
NOTE Theriogenology

Murine somatic cell nuclear transfer using reprogrammed donor cells expressing 
male germ cell-specific genes

Hoin KANG1), Jong Im PARK2) and Sangho ROH1)*

1)Cellular Reprogramming and Embryo Biotechnology Laboratory and Dental Research Institute, Seoul National University School of 
Dentistry, Seoul 03080, Republic of Korea

2)Department of Theriogenology, Konkuk University, Seoul 05029, Republic of Korea

(Received 14 March 2015/Accepted 9 August 2015/Published online in J-STAGE 14 September 2015)

ABSTACT. In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introduc-
ing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the 
oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both ex-
perimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were 
used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine 
embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into 
embryos with normal high expression of developmentally essential genes.
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Offspring from somatic cell nuclear transfer (SCNT) have 
been reported in several mammalian species, but the overall 
efficiency has remained low even though advances in birth 
rate have been reported [17, 30]. There have been a lot of 
studies on the SCNT processes, including oocyte activation 
[12], enucleation of oocytes [28], reprogramming of donor 
cells [27] and culture conditions for reconstructed embryos 
[11, 21]. With regard to improvement of cloning efficiency, 
the reprogramming status of the donor cells recently has 
been considered to have a key role influencing the overall 
efficiency of SCNT [17, 30].

A number of reports have established that successful clon-
ing by SCNT requires reprogramming of the somatic donor 
cell to a totipotent state resembling the status of the germ cell 
[26]. Several studies have reported reprogramming somatic 
cells to a germ-cell like state using injection of egg extracts 
from mammals or amphibians [9, 15, 16, 22, 25]. However, 
the efficiency and method of using oocyte extracts are in 
need of improvement despite these encouraging results [15]. 
Meanwhile, it has been suggested that mammalian sperm 
has unique features allowing it to be easily reprogrammed 
in oocytes at the time of fertilization [26]. Although their 
results regarding effectiveness have been controversial, sev-
eral trials have been performed to improve the reprogram-
ming efficiency in SCNT using sperm features in murine, 
equine and bovine species, such as activation of cloned 
oocyte by sperm or sperm extract injection [3, 4, 10, 12] 

and use of zygotic cytoplasm treated with sperm contents 
[7, 23]. Recently, somatic donor cells dedifferentiated by 
treatment with a testis extract were shown to improve the 
developmental rate of reconstructed embryos derived from 
porcine SCNT [19]. In the present study, we investigated the 
efficiency of murine SCNT and the gene expression patterns 
of reconstructed embryos using donor cells reprogrammed 
by treatment with a testis extract (TE) expressing male-
specific genes.

Female B6D2F1 (C57BL6 X DBA2 F1-hybrid) mice 
were superovulated for collection of recipient oocytes 
by intraperitoneal injections of 5 IU equine chorionic go-
nadotropin (eCG, Intervet., Boxmeer, Netherlands) and 5 
IU human chorionic gonadotropin (hCG, Intervet.), given 
48 hr apart. Oocytes were recovered from oviducts 15 hr 
after hCG injection and placed in 3 ml Hepes-CZB medium 
(HCZB) supplemented with 300 IU/ml hyaluronidase. After 
5 min exposure to the hyaluronidase-containing HCZB, the 
cumulus-free oocytes were washed three times in HCZB 
before micromanipulation. Primary murine embryonic fibro-
blasts (MEFs) were cultured in humidified air with 5% CO2 
at 37°C in Dulbecco’s modified Eagle’s medium (DMEM) 
with 1% penicillin/streptomycin and 10% fetal bovine serum 
(FBS, Hyclone, Logan, UT, U.S.A.). Reprogramed MEFs 
were provided by the Department of Animal Biotechnology, 
Konkuk University. Cell characterization and a method of 
reprogramming cells using a TE were described in detail in 
our previous paper [19]. Only cells expressing murine testis-
specific marker genes, such as PRO1, SHG and ACR, were 
used as reprogrammed donor cells, as described in our previ-
ous paper [19]. The normal MEFs and reprogramed MEFs 
were kept under mineral oil at room temperature for up to 2 
hr before nuclear injection in a 5 µl HCZB droplet supple-
mented with 12% (w/v) polyvinylpyrrolidone (PVP) [29].

Ten to 15 oocytes were transferred to a 10 µl droplet of 
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HCZB containing 5 µg/ml cytochalasin B (CB), and the zo-
nae pellucidae of the oocytes were “drilled our” by applying 
several piezo pulses to the tip of an enucleation pipette with 
a 7- to 10-µm diameter using a piezo-actuated micromanipu-
lator (PMM-150FU, Prime Tech Ltd., Tsuchiura, Japan). The 
metaphase II chromosome–spindle complex was drawn into 
the pipette and removed from the oocytes. After enucleation, 
the oocytes were washed 3 times into HCZB, transferred 
into KSOM and kept for up to 30 min before nuclear in-
jection. Nuclear injection was carried out in a droplet of 
PVP-HCZB. The enucleated oocytes were placed in a CB- 
and BSA-free HCZB droplet, and then, a normal fibroblast 
and reprogrammed fibroblast were drawn into an injection 
pipette, which was moved subsequently to the droplet. The 
pipette containing the donor cells was directly injected into 
the enucleated oocytes (Fig. 1). The reconstructed oocytes 
were exposed to an activation medium consisting of 10 mM 
SrCl2 with 5 µg/ml CB in calcium-free CZB for 6 hr. After 
activation, the reconstructed oocytes were moved to KSOM 
for in vitro culture at 37°C in a humidified atmosphere of 5% 
CO2 in air for 4 days.

