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Abstract: In computed tomography (CT) images, the presence of metal artifacts leads to contaminated
object structures. Theoretically, eliminating metal artifacts in the sinogram domain can correct
projection deviation and provide reconstructed images that are more real. Contemporary methods
that use deep networks for completing metal-damaged sinogram data are limited to discontinuity
at the boundaries of traces, which, however, lead to secondary artifacts. This study modifies the
traditional U-net and adds two sinogram feature losses of projection images—namely, continuity and
consistency of projection data at each angle, improving the accuracy of the complemented sinogram
data. Masking the metal traces also ensures the stability and reliability of the unaffected data during
metal artifacts reduction. The projection and reconstruction results and various evaluation metrics
reveal that the proposed method can accurately repair missing data and reduce metal artifacts in
reconstructed CT images.

Keywords: computed tomography; metal artifacts reduction; deep learning; sinogram

1. Introduction

Computed tomography (CT) is one of the primary methods of nondestructive testing,
and it is widely used in many fields such as medicine [1] and industry [2]. Different
materials have different attenuation coefficients for X-rays, because of which, we obtain
projection data with information about materials inside an object. When the scanned object
contains a high-density structure such as metal, because of the strong attenuation of the
metal, the X-rays cannot fully penetrate the object, which causes a dark shadow in the
measured sinogram [3]. These values no longer satisfy Beer’s law, resulting in information
loss in reconstructed CT images because of the presence of metal artifacts. Metal artifacts
are diverse and spread across an image; they severely degrade image quality and interfere
with subsequent analysis and processing. After more than 40 years of research, there is
still no general solution for metal artifacts reduction (MAR). MAR is still a common and
challenging problem in CT research [4].

Contemporary methods of MAR mainly include iteration reconstruction and projec-
tion interpolation. Iterative reconstruction methods typically use a model-based approach
to minimize well-defined objective functions. In 1996, Wang et al. [5] proposed the al-
gebraic reconstruction technique (ART), a deblurring technique, for MAR. Xue et al. [6]
used a total variation iteration algorithm to patch metal projections. Wang et al. [7,8] used
the penalized weighted least-squares algorithm to iteratively reconstruct the position and
shape of metal objects in CT images. Zhang et al. [9] proposed a MAR method for weighted
total variational constraint reconstruction by analyzing how the absence of projection
information is affected by pixel positions around a metallic object. The algorithm could
considerably suppress metal artifacts and noise; however, metal region information was
lost in the correction reconstruction results. Choi et al. [10] proposed a sparsity-driven
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iterative reconstruction algorithm for obtaining information of metallic regions after MAR.
The algorithm could accurately determine the location and shape of a metal object in an
image; however, the correction results presented secondary artifacts. Levakhina et al. [11]
proposed a simultaneous iterative reconstruction algorithm to correct metal artifacts by
introducing a weight factor in back projection for limiting the contribution of projection
values to the reconstruction across metal voxels; this could more effectively suppress
artifacts owing to the high density of metallic objects.

In 1987, Kalender et al. [12] treated metal-damaged data as missing data and estimated
them using a one-dimensional linear interpolation method (LI-MAR). Mahnken et al. [13]
proposed a two-dimensional interpolation method that replaces metal-damaged data with
a weighted sum of 16 nearest neighbors. Bal et al. [14] first proposed using the mean
clustering method to calculate a prior model. This algorithm could effectively protect the
high-density structure of the metal edges; however, the serious issue of secondary artifacts
remained. Meyer et al. [15] proposed the normalized MAR (NMAR) algorithm using
a priori model for normalized interpolation. The NMAR algorithm could more effectively
suppress secondary artifacts and protect the structures of metal edges. Jeon S. et al. [16]
used forward projection of a modified CT image and generated a sinogram containing
information about the structure of the metallic object.

