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CdS quantum dots modified 
CuO inverse opal electrodes for 
ultrasensitive electrochemical and 
photoelectrochemical biosensor
Lei Xia, Lin Xu, Jian Song, Ru Xu, Dali Liu, Biao Dong & Hongwei Song

The CuO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method and modified 
with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR). CdS QDs modified 
CuO IOPCs FTO electrodes of different SILAR cycles were fabricated and their electrochemical 
properties were studied by cyclic voltammetry (CV) and chronoamperometry (I–t). Structure and 
morphology of the samples were characterized by transmission electron microscopy (TEM), scanning 
electron microscopy (SEM), high-resolution TEM (HRTEM), Energy-dispersive X-ray analysis (EDX) 
and X-ray diffraction pattern (XRD). The result indicated that the structure of IOPCs and loading 
of CdS QDs could greatly improve the electrochemical properties. Three SILAR cycles of CdS QDs 
sensitization was the optimum condition for preparing electrodes, it exhibited a sensitivity of 
4345 μ A mM-1 cm-2 to glucose with a 0.15 μ M detection limit (S/N=  3) and a linear range from 0.15 μ M 
to 0.5 mM under a working potential of + 0.7 V. It also showed strong stability, good reproducibility, 
excellent selectivity and fast amperometric response. This work provides a promising approach 
for realizing excellent photoelectrochemical nonenzymatic glucose biosensor of similar composite 
structure.

Determination of glucose with the help of glucose biosensors is a widely investigated and well developed 
field, due to its various important applications in clinical detection, biological analysis, environmen-
tal monitoring and food industry1–3. The most commonly used glucose biosensors are electrochemical 
enzyme based sensors, such as the glucose oxidase biosensor. However, these enzyme based biosensors 
have several drawbacks including the high cost of enzymes, lack of chemical and thermal stability, com-
plicated procedures for enzyme immobilization, careful control of temperature and pH conditions, as 
well as poor reproducibility4–7. To overcome such limitations, glucose biosensors are increasingly being 
prepared without enzymes. In recent years, most of the research on these non-enzymatic electrochemical 
glucose biosensors has focused on using noble metals8–11, metal nanoparticles12–14, metal oxides15–17 and 
boronic acid18–22 as electrodes (anodes) for the detection of glucose.

Some metal oxides are being increasingly used in non-enzymatic glucose biosensor applications due 
to their low cost, excellent electrochemical properties and higher sensitivity. Among these materials, one 
of the most highly investigated oxides is copper oxide CuO, which is a p-type semiconductor with a nar-
row band gap of 1.34 eV. Its importance in the field of non-enzymatic glucose sensing can be attributed 
to its ease of synthesis, good chemical stability, electrocatalytic property and outstanding redox behavior. 
Hence, CuO has found wide applications and is commonly used in the preparation of catalysts, gas sen-
sors, biosensors, semiconductors and Li-ion rechargeable batteries23–26.
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Apart from the redox properties, the structure of the metal electrode is also important as it can affect 
the electrochemical behavior of the material. It is known that electrodes with a well-designed nanostruc-
ture are likely to have improved electrochemical behavior and performance, due to the increased surface 
area, improved electron transport, reduced minority-carrier diffusion length and lower electron–hole 
recombination loss in nanostructures27,28. In particular, regularly ordered nanostructures, such as nano-
flowers29, nanorods30, nanospheres31, and nanowires32,33, have been demonstrated to significantly enhance 
electron transport, resulting in excellent electrochemistry properties. However, there is still further room 
for improvement in this field to develop new and better metal structures for optimal electrochemical 
properties.

One such newly developed material is the Inverse Opal Photonic Crystal (IOPC), which is a replicated 
shell structure of a face-centered-cubic (fcc) opal. The IOPC structure offers very high specific surface 
area and porosity (74% void volume). In addition, the slow light effect caused by the structure of peri-
odical 3D IOPCs can enhance the sensitivity in photoelectrochemical detection34. However, to the best 
of our knowledge, no research has been reported to date on the use of CuO IOPCs as photoanodes in 
glucose sensors.

In this work, CuO IOPCs have been synthesized for the first time as electrochemical and photoelec-
trochemical biosensors. The structure of IOPCs provides large surface area and uniform porous distribu-
tion, which are conducive to increased contact with glucose solution and better electronic transmission. 
The large surface area provides more sites for loading other materials and allows intimate contact with 
the electrolyte. The porous structure may also shorten the electronic diffusion distance between the 
Fluorine-doped tin oxide (FTO) glass electrode substrate and the redox centers, thus improving the 
electron transfer ability35,36.

