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Abstract

The Shine–Dalgarno (SD) sequence motif is frequently found upstream of protein coding genes and is thought to be the
dominant mechanism of translation initiation used by bacteria. Experimental studies have shown that the SD sequence
facilitates start codon recognition and enhances translation initiation by directly interacting with the highly conserved
anti-SD sequence on the 30S ribosomal subunit. However, the proportion of SD-led genes within a genome varies across
species and the factors governing this variation in translation initiation mechanisms remain largely unknown. Here, we
conduct a phylogenetically informed analysis and find that species capable of rapid growth contain a higher proportion
of SD-led genes throughout their genomes. We show that SD sequence utilization covaries with a suite of genomic
features that are important for efficient translation initiation and elongation. In addition to these endogenous genomic
factors, we further show that exogenous environmental factors may influence the evolution of translation initiation
mechanisms by finding that thermophilic species contain significantly more SD-led genes than mesophiles. Our results
demonstrate that variation in translation initiation mechanisms across bacterial species is predictable and is a conse-
quence of differential life-history strategies related to maximum growth rate and environmental-specific constraints.
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Introduction
Translation of a given messenger-RNA (mRNA) into func-
tional protein relies on the ability of the translational appa-
ratus to recognize the proper start codon. Bacteria have
evolved several distinct mechanisms to discriminate between
potential start codons, with the Shine–Dalgarno (SD) mech-
anism being the most well-studied (Shine and Dalgarno 1974;
Nakagawa et al. 2010). Variants of the SD sequence are fre-
quently found upstream of bacterial start codons where they
facilitate translation initiation by hybridizing with the com-
plementary anti-SD (aSD) sequence on the 16S rRNA of the
small ribosomal subunit (fig. 1A).

For a given gene within an organism, the structural acces-
sibility of the SD sequence, the thermodynamic binding po-
tential between the SD sequence and the aSD sequence, and
the exact positioning of the SD sequence relative to the start
codon, are all features that can be predictably tuned in order
to modulate the translation initiation rate of downstream
genes (Barrick et al. 1994; de Smit and van Duin 1994;
Vimberg et al. 2007; Salis et al. 2009; Devaraj and Fredrick

2010; Na et al. 2010; Kosuri et al. 2013; Espah Borujeni et al.
2014; Bonde et al. 2016; Espah Borujeni and Salis 2016;
Hockenberry et al. 2017). In particular, researchers have
shown that transcripts with a strong SD sequence are trans-
lated at higher rates resulting in more protein being produced
per mRNA, a fact which is particularly important for the
design of recombinant protein expression systems (Salis
et al. 2009; Na et al. 2010; Bonde et al. 2016). Nevertheless,
there are several SD sequence-independent mechanisms that
operate in bacteria including leaderless translation and RPS1-
mediated translation of unstructured mRNA sequences
(Komarova et al. 2005; Chang et al. 2006; Gu et al. 2010;
Scharff et al. 2011; Zheng et al. 2011; Keller et al. 2012;
Barendt et al. 2013; Cortes et al. 2013; Duval et al. 2013;
Kramer et al. 2014; Shell et al. 2015). Recent research also
suggests that mechanisms traditionally associated with eu-
karyotic species such as translational scanning and internal
ribosome entry sites may operate in bacterial systems (Colussi
et al. 2015; Yamamoto et al. 2016).

The aSD sequence is highly conserved throughout the
bacterial domain (though notable exceptions exist) and
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stronger SD sequence interactions are associated with in-
creased translation efficiency across a wide array of species
(Chen et al. 1994; Osada et al. 1999; Sakai et al. 2001; Ma et al.
2002; Starmer et al. 2006; Lim et al. 2012; Omotajo et al. 2015;
Hockenberry et al. 2017). We therefore might expect that
most species would utilize the SD sequence mechanism to
a similar degree. However, there is a wide-diversity of SD se-
quence utilization between different species. For instance,
roughly 90% of Bacillus subtilis genes are preceded by a SD
sequence, whereas for Caulobacter crescentus, the comparable
number is closer to 50% (Chang et al. 2006; Starmer et al.
2006; Nakagawa et al. 2010; Schrader et al. 2014). SD-like se-
quence motifs are also underrepresented within the coding
sequences of most bacteria—possibly reflecting their role in
translational pausing and/or erroneous initiation—and like
the diversity of SD sequence utilization, the degree of this
underrepresentation varies from species-to-species (Li et al.
2012; Diwan and Agashe 2016; Mohammad et al. 2016; Yang
et al. 2016).

Cross-species variation in translation initiation mecha-
nisms may impact genetic isolation and transfer of genetic
material, and quantifying the source and extent of variation
may prove useful in identifying important genes in a genome
or microbial community(Krisko et al. 2014; Omotajo et al.
2015). Further, the synthetic biology community is increas-
ingly targeting both translation-system engineering and bio-
technology applications involving less well-studied microbial
species (Tauer et al. 2014; Markley et al. 2015; Orelle et al.
2015; Guiziou et al. 2016; Weinstock et al. 2016; Yi et al. 2016).
A better understanding of the factors shaping the utilization
of different translation initiation mechanisms may ultimately
aid in the design of synthetic gene constructs.