In recent years, deep learning has rapidly gained attention in various fields, especially
image processing [17-19]. Deep learning has been successfully applied in image restoration
and denoising, providing new methods for MAR in CT images [20]. Gjesteby et al. [21] first
introduced CNN in MAR in the image domain. Zhang et al. [22] proposed combining the
results obtained using different methods as a prior image to improve the effect of artifact
correction. In another study [23], Gjesteby et al. trained NMAR and neural network fusion
using the results of NMAR, and the detailed image extracted by the guided filter was given
as hybrid input to a dual-stream network. Liao et al. [24] proposed a novel artifact disentan-
glement network that enabled different forms of generations and regularizations between
the artifact-affected and artifact-free image domains to support unsupervised learning.
Claus et al. [25] proposed a MAR method to enable the interpolation of missing data in
the sinogram domain by training a fully connected neural network (FCN). Park et al. [26]
used U-net [27] to repair inconsistent sinograms by removing the primary metal-induced
beam hardening factors along the metal trace boundaries. In [28-30], generative adversar-
ial net (GAN) and its variants were introduced to improve the in-painting performance.
Partial convolution [31] was employed in [32,33] for sinogram completion. In the sinogram
domain, MAR can correct projection deviation and provide more realistic reconstructed
images. However, ensuring sinogram continuity at the boundaries of metal-damaged
traces is challenging, and secondary artifacts are inevitable.

In the sinogram domain, only the projection values are affected by the presence of
metallic objects and change in a nonlinear manner. MAR, in the sinogram domain, can
maximize the use of the original effective projection information. Preliminary studies have
applied deep learning methods for sinogram data completion; however, these are limited to
smaller metal implants and highly constrained scenarios. In this study, deep learning was
applied to traditional U-net layers to complete metal-damaged traces, and then filtered back
projection (FBP) was used to reconstruct a complete image. The consistency of projection
data at each angle and the continuity of projection data were designed as sinogram feature
losses, and masking was used so that the network only complements the metal-damaged
data, ensuring stability and reliability of the unaffected data. The network was trained
using a large number of training samples.

2. Materials and Methods

The workflow of our method is illustrated in Figure 1. First, training data and simula-
tion were generated, followed by the removal of metal-damaged projection data. We used
sinogram data in a scene that did not contain metal objects and then created a matching
sinogram by deleting data corresponding to the geometric configuration of that metal
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object; next, the network was designed and trained, that is, U-net based sinogram com-
pletion. We modified the original U-net to improve the data filling performance and the
generalization ability of the model; lastly, FBP images were reconstructed efficiently.

Forward | o
Project g
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/ Data

U-net

\

Deletion

Figure 1. Workflow and major components of the proposed MAR framework.

2.1. Dataset Generation

The primary impact of metal artifacts in the sinogram is the nonlinear change in the
metal-damaged trace values; other effects are relatively weak. The presence of a metallic
object did not affect our method because we mainly carried out the completion of missing
data. Compared with the scanned object, we designed a phantom containing only metal.
The phantom was scanned using a simulated X-ray scanner to obtain a sinogram, which
was binarized and used as the metal mask. The values corresponding to the metal projection
position in the projection sinogram were set to zero. Thus, we manually generated a large
number of real pairs of incomplete and complete sinograms to train our network. In the
process of generating the dataset, this study used sinogram images with a size of 512 x 360.
During sample production, only the metal-damaged traces were set to zero, ensuring the
stability and validity of other projection values.

In the testing process, for the metal present in the actual scan, we carved out the metal
trace area in the sinogram. First, we performed reconstruction and used the threshold
segmentation method on the reconstructed image to obtain metal location and size, and
then, we used reprojection to obtain the corresponding projected traces. To ensure complete
identification of the metal trace area, the metal size could be expanded as required.

2.2. Network Architecture

In recent years, advances in deep neural networks have provided new ideas for MAR
in CT images. According to the general approximation theorem [34], a projection can
be completed using a multilayer neural network. In this study, the original U-net was
modified to optimize the data filling performance and generalization ability of the model.