It should be highlighted that CuO mainly absorbs infrared light as a narrow-band semiconductor. In 
order to obtain visible light absorption and better photoelectrochemical properties, we further modified 
the CuO IOPCs by incorporating cadmium sulfide (CdS) quantum dots (QDs) on the electrode surface.

Cadmium sulfide, one of the most technologically important semiconductor materials, has appli-
cations in a wide range of fields including optoelectronics37, photovoltaics38, chemical sensors39, and 
photocatalysis40. With a band gap of around 2.4 eV, which matches well with the visible spectral range of 
solar irradiation, CdS exhibits excellent photocatalytic activity because of its highly effective absorption 
of solar energy.

The CuO IOPCs were incorporated with cadmium sulfide (CdS) quantum dots by the direct adsorp-
tion of ions and subsequent chemical precipitation, and this technique is referred to as Successive Ionic 
Layer Adsorption and Reaction (SILAR). The method involves immersion of CuO IOPCs electrodes in 
solutions of Cd2+ and S2- successively to deposit CdS nanocrystallites on the surface of CuO IOPCs elec-
trodes. This type of solution–based deposition of CdS and CdSe quantum dots on metal oxide surfaces, 
similar to SILAR, has already been successfully employed by Hodes and coworkers41,42.

In this work, we report the preparation, characterization and properties of a novel and innovative 
electrode design which involves the beneficial combination of CuO IOPCs with CdS QDs sensitization.

Results and Discussion
Material Characterization.  The experimental procedure for the preparation of CdS QDs modified 
CuO IOPCs FTO electrodes consists of four simple steps, as illustrated in Fig.  1a: 1) self-assembly of 
close-packed polymethyl methacrylate (PMMA) spheres with multilayer structures onto FTO substrates, 
2) infiltration of PMMA template with prepared precursor solution of CuO by sol-gel method, 3) removal 
of the original PMMA template by high temperature annealing to obtain CuO IOPCs, and 4) final sensi-
tization of the CuO IOPCs with CdS QDs using SILAR route.

Characterization of the surface morphology and microstructure of the synthesized CuO IOPCs were 
performed by field emission scanning electron microscope (SEM) and transmission electron microscopy 
(TEM). The SEM images of the synthesized CuO IOPCs (Fig. 2a,b) show a long-range ordered hexag-
onal close-packed arrangement of the inverse opal structure in three-dimensional space. Two variants 
were observed, with diameters of 378 nm and 275 nm, and they were named as CuO IOPCs S1 and CuO 
IOPCs S2 respectively. As shown in Fig. 2c, the cross-sectional SEM images of CuO IOPCs also displayed 
a vertical ordering with face-centered-cubic (fcc) packing structure. In order to investigate further into 
the detailed structure and morphology of CuO IOPCs, high-magnification TEM images were obtained. 
The TEM image in Fig.2d illustrates that the wall thickness of the CuO IOPCs is about 45 nm, and shows 
that the structure consists of a large amount of small nanoparticles (NPs) and neighboring pores that 
are connected to each other by the thin wall. The small wall thickness of the CuO IOPCs structure is 
highly conductive to the unidirectional transmission of electrons. The TEM image in Fig. 2e shows that 
the inner and outer surfaces of the CuO IOPCs are well covered with small CdS quantum dots after 2 
SILAR cycles. This coverage amount indicates that the Cd2+ and S2– ions are able to easily diffuse into the 
pores of the IOPCs and form CdS nanocrystallites. Good crystalline structures were observed for both 
the CuO and CdS materials, from the high-resolution TEM (HRTEM) image (Fig. 2f). The thickness of 
the CdS layer was found to be around 5 nm. Interplanar distances of the fringes of the CuO and CdS 
QDs are 0.275 nm and 0.26 nm, which correspond to the d spacing of (110) planes of monoclinic CuO 
and the (102) planes of hexagonal CdS, respectively.
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To analyze the elemental components of the compound, Energy-dispersive X-ray analysis (EDX) was 
performed, and it was found that the compound consists of Cd and S, besides Cu and O (Fig.  3a), as 
expected. The lattice information and EDX analysis results confirm that the CdS QDs modified CuO 
IOPCs composites were successfully synthesized.