Here, we conduct a phylogenetic comparative analysis in
order to isolate independent evolutionary events and

determine whether any endogenous or exogenous factors
are predictive of genome-wide SD sequence utilization. We
develop a metric that captures position-dependent sequence
preferences within the translation initiation region of a given
genome, and demonstrate a strong link between SD sequence
utilization and minimum doubling times for 187 species.
Furthermore, in a database of 613 phylogenetically diverse
bacterial species, we show that genome-wide variation in
SD sequence utilization covaries along-side a number of ge-
nomic features that are indicative of rapid-growth and effi-
cient translation. Finally, we investigate exogenous
environmental constraints and show that SD sequence utili-
zation varies according to optimal growth temperatures.

Results

Quantifying Genome-Wide SD Sequence Utilization
Several techniques have been previously developed to quan-
tify the overall utilization of the aSD::SD mechanism within a
given species. In motif-based methods, researchers predefine
subsequences closely related to the canonical SD sequence
and search a sequence window upstream of each protein
coding gene within a given genome to determine the fraction
of genes that are preceded by a SD motif (Chang et al. 2006;
Omotajo et al. 2015). Similarly, in aSD sequence complemen-
tarity based methods, researchers predefine a window up-
stream of the start codon to consider for each gene, a
putative aSD sequence, and a hybridization energy threshold
for determining whether a gene is SD-led or not (Osada et al.
1999; Sakai et al. 2001; Ma et al. 2002; Starmer et al. 2006;
Nakagawa et al. 2010).

Both of these metrics rely on critical assumptions that may
not hold when applied across large sets of phylogenetically
diverse organisms. First, they carry an implicit assumption
that a SD sequence, regardless of its location relative to the
start codon, has the same impact on translation initiation.
However, experimental approaches have shown that spacing
between the SD sequence and start codon can have dramatic
effects on translation initiation rates (Vimberg et al. 2007; Salis
et al. 2009; Devaraj and Fredrick 2010; Hockenberry et al.
2017). Second, both methods rest on a dichotomy between
SD-led and non-SD-led genes. Although this simplification is
useful for describing the phenomenon, an abundance of re-
search has shown that a spectrum of sequence complemen-
tarity affects translation initiation in a continuous manner
(Vimberg et al. 2007; Salis et al. 2009). Third, bacterial
genomes span a range of GC contents, and previous research
has shown that it is possible to account for this bias by com-
paring the proportion of SD-led genes in a genome to an
appropriate null model expectation (Nakagawa et al. 2010).
We define the following term to summarize SD sequence
utilization using the SD-motif based method by:

DfSD ¼ fSD;obs ��f SD;rand (1)

where fSD is the fraction of genes within a genome classified as
SD-led and �f SD;rand is the expected fraction of SD-led genes
derived from repeating this calculation for 500 nucleotide
shuffled “genomes” (where 30nts of the 50-UTR for each
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FIG. 1. Sequence entropy quantifies genome-wide SD sequence utili-
zation. (A) Illustration of the anti-Shine–Dalgarno(aSD)::Shine–
Dalgarno(SD) sequence mechanism of translation initiation.
(B) Representative sequence logos of the 50 upstream region of all
annotated coding sequences for individual genomes displays hetero-
geneity in sequence entropy within and between species. (C)
Illustration of the DI metric for Caulobacter crescentus as an example.
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gene are randomly permuted, see Materials and Methods).
We similarly define DfaSD<�4:5, where SD-led genes are de-
fined via hybridization of the putative aSD sequence using a
threshold binding energy value of �4.5 kcal/mol (see
Materials and Methods).

Sequence Entropy and Its Relationship with SD
Sequence Utilization
We sought a complementary approach that would allow us
to investigate hundreds of diverse genomes without having to
a priori define either an aSD sequence or SD sequence motifs.
To measure arbitrary position-specific sequence signals, we
extract the 50 upstream sequences from all annotated protein
coding sequences (see Materials and Methods) and sum the
“information content” at each position within the region
where SD motifs are expected to occur (�20 to �4 relative
to the start codon):

Iobs ¼
X�4

i¼�20

ð log24�
X

k2fA;T;G;Cg
pi;k log2pi;kÞ (2)

where pi, k is the empirical frequency of base k at position i.
The right side of this equation is the entropy (calculated from
empirical base frequencies at each position) while the log24
component scales the data in line with what is typically
represented in sequence logo plots such that individual nu-
cleotide positions have a maximum value of 2 when fully
conserved and a minimum of 0 when fully random. We again
repeat this process for 500 shuffled “genomes” (as described
above) and compare the sequence information from the ac-
tual genome to this null expectation:

DI ¼ Iobs ��Irand (3)

For a more intuitive interpretation, figure 1B shows se-
quence logo plots of the 50-UTRs for three genomes to high-
light the variation in sequence preferences between species.
Iobs is simply the sum across each position of these nucleotide
“stacks.” To account for uneven nucleotide usage, we calcu-
late DI by comparing this value to nucleotide shuffled con-
trols (fig. 1C). In supplementary figure S1, Supplementary
Material online, we simulate sequences to show that DI takes
larger values when (all else being equal): 1) a larger fraction of
simulated genes contain a particular sequence motif, 2) the
enriched sequence motif is longer, and 3) the enriched se-
quence motif is more strictly defined in its position.

We compiled a data set of 613 bacterial species, unique at
the genus level, with annotated genome-sequences as well as
a previously constructed high-quality phylogenetic tree de-
scribing their relatedness (Hug et al. 2016) (see Materials and
Methods). In figure 2A, we show that while summary meth-
ods based on SD-motif and aSD sequence complementarity
(DfSD and DfaSD<�4:5, respectively) are strongly related for a
large set of diverse species, this association is not perfect and
there is a distinct change in the slope that occurs for the
Firmicutes phylum.