Figure 2 shows the modified U-net structure, which mainly included three parts—
namely, an encoding module, a decoding module, and a skip connection. The network
mapped the depth features, extracted the feature maps through multilevel nonlinear
mapping, and then fused the feature maps to complete the sinogram. The encoding
module was mainly used to extract feature information from the input sinogram domain
images. This module contained 10 dimensionality reduction blocks; each block contained
two convolution operations with a convolution kernel size of 3 x 3 and stride size of 1, and
one convolution demodulation operation with a convolution kernel size of 3 x 3 and stride
size of 2. In the first three dimensionality reduction blocks, the number of convolution
kernel channels was 64, 128, and 256, respectively, and from the fourth to the tenth layer,
it was 512. For all convolutional layers, the activation function was a rectified linear unit
(ReLU) with a slope of 0.2. To ensure optimal use of the feature correlation between the
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image pixels, we removed the pooling layer in the original network and used a convolution
operation with a stride size of 2, to complete the dimension reduction.
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Figure 2. Modified U-net architecture.

The decoding module comprised 10 corresponding ascending blocks and deconvolu-
tion with a stride size of 2. The convolution kernel of the first six deconvolution blocks was
3 x 3, and the number of convolution channels was 512. The convolution kernel from the
eighth layer to the tenth layer was 3 x 3, and the number of convolution channels was 256,
128, and 64, respectively. The activation function of these blocks was ReLU.

The skip connection connected the corresponding encoding and decoding modules.
In this network, the output and input images were of the same size. To maintain the size
of the image, a padding operation was added. Each slice in the CT image of the dataset
considered in this study was a single channel; therefore, the input image size of the network
was changed from 224 x 224 x 3 to 512 x 512 x 1.

2.3. Loss Function and Training

The data characteristics of projection in CT imaging are shown in Figure 3. A single
voxel distribution trajectory in a projection space is a sine function of the scanning angle
of the scanned object. A sinogram is the sum of the projected sinusoids of all voxels, and
it has high-order continuity similar to the sine function. The increasing complexity of
internal structure information leads to the increasing complexity of the sinogram. It is
challenging to construct a traditional mathematical model that can accurately describe the
data characteristics of a sinogram.

A CT image reflects the attenuation coefficients of a scanned object. In the scanned
object, the change in the attenuation coefficient is continuous, especially in medical CT
examinations. Sinogram data are the integral of the attenuation coefficients of a scanned
object. Integral transformation makes the image more continuous and strengthens local
correlation. Therefore, CT projection data have more robust local correlations [35].

Helgason-Ludwig consistency conditions (HLCCs) are widely used in CT image
artifact correction and sinogram data recovery [36]. A parallel beam of X-rays at a specific
angle is selected for the theoretical derivation of HLCC, as shown in Figure 4, where
6 is the projection angle of the parallel X-rays, f(x,y) represents the scanned object in
a two-dimensional space, and its projection under 6 is g(6,!). The k-order momentum of
2(6,1) is defined as
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Figure 3. Schematic diagram of data characteristics of a projection sinogram.

Figure 4. Parallel beam geometry of CT.

The image geometric momentum is defined as
mij = [[ ¥y f(x,y)dxdy 2

k

When M;(0) = ¥ < I; > my x_, cos’ 0 sinf~" 6, the k-order momentum of the projec-
r=0

tion Vi(6) and the geometric momentum of the image ; ; satisfy Equation (3).

Vi(0) = M (6) ®)

Equation (3) is the HLCC equation, which satisfies i +j = k. Wheni = j = 0,
we obtain

moo = [[ flx,)dxdy = Vo(®) = [ g6, )
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The HLCC equation shows that the sum of the line integrals of 2D parallel projection
data at any projection angle is a constant independent projection angle under parallel beam
geometry architecture.

In the process of three-dimensional cone-beam projection, the HLCC condition is
satisfied under a small beam—cone angle. The integral sum of projections under a single
angle is constant. When the scanned image contains metallic objects, because all angles are
different, there are nonlinear changes in the projection result in the integral sums.

