAuNS)
through complementary DNA linkers and labeled with 111In. In in vivo mouse models, this molecule
demonstrated a greater uptake than 111In-labeled antibodies conjugated to HAuNS [102].

From a therapeutic point of view, aptamers with inhibitory capacity on their target can be used
to modulate cellular processes associated with human diseases. In addition to the high affinity and
specificity, several interesting properties (i.e., low immunogenicity, low toxicity, high batch fidelity and
good serum stability) make aptamers ideal therapeutic molecules.

The most successful example of therapeutic aptamer is pegaptanib (Macugen®), an anti-VEGF
aptamer approved by the U.S. Food and Drug Administration for the treatment of wet age-related
macular degeneration. Other aptamers have recently entered clinical trials for the treatment of different
human pathologies (Table 1).

Table 1. Aptamers in clinical trials.

Aptamer
Name Composition Medical Condition Current Phase Sponsor Reference

Pegnivacogen RNA with 5′-PEG
and 3′ inverted dT Coronary artery disease Phase III

completed
Regado

Biosciences [103]

E10030
DNA with

2′-O-methyl, 5′-PEG,
3′ inverted dT

Wet age-related macular
degeneration Phase III Ophthotech

Corporation [104]

Zimura RNA with 5′-PEG,
3′ inverted dT

Dry age-related
macular degeneration Phase II/III Ophthotech Corporation[105]

AS1411 DNA Renal cell carcinoma Phase II Antisoma
Research [106]

NOX-E36 L-RNA with 3′-PEG Type 2 diabetes mellitus
and albumenuria

Phase II
completed

Noxxon
Pharma AG [107]

NOX-A12 L-RNA with 3′-PEG Chronic lymphocytic
leukemia Phase II Noxxon

Pharma AG [108]

EYE001 RNA with 5′-PEG Wet age-related
macular degeneration

Phase I
completed

National Eye
Institute [109]

ARC19499 DNA with 5′-PEG
and 3′ inverted dT Hemophilia Phase I

completed Baxalta US Inc. [110]

NOX-H94 L-RNA with 5′-PEG Anemia of chronic
inflammation

Phase I
completed

Noxxon
Pharma AG [111]

PEG, Polyethylene glycol.

Very interestingly, aptamers directed against cell surface epitopes show the ability to internalize
in a target-mediated manner and may be used to drive a secondary reagent exclusively to the cell
population over-expressing the aptamer target. This is a very attractive strategy in the medical research
field, in order to reduce the overall toxicity of treatments.
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A growing number of selective delivery strategies by using cell-specific aptamers as carrier
molecules have been proposed [112], revealing this approach as a powerful tool for the safe and
effective management of different human pathologies.

8. Conclusions

From its first application, the cell-based SELEX strategy has been successfully applied to
generate aptamers against several cell surface targets. Considering aptamer versatility and features
(cost-effective chemical synthesis, easy and controllable modification, nontoxicity), many of these
oligonucleotides have great potential as prognostic, diagnostic, and therapeutic tools. In addition, the
recent advances in the selection technology have opened the possibility for isolating aptamers for a
specific cell phenotype, a particular subpopulation, or even in vivo localization. These molecules also
represent promising tools for novel biomarker discovery. However, the clinical translation of cell-based
selected aptamers is still in the early stages. Indeed, despite their great potential, several challenges still
need to be addressed to realize their use. In recent years much effort has been devoted to accelerating
the SELEX process, developing novel, automated, or high-throughput systems, but these strategies
have difficult applicability to cell-based selections. In addition, given the complexity of the target, the
development of aptamers to be used as a molecular fingerprint of different stages/subtypes of disease
still need wider screening methods as well as labeling techniques and tracing studies.
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