In principle, DI may quantify a variety of position-specific
sequence signals that may or may not be related to the SD

sequences or translation initiation. In practice, we observe
that this metric correlates strongly with both methods tradi-
tionally used to describe SD sequence utilization (fig. 2A and
supplementary fig. S2, Supplementary Material online).
However, in the Bacteroidetes phylum, we detect significant
variation in DI without any apparent variation in either of the
other two metrics. These findings are consistent with prior
research that identified changes in the aSD sequence region of
the 16 S rRNA sequence within this phylum (Lim et al. 2012),
and indicate that Bacteroidetes may nevertheless contain
position-specific translation initiation sequences. The se-
quence logos for representative Bacteroidetes species showed
A/T rich UTRs (supplementary fig. S3, Supplementary
Material online), possibly indicative of translation initiation
mediated by ribosomal protein S1. However, we stress that
general nucleotide bias is removed in our calculation of DI via
shuffling and the A/T richness in these species instead has a
fairly strong position-specific signal. The fact that the DI met-
ric quantifies position-specific translation initiation signals for
Bacteroidetes allows us to incorporate them into future anal-
yses (fig. 2A, red data points) though we note that much
remains to be understood about possible changes to the
identity of the SD and aSD sequences in this phyla.

Due to the strong relationship between DI and explicit SD
sequence methods, we refer to DI as quantifying SD sequence
utilization throughout the remainder of this manuscript and
make explicit note of differences between SD sequence quan-
tification methods when necessary. Consistent with prior re-
search (Nakagawa et al. 2010), we show that SD sequence
utilization according to the DI metric varies considerably
across species while showing broad phyla-specific patterns
that should be accounted for when performing statistical
tests (fig. 2B, bar heights). We additionally found that the
UTRs from ribosomal protein coding genes contained more
position-dependent sequence information—using either Iobs

or DI, for nearly all species in our data set—compared with
genome-wide UTRs (supplementary fig. S4, Supplementary
Material online). This observation is consistent with theory
emphasizing the overall importance of efficient translation for
the most highly expressed proteins. We also tested whether
DI varies according to genome size and found no significant
association with either genome length or the number of an-
notated protein coding genes (P¼ 0.54 and 0.84,
respectively).

Translation Initiation and Organismal Growth
Demands
In prior research, Vieira-Silva et al. (2010) curated a list of
minimum doubling times from the literature for a large num-
ber of bacterial species (Roller et al. 2016). Organisms that are
capable of rapid growth have high protein production
demands during these periods and there are a number of
regulatory points that can be bottlenecks for this process.
Meeting high translational demands associated with rapid
growth requires coordination of a number of processes, and
Vieira-Silva et al. (2010) showed that increasing numbers of
rRNA and tRNA genes, and increasing codon usage biases
among ribosomal mRNAs in individual genomes were all
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partially predictive of the minimum doubling times of indi-
vidual species. Subsequently, Yang et al. (2016) showed that
the extent of anti-SD sequence binding across coding sequen-
ces was also predictive of minimum doubling times reflecting
the possible influence of internal SD-like sequences on trans-
lational pausing and/or spurious translation initiation events
(Yang et al. 2016).

At the individual gene level, translation initiation is an
important control point and likely to be rate-limiting for
the production of most proteins. Experimental evidence
largely supports this conjecture, with alterations to SD se-
quence utilization, mRNA structural availability, and start co-
don identities predictably tuning protein production (Kudla
et al. 2009; Salis et al. 2009; Goodman et al. 2013; Kosuri et al.
2013; Espah Borujeni et al. 2014, 2016; Espah Borujeni and Salis
2016; Hecht et al. 2017). We thus reasoned that efficient
translation initiation across all or subsets of genes may sim-
ilarly play an important role in meeting protein production
demands imposed by rapid growth rates. In addition to

genome-wide SD sequence utilization, we also quantified
the percentage “ATG” start codons in a genome as well as
the average difference in mRNA folding energy surrounding
the start codons relative to a control region internal to the
gene (see Materials and Methods).

We first replicated several of the findings of Vieira-Silva
et al. (2010) and Yang et al. (2016) using Phylogenetically
Generalized Least Squares regression (Revell 2010) to account
for the lack of independence in species (see Materials and
Methods). We verified that rRNA gene counts, tRNA gene
counts, a metric of relative codon usage bias (based off the
“effective number of codons” [DENC], see Materials and
Methods), and a metric of internal SD-like sequence binding
(see Materials and Methods) are all significantly predictive of
minimum doubling times after controlling for phylogenetic
effects (F-test, P< 0.002 for all cases, table 1).

Next, we turned to metrics related to translation initiation.
We found that DI calculated over all genes within a genome
significantly correlates with minimum doubling times in this

A

B

FIG. 2. Relationship between DI and existing metrics of SD sequence utilization. (A) Comparison between different ways of summarizing SD
sequence utilization; each data point represents a single genome. On the left, we show the relationship between SD motif and aSD sequence
complementarity based methods (DfSD and DfaSD<�4:5). On the right, we compare DI and DfaSD<�4:5. The four largest phyla are color-coded
according to the legend. Arrows highlight phyla with “anomalous” patterns. (B) Phylogenetic tree illustrating variation in SD sequence utilization
across species according to the DI metric (indicated by bar plots on concentric rings).
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set of species (P< 10�5), showing the second strongest cor-
relation of any individual trait that we considered (table 1 and
fig. 3A). Our metric of mRNA structural stability surrounding
the start codons—“mRNA folding” in table 1—similarly
showed a significant relationship such that genomes that,
on an average, have the weakest mRNA structure surround-
ing the start codon are more capable of rapid growth. By
contrast, the proportion of protein coding genes containing
an ATG start codon is not significantly correlated with min-
imum doubling times (P¼ 0.056), but showed the expected
slope indicative of faster growth for genomes with more ATG
start codons.