In order to assess the CdS QDs deposition and growth process on the CuO IOPCs, the TEM images 
and absorption spectra were monitored at different stages of SILAR route. Fig. 2g,h represent the TEM 
images of CdS QDs modified CuO IOPCs after 3 and 5 SILAR cycles, respectively. It can be seen from 
Fig. 2g that the structure of the CuO IOPCs remains intact and the CdS QDs cover the skeleton surface 
of the IOPCs after 3 SILAR cycles. With increasing number of SILAR cycles, the CdS QDs were deposited 
not only on the surface of the skeleton but also within the pores of the CuO IOPCs structure (Fig. 2h). 
The excess CdS QDs deposited in the pores could decrease the surface area and affect the contact of CuO 
with electrolyte. As seen from the absorption spectra (Fig. 3b), the absorption intensity increases with 
higher number of SILAR cycles. Also, the edge of the absorption band has a slight redshift from 457 nm 
to 482 nm (Figure S1), which can be attributed to the increased size and decreased bandgap of QDs43.

The phase properties of the synthesized CuO IOPCs were investigated by X-ray powder diffraction 
(XRD) experiments. As shown in Fig.  3c, the XRD patterns of the CuO IOPCs matched well to the 
hexagonal CuO phase (JCPDS, card no: 48-1548), which suggests that the monoclinic CuO phase was 
formed during the process of heat treatment. No characteristic impurity peaks were observed, indicating 
a pure monoclinic CuO phase in the samples.

Electrochemical Properties of CuO IOPCs and CdS QDs modified CuO IOPCs FTO 
Electrode.  The key parameters of the electrochemical kinetics of CuO IOPCs were obtained from 
cyclic voltammetry (CV) experiments performed in 0.1 M NaOH solution at a scan rate of 100 mV s-1. 
As seen from the CV curves in Fig.  3d, oxidation and reduction peaks were obtained at potentials of 
approximately 0.66 V and 0.7 V respectively, versus a saturated calomel electrode reference electrode. 
These peaks are believed to correspond to the Cu(II)/Cu(III) redox couple, which is the key component 
for non-enzymatic electrochemical glucose detection, according to previous studies17. The corresponding 
reaction processes are,

CuO OH e CuO OH 1+ − → ( ) ( )− −

Figure 1.  (a) Schematic illustration for the synthesis of CdS quantum dots modified CuO IOPCs FTO 
electrodes. (b) Schematic illustration for the reaction process of CdS quantum dots modified CuO IOPCs 
FTO electrodes with Xe-lamp illuminating.
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Figure 2.  (a) - (b) SEM image of CuO IOPCs S1 and S2. (c) SEM images of cross-section view of CuO 
IOPCs. (d) TEM image of CuO IOPCs S1. (e) TEM image of CdS QDs modified CuO IOPCs of 2 SILAR 
cycles. (f) HRTEM image of the CdS/CuO interface. (g) - (h) TEM image of CdS QDs modified CuO IOPCs 
of 3 and 5 SILAR cycles.
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( ) + → + + ( )CuO OH glu e CuO gluconolactone H O2 cos 2 22

The effect of scan rate on the electrochemical response of CdS QDs/CuO IOPCs modified FTO elec-
trode was investigated, and the results are shown in Fig. 3e. The measurement was performed in 0.1 M 
NaOH solution at different scan rates of 10-100 mV/s after 3 mM glucose injection. The redox peak 

Figure 3.  (a) EDX analysis of CdS QDs modified CuO IOPCs of 2 SILAR cycles. (b) Absorption spectra 
of different electrodes: CuO IOPCs S1 (black), CdS QDs modified CuO IOPCs of 3, 5, 7 SILAR cycles (red, 
blue, green). (c) XRD patterns of CuO IOPCs. (e) Cyclic voltammograms of CuO IOPCs FTO electrode in 
0.1 M NaOH. (e) Cyclic voltammograms of CdS QDs modified CuO IOPCs FTO electrode at different scan 
rates. (Inset) Plots of peak currents versus scan rate.
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currents show a linear response to the scan rate, indicating that the electron transfer process in the CuO 
redox reaction takes place through a surface-controlled mechanism44.

Amperometric Detection of the Electrochemical and Photoelectrochemical biosen-
sor.  Current− time (I− t) curves were obtained to determine the amperometric sensing property of 
CuO IOPCs and CdS QDs modified CuO IOPCs FTO electrodes. All measurements were taken in 0.1 M 
NaOH solution at an applied potential of + 0.7 V.