The proposed method limits the completion area to the metal-damaged traces, ensur-
ing that the output image is similar to the input image. We used the L2 function as the
global loss. The L2 loss has a more severe penalty for errors and can prevent significant
deviations during the entire process, ensuring the reliability of the processed image. When
the metal-damaged trace was set to zero, the edge of the metal trace exhibited considerable
numerical change. Existing methods have limits, as they cannot ensure the continuity
of the sinogram of the metal trace boundary. Amplitude loss was introduced to ensure
continuity of the processed image. Difference loss was introduced so that the completed
data satisfy the HLCC. The formulas for each type of loss are given as follows:

512 360 A 2
L2}pss = Z Z |:M®f(x/6) - M®f(x/9):| &)
x=160=1
511 360 A A 2
Ampis = 1. 3 F(+1,6) = f(5,6)] = | Fx+1,6) = Flx, )] ©
360 [ 512 512 A 2
Difflosszeglxaf(xre)X:lf(xfe)‘| (7)
Loss = Lzloss + Amploss =+ Diffloss (8)

where f and ]A‘ represent the network output sinogram and label sinogram, respectively, M
is the metal mask, and ® denotes element-wise multiplication. This operation focuses only
on metal-damaged traces. x indicates the position of the detector element position, and 6
represents the projection angle.

We trained and tested the network on Tensor-Flow (version 1.4.0) (Google, USA) on an
AMAX workstation with two Intel Xeon E5-2630 v4 CPU (Intel, USA) 2.4 GHz and 64 GB
memory and a GeForce GTX 1080Ti GPU (NVIDIA Corporation, USA) with 11 GB memory.

3. Results
3.1. Evaluation Metrics

In the sinogram domain, mean absolute error (MAE) was introduced as an evaluation
metric to quantify the quality of the processed images. In the image domain, root-mean-
square error (RMSE) and normalized mean absolute distance (NMAD) were introduced as
the quality evaluation metrics for the reconstructed image. The formulas for calculating
MAE, RMSE, and NMAD are as follows:

N A

MAE = (Z f@) = f()

i=1

)/N ©)

N 1/2
RMSE = <<Z|fRef(i) - fFBP(i)|2> /N> (10)
i=1

N N
NMAD = (ZIfRef(i) — frap(i) ) / <Z|fRef(i)|> (11)
i=1 i=1
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CT

(a). Label

where f and jAf represent the network output and label sinogram, frgp and fres represent the
reconstructed image and ideal image, respectively, i represents the pixel index in the image,
and N is the total number of pixels of the image. The closer the values of MAE, RMSE, and
NMAD to 0, the smaller the differences between the ideal image and the network results.

3.2. Simulation Results

In the simulated experiment, we used a clinical dataset to establish the experimental
dataset. The dataset comprised information on 12 patients; the information of 10 patients
was used for network training, and that of the remaining 2 patients was used for testing. We
obtained 30,000 pairs of training data. The training performed 10,000 rounds and required
approximately 30 h. After the network training was complete, the individual image
processing time was less than 1 s. With the same dataset and number of training epochs,
we compared our model with the following models: LI [12], FCN [25], and U-net [26].

Figures 5 and 6 present the pleural and cranial results, respectively, obtained using
the four algorithms. The first column shows the ground truth of the sinogram and the
corresponding standard FBP-reconstructed results. We also show the results of the conven-
tional LI model, deep-learning-based FCN, and U-net. Severe streak artifacts are observed
in the CT images obtained by directly performing FBP reconstruction on the uncorrected
sinogram in Figures 5 and 6. Columns (c)—(f) in the second row show that different methods
have different suppression effects on metal artifacts. The region of interests (ROI) marked
by the red dashed box in the reconstructed image is enlarged in the third row. The enlarged
ROIs show that our method reduces the global radial streak artifacts and generates images
with more explicit boundaries and details.

(b). Uncorrected (c). LI (d). FCN (e). U-net (f). Proposed

Figure 5. Simulation results of the pleural, where the first row is the sinogram, and the second row is the FBP-reconstructed

results. The display window of sinogram is (0, 1). The display window of CT is (—0.1, 0.25).
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(a). Label (b). Uncorrected (d). FCN (e). U-net (f). Proposed

Figure 6. Simulation results of the cranial, where the first row is the sinogram, and the second row is the FBP-reconstructed
results. The display window of sinogram is (0, 1). The display window of CT is (—0.1, 0.25).