In order to test the robustness of these findings and to
assess overall predictability of minimum doubling times from
these features, we constructed a multivariable Phylogenetic
Generalized Least Squares regression model that combines all
of the above factors, and found that only relative codon usage
biases (DENC), SD sequence utilization (DI), and mRNA fold-
ing energy had statistically significant coefficients in this full
model (P< 0.01). Overall, a model containing all factors
resulted in R2¼ 0.35 (P< 10�13, fig. 3B), whereas a more
parsimonious model containing only the three factors with
statistically significant coefficients resulted in R2¼ 0.31
(P< 10�14). Removing either of these features from the full
model reduces its predictive power as illustrated in the right
column of table 1, which further emphasizes the large con-
tribution of DENC and DI in particular.

In order to compare our work with prior research, we also
conducted a phylogenetically agnostic linear regression model
using all of these factors, which yielded R2¼ 0.6
(P< 10�15)—though we caution that ignoring the effects
of shared ancestry will substantially bias statistical analyses.
We further generated the same data as in table 1 using D
faSD<�4:5 as a metric of SD sequence utilization and found
largely similar results with slightly less predictive power over-
all: R2¼ 0.29 for the full model and R2¼ 0.09 as an individual
predictor compared with 0.35 and 0.11 using DI (supplemen-
tary table S1, Supplementary Material online). We repeated

these analyses excluding species from Bacteroidetes phylum,
but this restriction removed only five species and correlations
for both DI and DfaSD<�4:5 independently and in the full
model remained essentially unchanged.

Interestingly, we looked at the effect of using only using
ribosomal protein coding genes to calculate DI and found
that this metric performed worse at predicting observed min-
imum doubling times individually (R2¼ 0.04) and as part of
the full model (R2¼ 0.27) (supplementary table S2,
Supplementary Material online). The metrics of codon usage
bias and internal SD-like sequence usage that we used here
are both calculated from the difference between values for
ribosomal protein coding genes and all genes within a ge-
nome, thus representing relative differences in selection
strength acting specifically on ribosomal protein coding
genes. However, we observed little predictive power when
using a relative difference metric between ribosomal protein
coding genes and all genes within a genome—using either Iobs

or DI to predict minimum doubling times (R2� 0). Instead,
genome-wide calculations of DI consistently provided the
highest predictive power.

As a final caveat for this data, we do note that the list of
species compiled by Vieira-Silva et al. (2010) is phylogeneti-
cally biased toward Proteobacteria, contains only culturable
species, and is distinct in its composition from the data set
analyzed in figure 2B.

Relationship between SD Sequence Utilization and
Other Translation Efficiency-Associated Traits
Since a coordinated effort between multiple processes is re-
quired to maximize protein production in experimental sys-
tems, we reasoned that the various genome-wide traits
associated with efficient translation are likely to covary with
one another across species. In order to test this hypothesis, we
assessed the correlation between different definitions of SD
sequence utilization and all of the alternative traits listed in
table 1 via Phylogenetic Generalized Least Squares regression.
In figure 4A, we show the results of this analysis, finding that
in all cases where a pair of traits is significantly correlated, the
correlation is positive (note that the color bar corresponds to
R and not R2). Increasing SD sequence utilization is thus sig-
nificantly associated with an increasing fraction of ATG start
codons, less structured mRNA folding around the start
codons, increased 16S rRNA and tRNA gene counts, and in-
creasing codon usage bias/avoidance of internal SD-like
sequences within ribosomal protein coding genes.

We next tested the overall robustness and universality of
these results by independently analyzing these relationships
within individual phyla. We specifically looked at the four
largest phyla in our data set—Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes—and repeated the analysis
from figure 4A using independent model fits. Again, we ob-
served that nearly every significant correlation is in the pos-
itive direction (supplementary fig. S5, Supplementary Material
online) with the exception of mRNA structure and SD se-
quence utilization in the Firmicutes phylum. When looking at
relationships between variable SD sequence utilization in the
Bacteroidetes phylum, DI has a significantly positive

Table 1. Contribution of Several Factors for Predicting Minimum
Doubling Times.

Model for Min.
Doubling Time

R2 Pagel’s k [95% CI] jDR2j

Full model 0.35*** 0.91 [0.80, 0.96] –
DENC 0.17*** 0.96 [0.92, 0.99] 0.15
DI 0.11*** 0.97 [0.93, 0.99] 0.12
mRNA folding 0.08*** 0.98 [0.95, 0.99] 0.04
Internal SD-like 0.08*** 0.98 [0.95, 0.99] 0.03
16S gene counts 0.06** 0.98 [0.95, 0.99] 0.01
tRNA gene counts 0.06*** 0.98 [0.95, 0.99] 0.01
ATG start % 0.02 0.98 [0.95, 0.99] <0.01

NOTE.—The left column indicates individual variables that we considered for pre-
dicting minimum doubling times with the full multivariate model listed at the top.
R2 column illustrates the overall goodness-of-fit for individual factors (*** indicates
P< 0.001, ** indicates P< 0.01). Pagel’s k is the fitted phylogenetic signal param-
eter, which we show with 95% confidence intervals in brackets. The right column
illustrates the change in goodness-of-fit from a model that includes all predictors to
one that excludes only the variable in the given row.
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relationship with several other variables whereas DfSD and D
faSD<�4:5 show no significant relationships apart from with
one-another.