The pluripotency-related genes (OCT4 and NANOG), 
embryo metabolism-related gene (GLUT1), male germ 
cell-related gene (SOX9) and trophectoderm differentiation-
related genes (CDX2 and EOMES) were analyzed by Q-
PCR. Amplification of target genes was performed with the 
specific primers listed in Table 1. The primer sequences were 
obtained from PrimerBank (http://pga.mgh.harvard.edu/
primerbank/). First, RNA was extracted from pooled blas-
tocysts in the control and experimental groups using TRIzol 
reagent (Invitrogen, Carlsbad, CA, U.S.A.), and then, the 
RNA was reverse transcribed to synthesize cDNA. Q-PCR 
was performed using an ABI PRISM 7500 system and SYBR 
Green PCR Master Mix (Applied Biosystems, Foster City, 
CA, U.S.A.). Extraction of mRNAs and synthesis of cDNA 
were performed twice, and all samples were run in triplicate 
to obtain technical replicates. Gene expression was always 
related to the expression of murine Gapdh, a housekeeping 
gene, known to be a good reference gene for normalization 
of the expression levels of target genes. Quantification was 
performed using the ΔΔCT method. Each experiment was 
replicated at least three times. Cleavage and blastocyst rates 
were analyzed by the χ2 test. Data regarding the expression of 
specific genes in blastocyst embryos were analyzed by one-
way ANOVA using the SPSS software (Version 12.0; SPSS 
Inc., Chicago, IL, U.S.A.). P<0.05 was considered signifi-
cant. All animal experiments were approved and performed 
under the guidelines of the Institutional Animal Care and Use 
Committee of Seoul National University (SNU-061023-1).
All inorganic and organic compounds were obtained from 
Sigma-Aldrich Korea (Yong-in, Republic of Korea) unless 
otherwise stated. All culture and handling media used were 
based on CZB [1] and KSOM [5].

A total of 273 SCNT embryos (3 replicates for each 
control and experimental groups) were scored for develop-
mental rate (%) at the 2-cell (cleavage) (42.7 vs. 41.8) and 
blastocyst stage (19.7 ± 2.4 vs. 21.2 ± 2.9). There was no 
significant difference in developmental rate between groups 

(Table 2).
Pretreatment of donor cells brought about changes in the 

expression of specific genes during embryonic development. 
Gene expressions of reconstructed blastocysts are described 
in Fig. 2. Expression of the OCT4, CDX2 and EOMES genes 
did not vary significantly between the experimental groups, 
whereas expression of the NANOG, SOX9 and GLUT1 
genes increased significantly (up to 2-fold) compared with 
the control group.

In the present study, the rate of development to the blas-
tocyst stage did not show a significant difference between 
the experimental groups, unlike a previous report in pigs 
[19]. The expression levels of developmentally important 
genes were also investigated in cloned embryos with donor 
cells reprogrammed using the testis extract. The expression 
levels of the Oct-4, Cdx2 and Eomes genes did not show 
significant differences between experimental groups. How-
ever, the expression levels of Nanog, Sox9 and Glut1 genes 
in blastocysts reconstructed with cells treated with the testis 
extract were significantly higher than in the control. Oct-4 
and Nanog are important regulators for pluripotency of the 
inner cell mass (ICM) [24]. The higher expression level of 
Nanog in embryos reconstructed with cells treated with the 
testis extract corresponded to that in previous results [19]. 
The expression of both Oct-4 and Nanog was reported to 
be higher in in vivo-derived embryos than in SCNT-derived 
counterparts [13]. Based on a recent study reporting that the 
ICM of Oct-4-null embryos showed unexpected higher ex-
pressions of Nanog than the ICM of heterozygous embryos 
[14], the expression levels of Oct-4 and Nanog in the present 
study may suggest the presence of some complementary 
relationship between the two genes to maintain the specific-
ity of the ICM [14]. The caudal-type homeodomain protein 

Fig. 1. The experimental scheme of this study. The procedural 
steps were the same until the enucleation process. For donor cell 
injection, intact murine fibroblasts (control, pink) or fibroblasts 
reprogrammed using the testis extract (experimental group, yel-
low) were used. The reprogramming process is briefly described 
in the dotted rectangle. After activation, embryos were cultured in 
standard in vitro culture medium for up to 120 hr.
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Cdx2 and Eomes are important genes required at a distinct 
stage during murine trophectoderm formation [2, 20]. 
Several studies have reconstructed embryos with aberrant 
reprogramming that showed an abnormal expression pat-
tern of Cdx2 and Eomes [8, 18]. It can be suggested that the 
donor cells treated with testis extract in the present study 
could be successfully reprogrammed to express the genes 
related to trophectoderm differentiation in the reconstructed 
embryos as in the control embryos. Higher expression of 
Sox9 indicates that treatment of somatic donor cells with 
the testis extract may allow male germ cell-specific features 
to remain in reconstructed embryos after SCNT. Glut-1 also 
showed higher expression in embryos reconstructed with 
cells treated with the testis extract in the present study. It was 
reported that SCNT-derived mouse embryos showed somatic 
cell-like features with precocious Glut1 and Glut4 expres-
sion [6]. Taking into consideration the results regarding 
Sox9 expression, augmented expression of Glut1 may reflect 
altered reprogramming of somatic donor cells after SCNT or 
remnants of a testis-derived factor in the cytoplasm of the 
reconstructed embryos. However, expression of Glut-1 is 
known as the indicator of cell growth, glucose metabolism 
and transcriptional activity, and strong and stable expression 
of Glut-1 in the reconstructed embryos might have had a 
beneficial effect on embryonic development compared with 
the control embryos in the present study. Taken together, 
although the developmental rate of reconstructed embryos 
did not show significant improvement in the present study, 
the somatic donor cells treated with the testis extract could 
change the state of the cloned embryos, and they may sup-
port early embryonic development after SCNT in mice.
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