To better evaluate the projection complement effect of each method, the MAE of each
complement sinogram was calculated using Equation (9), and the results are presented
in Table 1. RMSE and NMAD were used as metrics to accurately evaluate the artifacts
correction effect of each network for the obtained reconstructed images and the selected
ROI using Equations (10) and (11); the relevant results are presented in Table 2.

Table 1. MAE results of complement sinogram of simulation experiments.

(c). LI (d). FCN (e). U-Net (f). Proposed
Pleural 28.2126 37.9773 40.6941 16.8108
Cranial 21.8383 22.0243 35.8966 11.9921

Table 2. RMSE and NMAD results of a reconstructed image in simulation experiments.

(c). LI (d). FCN (e). U-Net (f). Proposed

CT 0.1164 0.0995 0.0978 0.0724

Pleural RO 01084 0.0930 0.0951 0.0699

NMAD , CT 0.1216 0.1106 0.1066 0.0713
Cranial ROIs 0.1150 0.1124 0.1064 0.0646

CT 8.2725 7.1038 7.0616 5.2356

Pleural ROIs 12.6553 10.8224 11.4806 8.2140

RMSE , CT 7.6252 6.3194 6.3905 43367
Cranial  pors 124006 12.0947 12.8702 7.5756

The MAE index values in Table 1 show that the proposed method has the best effect
in repairing traces. FCN and U-net do not constrain the complement area; therefore,
there are slight changes in the global pixel points, which result in large values of MAE.
Corresponding evaluation metrics in Table 2 show that the RMSE and NMAD values of
the corrected images obtained by the proposed method are further reduced relative to the
other methods.
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Figure 7 presents the image after MAR processing of the pleural with different num-
bers, shapes, and sizes of metal implants. It shows that this method can effectively suppress
metal artifacts with increasing metal size and number. However, when a large number
of projection data are missing because of the presence of a metal object, it is challenging
for the network to fully extract the features for image restoration, and it cannot achieve
complete reconstruction.

Increased number of implanted metals

Figure 7. Simulation results of the pleural with different numbers, shapes, and sizes of metal implants. The display window

of CTis (—0.1, 0.25).

3.3. Experimental Results

To verify the application effect of this method for a realistic CT system, we performed
a radiological anthropomorphic head phantom study for actual applications. The phan-
tom is shown in Figure 8. The actual scanned CT system consisted of a micro-focus spot
X-ray source (Hawkeyel130, Thales, France), a flat-panel detector (Varian 4030E, USA),
and a high-precision 4-axis linkage stage. To verify the adaptability of this network, we
obtained the sinograms for different values of voltage and current. The X-ray tube volt-
age range was set to 90-120 kVp, and the current was set to 200-300 pA. We collected
31,000 pairs of sinogram images, of which, 30,000 were used for network training and 1000
for testing.

Figure 8. Real data experimental phantom: Chengdu dosimetric phantom.
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(a). Label

The following results were obtained after 10,000 rounds of training. We used two sets
of data in the actual network performance verification. The first set unplaced metal during
the projection data acquisition process, and the second set contained three metal implants.
To eliminate interference from other factors, the parameters and spatial position of the two
sets were kept the same at the acquisition time. In the first set, we used simulated metal
traces to create a test projection, and Figure 9 shows the related results. In the projection
containing the metal, we directly set the metal-damaged traces to zero. Figure 10 shows
the related results. With the same dataset and number of training epochs, we compared
our model with the following models: LI [12], FCN [25], and U-net [26].

Figures 9 and 10 present the results of the four algorithms. The first column shows
the ground truth of the sinogram and the corresponding standard FBP-reconstructed
results. The results show that our method can more accurately repair missing data of metal
traces. Our method recovers detailed information of the metal artifacts in severely covered
areas, eliminating the influence of metal artifacts. To further observe the details of the
reconstructed images, we marked the ROIs with a red dashed box in Figures 9 and 10; the
ROIs are enlarged in the third row, and they show that our method reduces the global
radial streak artifacts and generates images with more explicit boundaries and details. Our
method achieves better removal of the radial streak artifacts.