Relationship between Translation Initiation
Mechanisms and Ecological Factors
Having established that genome-scale SD sequence utilization
is part of a suite of traits related to differential organismal
growth strategies, we last wanted to assess whether ecological
factors pertaining to an organisms habitat may constrain the
evolution of SD sequence utilization. The aSD:: SD sequence
interaction is thought to increase translation rates by stabi-
lizing the assembly of the translation initiation complex. Since
this interaction is based on RNA base-pairing, pairing be-
tween longer sequences may be necessary in order to get
an equivalent level of stabilization at higher temperatures.
As we show in supplementary figure S1, Supplementary
Material online, DI takes larger values when longer sequences
are preferred so we reasoned that there might be an associ-
ation between this metric and optimal growth temperatures.

Nakagawa et al. (2010) investigated this possibility, but
found no association (Nakagawa et al. 2010). By contrast,
our phylogenetically informed modeling approach applied
to this larger data set (481 of the 613 species in our data
set have high-confidence growth temperature annotations)
finds that temperature constrains genome-wide SD sequence
utilization. Specifically, the genomes of thermophilic species
display significantly larger values of DI than mesophilic species
(fig. 4B, F-test P¼ 0.002 using temperature as a fixed-effect in
Phylogenetically Generalized Least Squares modeling) in line
with our hypothesis. Although optimal growth temperature
is a continuous variable, in practice, measurements for the
vast majority of species fall into discrete categories (30 �C and
37 �C). This fact, coupled with the availability of a large data-
base of “mesophile” and “thermophile” annotations moti-
vated our decision to study this effect using discrete
temperature categories.

Our finding here illustrates the role that ecological factors
relating to growth conditions places on the evolution of ge-
nome architectures. We further tested whether there are any

A B

FIG. 3. Relationship between SD sequence utilization and organismal growth. (A) DI is significantly correlated with minimum observed doubling
times for 187 bacterial species. (B) Visualization of the full model listed in table 1 depicting a strong relationship between observed and predicted
minimum doubling times. In both plots, individual species data points are colored according to phyla as in figure 2A.

A

B

FIG. 4. SD sequence utilization covaries alongside a suite of transla-
tion-related traits and according to optimal growth temperatures.
(A) Correlation matrix between listed variables used in table 1 for a set
of 613 diverse bacterial species. In all instances of significant correla-
tion, the features covary with one another in the positive direction.
(B) SD sequence utilization, quantified using DI is significantly higher
in thermophiles than in mesophiles. Box limits show 25th and 75th
percentiles of the data, whiskers extend to 5th and 95th percentiles,
triangles depict the means of each category and red lines highlight the
median.
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systematic differences in SD sequence utilization by looking at
free-living/host-associated species, or pathogenic/nonpatho-
genic species, and found no significant effects for either
(P¼ 0.91 and 0.44, respectively). Nevertheless, it is possible
that other ecological and life-history traits that we did not
consider here may play an important role in constraining the
evolution and utilization of different translation initiation
mechanisms.

Discussion
Our study shows a relationship between bacterial translation
initiation mechanisms, life-history strategies, and environ-
mental demands faced by individual species. Although we
do not specifically address causality, we found that minimum
observed doubling times and SD sequence utilization at the
genome-scale are significantly correlated (fig. 3A). In a larger
and more diverse data set of 613 species, we further showed
that SD sequence utilization predictably covaries with several
other genomic and environmental features, including the
number of rRNA genes and optimal growth temperatures.
Taken together, our findings demonstrate that organisms
with greater translational demands are likely to coevolve a
common suite of genomic features that help to maximize
translation during periods of rapid growth, and that SD se-
quence utilization is an important component of this shared
genome architecture.

Our analysis throughout is performed in a manner that
corrects for the confounding effects of shared ancestry be-
tween species, and our phyla specific results illustrate several
critical points. First, the sign on the relationships between
individual features that we observe is extremely robust, re-
gardless of the phylum or SD sequence utilization summary
statistic under consideration (fig. 4A and supplementary fig.
S5, Supplementary Material online). Increasing 16S/tRNA
gene counts, increasing codon usage biases/avoidance of in-
ternal SD-like sequences in ribosomal protein genes, higher
ATG start codon usage, and weak mRNA structure surround-
ing the start codon are associated with increasing SD se-
quence utilization. Second, we developed a novel metric
(DI) to measure position-specific translation initiation region
sequence preferences in a manner that is independent of the
anti-SD or SD sequence for a given species. We found that DI
is highly correlated with prior estimates of SD sequence uti-
lization, but that this relationship breaks down in the
Bacteroidetes phylum, which may reflect novel position-
specific sequence preferences in this lineage. Future research
applying our methodology to larger data sets may allow
researchers to uncover branches within phylogenetic trees
where mechanistic differences in the translational
apparatus—resulting in differences in the slope and/or sign
on the relationships between different features—have
evolved.