Figure 4a displays the typical amperometric responses of CuO IOPCs S1 photoelectrochemical sensor 
with successive addition of glucose, both with and without Xe-lamp illumination. The amperometric 
response indicates that the CuO IOPCs modified FTO electrodes have a fast electrochemical response of 
less than 5 s to the glucose. Figure 4b shows the corresponding calibration curves. Linear relationships 
were obtained between the current response and glucose concentration, both with and without Xe-lamp 
illumination. From the slope of the lines, sensitivity values were determined. The sensitivity was found to 
be 4065 μ A mM-1 cm-2 with Xe-lamp illumination, which was about 1.2 times higher than the sensitivity 
without Xe-lamp illumination (3417 μ A mM-1 cm-2). This difference indicates that Xe-lamp illumination 
improves the sensitivity of the CuO IOPCs electrodes.

The enhancement of sensitivity in the presence of Xe-lamp illumination can be attributed to the 
following two reasons. First, since the CuO electronic band gap is around 1.34 eV, corresponding to a 
wavelength of around 925 nm, the presence of light with wavelength less than 925 nm (higher energy) 
can cause the electrons to absorb photons and move from the valance band to the conduction band. 
Thus, when the electrodes are illuminated with Xe-lamp, more number of electrons are generated on the 
surface of the CuO IOPCs, which then participate in the redox reaction, as shown in equation 1. Second, 
the generation of a new electrical field inside the CuO nanoparticles due to the Xe-lamp illumination, 
inhibits the reverse direction recombination of electrons and holes, thus leading to improved sensitivity.

In order to demonstrate the advantages of the IOPCs structure, a reference CuO thin film FTO elec-
trode was prepared by a spin-coating method from the same precursor solution of CuO as that used for 
preparing the Cuo IOPCs, and then annealed under the same condition. The electrochemical response 
calibration curves of the resulting reference thin film electrode are displayed in Figure S2. The linear 
response range of the reference thin film electrode was found to be up to 500 μ M, while the linear 
response range of the IOPCs electrode was up to 1000 μ M. This difference is likely due to the larger sur-
face area of IOPCs, which allows more CuO nanoparticles to come in contact with the glucose solution 
before reaching saturation. The thickness of the CuO IOPCs and thin film electrodes were found to be 
26 μ m and 70 μ m, respectively, as shown in Figure S3a and S3b. Moreover, the large void volume in the 
IOPCs structure (74%) makes the IOPCs lower in quality compared to the thin film electrode. However, 
the sensitivity of the reference thin film electrode was 1920 μ A mM-1 cm-2, which is significantly lower 
than that of the IOPCs electrode (3417 μ A mM-1 cm-2) without Xe-lamp illumination. There are two 
reasons for this observed difference: lower surface area of the reference thin film electrode and large 
reverse direction recombination current due to long electronic transmission distance. When illuminated 
with Xe-lamp, the sensitivity of the reference thin film electrode increased to 3182 μ A mM-1 cm-2, which 
was 1.66 times than the sensitivity of the reference thin film electrode in dark condition due to the same 
reason of IOPCs electrodes with Xe-lamp illumination.

As seen from Fig. 4c, the sensitivity of CuO IOPCs S2 was 2926 μ A mM-1 cm-2 without Xe-lamp illu-
mination and 3559 μ A mM-1 cm-2 with Xe-lamp illumination. There is no significant difference between 
the sensitivity values of CuO IOPCs S1 and S2, thus indicating that the pore size of the IOPCs does not 
have much influence on the sensitivity, which is consistent with the results of our previous work34.

The I− t curves were also measured for CdS QDs modified CuO IOPCs obtained after 3 (Fig. 4d) and 
5 (data is not shown) SILAR cycles, and their corresponding calibration curves are shown in Figs. 4e,f. 
Figs. 4g,h show the calibration curves of amperometric response of three different electrodes with and 
without Xe-lamp illumination: CuO IOPCs S1, and the two CdS QDs modified CuO IOPCs obtained 
from 3 and 5 SILAR cycles. The sensitivity values of these three samples were found to be 3417 μ A 
mM-1 cm-2, 3944 μ A mM-1 cm-2 and 3300 μ A mM-1 cm-2 in the absence of Xe lamp illumination while 
the sensitivity values were increased to 4065 μ A mM-1 cm-2, 4345 μ A mM-1 cm-2 and 3476 μ A mM-1 cm-2 
with Xe-lamp illumination. These results indicate that whether or not the Xe-lamp illumination is used, 
the sensitivity is increased to the highest value after 3 SILAR cycles of CdS QDs sensitization. On the 
other hand after 5 SILAR cycles of CdS QDs sensitization, the sensitivity was decreased to lower values 
than that of the original CuO IOPCs electrode.