To better evaluate the projection complement effect of each method, the MAE of each
complement sinogram was calculated using Equation (9), and the results are presented in
Table 3, which shows that the proposed method can accurately complement the missing
metal trace regions. In the actual data experiment without metal placement, the MAE of
the corrected results of the proposed method decreased by 60.055%, 55.850%, and 45.917%,
respectively, compared with LI, FCN, and U-net. In the actual data experiment with metal
placement, the MAE of the corrected results decreased by 59.963%, 53.504%, and 50.093%,
respectively, compared with LI, FCN, and U-net. The MAE index shows that the proposed
method can obtain better results in projection complement processing.

(b). Uncorrected (c). LI (d). FCN (e). U-net (f). Proposed

Figure 9. Results of head phantom, where the first row is the sinogram, the second row is the FBP-reconstructed results,
and the third row is an enlarged view of the ROIs. The display window of sinogram is (0, 1). The display window of CT

and ROlIs is (—0.01, 0.025).
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(a). Label

(b). Uncorrected (c). LI (d). FCN (e). U-net (f). Proposed

b
-

Figure 10. Results of head phantom, where the first row is the sinogram, the second row is the FBP reconstruction results,

and the third row is an enlarged view of the ROIs. The display window of sinogram is (0, 1). The display window of CT

and ROIs is (—0.01, 0.025).

Table 3. MAE results of complement sinogram of actual experiments.

(c). LI (d). FCN (e). U-Net (f). Proposed
Case 1 0.9881 0.8940 0.7298 0.3947
Case 2 0.5385 0.4637 0.4320 0.2156

To accurately evaluate the artifact correction effect of each network, NMAD and
RMSE were calculated for the obtained reconstructed images and the selected ROIs using
Equations (10) and (11), respectively. NMAD and RMSE values in Table 4 show that in
the actual experimental results, i.e., the reconstruction results obtained by applying the
proposed method, the MAR effect was the best. In the results of projection image processing
without metal placement, the NMAD index of the reconstructed image decreased by
50.286%, 36.029%, and 33.672%; the RMSE index value decreased by 48.214%, 38.536%, and
35.163%; the NMAD index of the ROIs decreased by 50.362%, 46.128%, and 39.241%,; the
RMSE index value decreased by 43.443%, 44.162%, and 34.906%, relative to LI, FCN, and
U-net, respectively. In the results of projection image processing with metal placed, the
NMAD index of the reconstructed image decreased by 42.331%, 42.739%, and 35.931%; the
RMSE index value decreased by 37.850%, 32.997%, and 33.166%; the NMAD index of the
ROIs decreased by 39.692%, 42.551%, and 37.083%; the RMSE index value decreased by
40.797%, 39.381%, and 36.053%, respectively, compared with LI, FCN, and U-net.

Thus, our method achieves good completion and correction in both simulation and
actual tests. The results show that for the complement repair task of the CT sinogram,
adding the feature loss of sinogram domain images can improve the effectiveness of the
projection complement and optimize the correction effect.
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Table 4. NMAD and RMSE results of reconstructed image and ROIs of actual experiments.

(c). LI (d). FCN (e). U-Net (f). Proposed

CT 0.1050 0.0816 0.0787 0.0522

Case 1 ROIs 0.0967 0.0891 0.0790 0.0480

NMAD CT 0.0841 0.0847 0.0757 0.0485
Case 2 ROIs 0.0844 0.0886 0.0809 0.0509

CT 0.0616 0.0519 0.0492 0.0319

Casel  Rols  0.0854 0.0865 0.0742 0.0483

RMSE CT 0.0428 0.0397 0.0398 0.0266
Case 2 ROIs 0.0728 0.0711 0.0674 0.0431

3.4. Ablation Study

In this section, we evaluate the effectiveness of the proposed method for metal traces
masking and sinogram feature losses. Performance was evaluated based on the relevant
results of the ablation experiment. Figures 11 and 12 present the results of U-net, U-net-
added metal mask, U-net-added feature loss, and the proposed method, for the pleural
and the phantom head, respectively.