Despite the overall robustness of our results, there are
several caveats to our study that we wish to explicitly high-
light for readers. First, the lack of available growth rate data for
most phyla prohibits us from looking at the relationships
between genomic traits and minimum doubling times on a

phyla specific level. The species for which we do have mini-
mum doubling time estimates are biased phylogenetically
and represent only a fraction of the known bacterial universe.
Second, our findings throughout rely on genome annotations,
which frequently rely on the presence of SD sequences to
identify the 50 ends of genes. Such annotations are known to
be imperfect, and as many as� 10% of genes in a given ge-
nome may have misannotated start codons (Schrader et al.
2014). However, these biases are likely to be uniform—or at
least randomly distributed—throughout our data set making
it unlikely that systematic differences in start codon annota-
tion between genomes would produce spurious results of the
order that we report here. Nevertheless, continued improve-
ment in start codon annotations is an important issue and
potential limitation of our study.

Our results add to the body of knowledge showing that a
small number of genomic traits—that includes utilization of
the SD sequence mechanism—can be used to predict varia-
tion in minimum doubling times. However, a critical question
that remains unanswered is: what is the causal relationship
between different genome-scale phenomena and growth rate
control? We emphasize that our study is correlative, and that
truly establishing causality on genome-scale patterns will re-
quire large-scale experiments that, for instance, systematically
alter the SD sequences for hundreds of different genes at the
same time and measure the resulting growth rates. Prior re-
search has shown detrimental growth effects from deleting
rRNA operons and tRNA genes in different microbial species
(Stevenson and Schmidt 2004; Yano et al. 2013; Bloom-
Ackermann et al. 2014; Samhita et al. 2014). Additionally,
genome-scale engineering efforts to alter codon usage bias
patterns have likewise showed increasing doubling times in
these strains (Napolitano et al. 2016; Ostrov et al. 2016).
Rather than suggest a single limiting feature for bacterial
growth control, these results highlight that a number of fea-
tures are likely necessary but insufficient on their own to
increase bacterial growth rates.

We do not wish to suggest that increasing the translation
initiation rates for all genes within a genome would result in a
faster growing species, but we do hypothesize that decreasing
the translation initiation rates for a large number of randomly
chosen genes is likely to produce substantially longer dou-
bling times. Why our results showed the strongest correla-
tions with minimum doubling times when assessing genome-
wide SD sequence utilization rather than only looking at ri-
bosomal protein coding genes is unknown. However, we
speculate that under periods of rapid growth, hundreds of
genes (that include ribosomal proteins) are likely required
and capable of bottle-necking bacterial growth. Calculating
SD sequence utilization on a subset of such genes may pro-
duce an even stronger relationship with minimum doubling
times, but the identities of these genes are likely to be organ-
ism and condition-specific.

We found that measurements of SD sequence utilization
outperform more commonly known associations such as the
number of rRNA genes at predicting minimum doubling
times (R2¼ 0.11 vs. 0.06, and increasing feature importance
in the full model depicted in table 1) (Roller et al. 2016).
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We believe that this finding may, in part, be a consequence of
the relevant evolutionary time-scales that it takes to alter
different traits. Specifically, substantially changing genome-
wide SD sequence utilization or codon usage biases would
require hundreds or thousands of fixed mutations, respec-
tively. We found that these two traits were the most predic-
tive of minimum doubling times out of all traits that we
considered, which is in contrast to traits such as rRNA and
tRNA gene counts that can be altered rapidly by deletions/
insertions. Thus, the degree of codon usage bias or SD
sequence utilization within a genome may better reflect
long-term historical forces acting on a species, whereas
copy number variations have the potential to better reflect
more rapid evolutionary changes.

Finally, we note that—like codon usage biases and in con-
trast to rRNA and tRNA gene counts—summary statistics
based on SD sequence utilization do not require complete
genome sequences and therefore may be estimated with par-
tial genome fragments. The results and methods that we
present here may thus have important applications in our
understanding of novel, uncultivated genomes, environmen-
tal meta-genomic sequencing efforts, and the relationship
between higher order genome traits and growth strategies
(Brown et al. 2016).

Materials and Methods

Data Assembly
We first assembled a database of prokaryotic genomes from
NCBI using the GBProks software (https://github.com/
hyattpd/gbproks), including only “complete” genomes in
our download and subsequent analysis (accessed on: March
10, 2016). From the annotated GenBank files, we excluded
pseudogenes and plasmid based sequences from all subse-
quent analyses and proceeded to compile a data table with
several traits for each genome. In addition to SD sequence
utilization summary statistics described below, we applied
RNAmmer to each genome in order to compile a list of
ribosomal-RNA genes, and tRNAscan-SE to assemble a list
of the tRNA genes (Lagesen et al. 2007; Lowe and Chan 2016).

We wrote custom scripts to calculate the fraction of an-
notated coding sequences that begin with “ATG,” as well as
the metric of codon usage bias (DENC as described in Vieira-
Silva et al. 2010). For this latter metric, we first parsed the gene
annotations to find ribosomal protein coding genes. We next
computed the relative differences in codon usage bias be-
tween ribosomal protein coding genes and the rest of the
genome, whereby:

DENC ¼ ENCall � ENCribo

ENCall
(4)

where “all” and “ribo” refer to all protein coding genes and
ribosomal protein coding genes, respectively. We altered the
method used to calculate the “effective number of codons” or
“ENC” from the one originally used by Vieira-Silva et al. (2010)
to better control for GC content differences according to
recent metric developed in our lab (manuscript submitted).
The interpretation is the same, with larger positive values

indicating more codon usage bias in ribosomal protein coding
genes relative to the rest of the genome.

We calculated the metric of internal SD-like sequence
occurrences as reported in in Yang et al. (2016). Briefly, we
first calculate the average aSD sequence binding strength for
each hexamer within a given coding sequence. As above, the
final metric is then calculated as the difference in average aSD
binding energies between all protein coding genes and ribo-
somal protein genes divided by the value for all genes. Larger
value indicate fewer SD-like sequences are present in ribo-
somal protein coding genes relative to all genes.