The increase in sensitivity after 3 SILAR cycles of CdS QDs sensitization can be attributed to two 
aspects. Firstly, many surface defects are created during the synthesis of the CuO IOPCs, and these 
defects could trap unpaired electrons and holes, leading to a decrease in the current. The CdS QDs within 
interfaces passivate the surface states of CuO IOPCs and block the CuO surface, thus suppressing the 
recombination of electrons and holes at the interfaces45. Secondly, as seen in Fig. 1b, the conduction band 
of CdS is considerably higher than that of CuO, so the CdS QDs act as a potential barrier to adjust the 
electric field and potential distribution at the interface, thus suppressing the dark current46,47. Moreover, 
when using Xe-lamp illumination, the CdS QDs can absorb light from the visible region of the spectrum 
and generate new electrons on the surface, improving the current response.
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Figure 4.  (a) Amperometric response of CuO IOPCs S1 with Xe-lamp illuminating and without Xe-lamp 
illuminating to successive addition of glucose at an applied potential of 0.7 V. (b) The corresponding 
calibration curves of (a). (c) Calibration curves of amperometric response of CuO IOPCs S2. (d) 
Amperometric response of CdS QDs modified CuO IOPCs of 3 SILAR cycles. (e) The corresponding 
calibration curves of (d). (f) Calibration curves of amperometric response of CdS QDs modified CuO 
IOPCs of 5 SILAR cycles. (g) - (h) Calibration curves of amperometric response of three different electrodes 
without Xe-lamp illuminating and with Xe-lamp illuminating: CuO IOPCs S1 (black), CdS QDs modified 
CuO IOPCs of 3, 5 SILAR cycles (red, green).
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Although the electrode after 5 SILAR cycles of CdS QDs sensitization has larger absorption range 
and higher absorption intensity, its sensitivity and linear range have a decrease than the electrode after 3 
SILAR cycles of CdS QDs sensitization, which can be attributed to the reduction of effective surface area 
available to provide contact with the glucose molecules, due to the excess deposition of CdS QDs. Thus it 
appears that 3 SILAR cycles of CdS QDs sensitization is the optimum condition for preparing electrodes, 
providing the highest sensitivity value of 4345 μ A mM-1 cm-2. In addition, the linear range was obtained 
over a concentration up to 0.5 mM with a detection limit of 0.15 μ M (with signal to noise ratio of 3).

A comparison of CdS QDs modified CuO IOPCs FTO electrodes with some of the other reported 
metal based non-enzymatic glucose biosensors is presented in Table 1. From the comparison, it can be 
seen that our new sensor exhibits a good integrative performance characterized by high sensitivity, low 
detection limit and considerable linear range. In particular, the sensitivity of this sensor is much higher 
than that of other glucose sensors.

Selectivity, reproducibility and stability.  Anti-interference property is an important parameter 
for glucose biosensors. Since human blood contains many easily oxidized compounds like ascorbic acid 
(AA) and uric acid (UA), the influence of other oxidizable interferents must be taken into consideration. 
As shown in Fig.  5a, the addition of interferents, 0.1 mM of AA and 0.1 mM of UA, gives rise to only 
negligible current changes, while a significant current response is observed with the subsequent addition 
of 0.1 mM of glucose. The higher selectivity for glucose over the two interferents can be seen from the 
current ratios. The current ratio of AA to glucose was determined to be 5.68%, while the current ratio 
of UA to glucose was 8.33%.

In addition, carbohydrate interferents such as fructose and lactose also present in human blood, thus 
the selectivity to these carbohydrates were also evaluated. Although the concentration of interfering spe-
cies in the human blood is 30 to 50 times less than that of glucose48, much higher concentrations of the 
interfering species (with glucose to interfering species ratio of 10) were used in this analysis to ensure the 
sensitivity. As is clearly seen in Fig. 5b, interfering carbohydrate have little effect compared to glucose. 
Thus the CdS QDs modified CuO IOPCs FTO electrodes were found to exhibit excellent selectivity in 
the interference experiments conducted.