The image results in Figures 11 and 12 and index evaluation results in Table 5 show
that the proposed model can improve the effect of MAR. After integration, the correction
effect is better than that when other modules are used independently.

(d). U-netadded  (e). U-net added
metal mask feature loss

(a). Label (b). Uncorrected (c). U-net (f). Proposed

Figure 11. Simulation results of the pleural, where the first row is the sinogram, and the second row is the FBP reconstruction
results. The display window of sinogram is (0, 1). The display window of CT is (—0.1, 0.25).



Sensors 2021, 21, 8164 13 of 16

(d). U-netadded (e). U-net added

(a). Label (b). Uncorrected (c). U-net metal mask feature loss

(f). Proposed

Figure 12. Actual results of head phantom, where the first row is the sinogram, the second row is the FBP reconstruction
results, and the third row is an enlarged view of the ROIs. The display window of sinogram is (0, 1). The display window of
CT and ROIs is (—0.01, 0.025).

Table 5. RMSE and NMAD results of reconstructed images from the simulation experiments.

(d). U-Net Added (e). U-Net Added
(©). U-Net Metal Mask Feature Loss (f). Proposed

Simulation CT 0.0978 0.0925 0.0859 0.0724

NMAD results ROIs 0.0951 0.0903 0.0838 0.0699
Actual CT 0.0757 0.0586 0.0569 0.0485

results ROIs 0.0809 0.0589 0.0588 0.0509

Simulation CT 7.0616 6.7823 6.1976 5.2356

RMSE results ROIs 11.4806 11.0051 9.8988 8.2140
Actual CT 0.0397 0.0329 0.0330 0.0266

results ROIs 0.0674 0.0535 0.0520 0.0431

4. Discussion

This study proposed a sinogram complementary deep learning method for MAR in
CT images. The conventional MAR method requires an extended processing time due
to multiple hyper-parameter settings. The proposed method can quickly complete the
processing of a large volume of data.

In this method, collecting and processing datasets were the primary challenging tasks.
By extracting the features of supplementary information from a large amount of training
data, the repair effect and scope of application of the network can be improved. Based on
the exceptional performance of metal artifacts in the sinogram domain, this method directly
sets the metal-damaged traces to zero from the label image, which ensures matching of
the image. A large amount of projection data were obtained by modifying the scanned
tube voltage and current, which improved the diversity of training samples and further
improved the applicability of the network.
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In this study, we used a mask to limit the network patched area. In the sinogram,
the area occluded by the metal projection was removed, and the projection information of
other positions was accurate and effective. The features of these practical projection values
can provide a reference for information completion in occluded areas and accurately reflect
the original projection information. This method achieves efficient utilization of effective
information by globally extracting features. The mask was used to constrain the repair area,
and the nonlinear fitting ability of deep learning was used to realize the accurate repair of
metal-damaged traces. We designed the sinogram feature loss based on the CT imaging
principle and the consistency of the sinogram data distribution. The feature extraction
ability of the network was improved through global constraints, ensuring the effectiveness
of the supplementary data in the generated images.

5. Conclusions

In this study, network deepening of the network was used, which improved the feature
extraction and image fitting ability of the network. We proposed a new complement method
based on the image feature depth network in the sinogram domain. This method uses
feature reuse, deconvolution, and feature connection to increase the deep feature extraction
and expression capabilities of neural networks. The network corrects the sinogram image
containing the metal artifact, and the output results can be directly reconstructed using the
FBP algorithm. Effective and accurate supplementary data ensure the high quality of the
reconstructed images. Visual observation and various relevant evaluation metrics of the
reconstructed CT images show that the proposed method can effectively eliminate metal
artifacts and significantly improve the quality of the reconstructed images.

The projection dataset under multiple voltages and currents can train a sinogram
domain MAR network suitable for the CT system. The models of medical CT equip-
ment are relatively uniform, the scanned patient parts are relatively fixed, and the imag-
ing features are consistent. Therefore, this method will be more applicable to medical
imaging problems.

Further research will focus on the sinogram optimization method based on deep
learning for clinical CT imaging.
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