Our measurement of genome-wide “mRNA folding,” is
calculated as follows. For each gene greater than 150nts in
length, we extract a 60-nt long region centered on the start
codon (�30 toþ30) and calculate the minimum free energy
of this segment under ViennaRNA defaults. We next do the
same thing for an internal 60-nt segment (which we chose to
standardize as nucleotides þ90 to þ150 for all genes). For
each gene, we calculate the difference of these two folding
energies and for each genome, we calculate the average of
these differences across all genes. Negative values indicate
that regions surrounding the start codon are more structured
than internal regions, and as values get more positive the
region surrounding the start codon is increasingly less struc-
tured compared with internal sites.

For data on minimum doubling times, we downloaded the
data table from Vieira-Silva et al. (2010), and paired each
bacterial species with a complete genome from our database
resulting in 187 matched species. To control for shared an-
cestry in subsequent analyses, we constructed a phylogenetic
tree based off the rRNA sequences for this set of species. We
first used RNAmmer to extract a randomly chosen 16S and
23S rRNA sequence from each genome, followed by MUSCLE
(v3.8.31) on each individual rRNA to produce a multiple-
sequence alignments (Edgar 2004). These were concatenated
together and we conducted a partitioned analysis using
RAxML to construct a final tree. We performed 100 rapid
Bootstrap searches, 20 ML searches and selected the best ML
tree for subsequent analysis (Stamatakis 2014).

For the larger data set, we instead relied on a previously
computed high-quality phylogenetic tree published by Hug
et al. (2016) (Hug et al. 2016). We used custom scripts to
match entries in this tree with genomes from our complete-
genome database, and pruned away all species without a
high-quality match resulting in 613 bacterial species in our
final data set that were used for subsequent analyses. For
temperature annotations, we matched this set of 613 species
to the ProTraits database using custom scripts, and restricted
our analysis to species with temperature annotations exceed-
ing a precision of 0.9 (equivalent to a FDR< 0.1) (Brbi�c et al.
2016).

Calculating Summary Statistics of SD Sequence
Utilization
The calculation of DI is illustrated mathematically in the main
text. Here, we only add that the calculation of the randomized
sequences for all SD summary statistics is performed by first
shuffling the upstream region of each gene between the
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region �30 to 0 (where þ1 is the first base of the start co-
don). Having shuffled each gene in this manner, we then
performed the analysis as discussed in the main text for
this shuffled “genome” and repeat this calculation 500 times
in order to derive null expectation for fSD, faSD<�4.5 and Iobs.

Next, we elaborate on our calculation of the other two
methods for calculating SD sequence utilization. For each
genome, we extract the �20 to �4 region upstream of the
start codon for each gene. For fSD, we consider a gene as being
SD-led if, in this defined region, any of the following motifs
appear: “GGAA,” “GGAG,” “GAGG,” “AGGA,” or “AAGG.”
We repeat this same process for 500 randomized “genomes”
where a randomized genome is defined as noted above (with
the nucleotide region from�30 to 0 for each gene shuffled on
a per-gene basis) prior to motif search.

For faSD<�4:5, we perform a nearly identical procedure to
the one listed above with the major difference being that
instead of searching the upstream region of genes for partic-
ular motifs, we evaluate the hybridization energy between
each eight nucleotide segment contained within the �20
to �4 region and the putative aSD sequence defined as 50-
ACCUCCUU-30 using the “cofold” method of the ViennaRNA
software package with default parameters. If any sequence
binds at a threshold of �4.5 kcal/mol or stronger (i.e., more
negative DG values), we consider this gene to be SD-led.

Phylogenetically Generalized Least Squares
Throughout this manuscript, we utilize Phylogenetically
Generalized Least Squares regression in order to mitigate
the effects that arise from shared ancestry in statistical anal-
yses. Our Phylogenetically Generalized Least Squares analysis
relies on the most common null model, which assumes a
Brownian motion model of trait evolution. For all statistical
analyses presented in the paper, we use the R package “caper”
and perform a simultaneous maximum-likelihood estimate of
Pagel’s k, a branch length transformation, alongside the coef-
ficients for independent variables of interest. All P values that
we report come from the F-test according to these results. For
temperature analysis, we assigned “mesophiles” and
“thermophiles” a value of 0 and 1, respectively, and performed
the equivalent fixed-effect analysis with DI as the dependent
variable.

Data Availability and Computer Code
Data are provided as a supplementary file, Supplementary
Material online and all custom scripts and code that is suffi-
cient to perform the analysis can be found at https://github.
com/adamhockenberry/SD-evolution-publication.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Nielsen AT, Herrgård MJ, Sommer MOA. 2016. Predictable tuning
of protein expression in bacteria. Nat Methods 13(3):2230–2226.

Brbi�c M, Pi�skorec M, Vidulin V, Kri�sko A, �Smuc T, Supek F. 2016. The
landscape of microbial phenotypic traits and associated genes.
Nucleic Acids Res. 44(21):10074–10090.

Brown CT, Olm MR, Thomas BC, Banfield JF. 2016. Measurement of
bacterial replication rates in microbial communities. Nat Biotechnol.
34(12):057992.

Chang B, Halgamuge S, Tang SL. 2006. Analysis of SD sequences in
completed microbial genomes: non-SD-led genes are as common
as SD-led genes. Gene 373(1–2):90–99.

Chen H, Bjerknes M, Kumar R, Jay E. 1994. Determination of the optimal
aligned spacing between the Shine-Dalgarno sequence and the
translation initiation codon of Escherichia coli mRNAs. Nucleic
Acids Res. 22(23):4953–4957.

Colussi TM, Costantino D. a, Zhu J, Donohue JP, Korostelev A. a, Jaafar Z.
a, Plank T-d. M, Noller HF, Kieft JS. 2015. Initiation of translation in
bacteria by a structured eukaryotic IRES RNA. Nature
519(7541):110–113.

Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young
DB. 2013. Genome-wide mapping of transcriptional start sites
defines an extensive leaderless transcriptome in Mycobacterium tu-
berculosis. Cell Rep. 5(4):1121–1131.

de Smit MH, van Duin J. 1994. Translation initiation on structured
messengers: another role for the Shine-Dalgarno interaction. J Mol
Biol. 235(1):173–184.

Devaraj A, Fredrick K. 2010. Short spacing between the Shine-Dalgarno
sequence and P codon destabilizes codon-anticodon pairing in the P
site to promote þ1 programmed frameshifting. Mol Microbiol.
78(6):1500–1509.

Diwan GD, Agashe D. 2016. The frequency of internal Shine-Dalgarno
like motifs in prokaryotes. Genome Biol Evol. 8(6):1722–1733.

Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A,
Choulier L, Micura R, Klaholz BP, Romby P, et al. 2013. Escherichia coli

Hockenberry et al. . doi:10.1093/molbev/msx310 MBE

590

Deleted Text: -
Deleted Text: &thinsp;&plus;
Deleted Text: `
Deleted Text: '
Deleted Text: <sub>&ndash;</sub>
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: `
Deleted Text: ',
Deleted Text: `
Deleted Text: ',
Deleted Text: `
Deleted Text: ',
Deleted Text: `
Deleted Text: ',
Deleted Text: `
Deleted Text: '.
Deleted Text: `
Deleted Text: '
Deleted Text: -
Deleted Text: 8 
Deleted Text: -
Deleted Text: -
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
Deleted Text: the 
Deleted Text: `
Deleted Text: '
Deleted Text: -
Deleted Text: g
Deleted Text: l
Deleted Text: s
Deleted Text: `
Deleted Text: '
Deleted Text: -
Deleted Text: -
Deleted Text: `
Deleted Text: '
Deleted Text: `
Deleted Text: '
Deleted Text: a
Deleted Text: c
Deleted Text: c
Deleted Text: is
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx310#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx310#supplementary-data
https://github.com/adamhockenberry/SD-evolution-publication
https://github.com/adamhockenberry/SD-evolution-publication
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx310#supplementary-data


ribosomal protein S1 unfolds structured mRNAs onto the ribosome
for active translation initiation. PLoS Biol. 11(12):e1001731.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

Espah Borujeni A, Cetnar D, Farasat I, Smith A, Lundgren N, Salis HM.
2016. Precise quantification of translation inhibition by mRNA struc-
tures that overlap with the ribosomal footprint in N-terminal coding
sequences. Nucleic Acids Res. 45(9):5437–5448.

Espah Borujeni A, Channarasappa AS, Salis HM. 2014. Translation rate is
controlled by coupled trade-offs between site accessibility, selective
RNA unfolding and sliding at upstream standby sites. Nucleic Acids
Res. 42(4):2646–2659.

Espah Borujeni A, Salis HM. 2016. Translation initiation is controlled by
RNA folding kinetics via a ribosome drafting mechanism. J Am Chem
Soc. 138(22):7016–7023.

Goodman DB, Church GM, Kosuri S. 2013. Causes and effects of N-
terminal codon bias in bacterial genes. Science 342(6157):475–479.

Gu W, Zhou T, Wilke CO. 2010. A universal trend of reduced mRNA
stability near the translation-initiation site in prokaryotes and eukar-
yotes. PLoS Comput Biol. 6(2):e1000664.

Guiziou S, Sauveplane V, Chang H-J, Cler E,C, Declerck N, Jules M, Bonnet
J. 2016. A part toolbox to tune genetic expression in Bacillus subtilis.
Nucleic Acids Res. 44(10):7495–7508.

Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR,
Endy D, Salit M. 2017. Measurements of translation initiation from
all 64 codons in E. coli. Nucleic Acids Res. 45(7):3615–3626.

Hockenberry AJ, Pah AR, Jewett MC, Amaral LAN. 2017. Leveraging
genome-wide datasets to quantify the functional role of the anti-
ShineDalgarno sequence in regulating translation efficiency. Open
Biol. 7(1):160239.

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ,
Butterfield CN, Hernsdorf AW, Amano Y, Ise K, et al. 2016. A new
view of the tree of life. Nat Microbiol. 1(5):16048.

Keller TE, Mis SD, Jia KE, Wilke CO. 2012. Reduced mRNA secondary-
structure stability near the start codon indicates functional genes in
prokaryotes. Genome Biol Evol. 4(2):80–88.

Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. 2005. AU-rich sequen-
ces within 5’ untranslated leaders enhance translation and stabilize
mRNA in Escherichia coli. J Bacteriol. 187(4):1344–1349.

Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y, Arkin AP, Endy
D, Church GM. 2013. Composability of regulatory sequences con-
trolling transcription and translation in Escherichia coli. Proc Natl
Acad Sci U S A. 110(34):14024–14029.

Kramer P, G€abel K, Pfeiffer F, Soppa J, de Crécy-Lagard V. 2014. Haloferax
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