To evaluate the reproducibility of the new electrodes, five CdS QDs modified CuO IOPCs FTO elec-
trodes were prepared separately under the same conditions. The relative standard deviations (RSDs) 
were calculated to be no more than 5.8% (data is not shown), indicating a good reproducibility. The 
long-term stability of the CdS QDs modified CuO IOPCs FTO electrode was evaluated by placing it in 
0.1 M NaOH solution at room temperature for a period of time (Fig. 6). It was found that the CdS QDs 
modified CuO IOPCs FTO electrode retained 92% of its original current response even after a storage 
period of 2 weeks, indicating good stability.

The combined results described above indicate that our novel CdS QDs modified CuO IOPCs FTO 
electrodes exhibit good performance as an electrochemical electrode, including high selectivity, repro-
ducibility and stability.

Electrode
Detection 

range(μM)
Detection 
limit (μM)

Sensitivity 
(μA mM-1 

cm-2) Stability Ref.

CuO IOPCs S1 0.17 - 1000 0.17 4065
~94% 

after 14 
days

this work

CuO IOPCs/CdS of 
3 SILAR cycles 0.15 - 500 0.15 4345

~94% 
after 14 

days
this work

CuO IOPCs/CdS of 
5 SILAR cycles 0.19 - 500 0.19 3476

~94% 
after 14 

days
this work

CuO–SWCNT 0.05 - 1800 0.005 1610 Dung et al. 
(2013)

Tantalum oxide 
honeycomb 
nanostructures

31000 0.1 160
~95% 

after 15 
days

Suneesh et al. 
(2013)

CuO nanoparticles-
modified carbon 
nanotube

0.4 -1200 0.2 2596
~90% 

after 30 
days

Jiang et al. 
(2010)

Ni nanowires 0.5 - 7000 0.1 1043 Lu et al. 
(2009)

Au nanoparticles 500 - 8000 160 Kurniawan et 
al. (2006)

Table 1.  Comparison of analytical performance of CdS QDs modified CuO IOPCs FTO electrodes with 
several typical nonenzymatic glucose sensors.
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Conclusions
In this work, we have synthesized new CuO IOPCs by the sol-gel method using PMMA as a template, 
and then modified them with CdS quantum dots using a SILAR approach. A series of CdS QDs modified 
CuO IOPCs FTO electrodes were fabricated using different numbers of SILAR cycles, all of which dis-
played many attractive analytical properties such as high sensitivity, good stability, good reproducibility, 
excellent selectivity, as well as quick response. The sensitivity of CuO IOPCs was found to be 4065 μ A 
mM-1 cm-2, which is likely due to the large surface area and uniform porous distribution within the 
IOPCs structure. Further increase in sensitivity was attributed to the effect of surface passivation and the 
protection of the potential barrier of CdS QDs. It was found that 3 SILAR cycles of CdS QDs sensitiza-
tion was the optimum condition for preparing electrodes, which gave high sensitivity of up to 4345 μ A 
mM-1 cm-2. Overall, the novel CdS QDs modified CuO IOPCs FTO electrodes demonstrate good perfor-
mance as non-enzymatic electrochemical and photoelectrochemical glucose biosensors.

Experimental Section
Materials.  Cupric nitrate trihydrate (Cu (NO3)2•3H2O) and Sodium sulfide nonahydrate (Na2S•9H2O) 
were obtained from Tianjin Guangfu Technology development Co., Ltd. in China. Cadmium nitrate 
tetrahydrate (Cd (NO3)2•4H2O) was obtained from Sinopharm Chemical Reagent Co., Ltd. Methyl 

Figure 5.  Amperometric response of CdS QDs modified CuO IOPCs FTO electrode with addition of 
different interfering compounds. (a) with successive additions of different interfering species (AA, UA). (b) 
with successive additions of different interfering species (lactose, fructose).

Figure 6.  Stability curves of CdS QDs modified CuO IOPCs FTO electrode. The data are average values 
from three modified electrodes.
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methacrylate (MMA), ethanol, glucose and citric acid were purchased from Beijing Chemical Plant 
(Beijing, P. R. China). All chemicals were analytical grades and used without further purification.

Synthesis of CuO inverse opal photonic crystals.  CuO IOPCs were synthesized by the sol-gel 
method using the PMMA latex sphere as the colloidal crystal template. Firstly, the monodispersed PMMA 
spheres with controllable sizes were synthesized using our previously reported method49. Fluorine-doped 
tin oxide (FTO) glass (sheet resistance 30 Ω /cm2; Qiseguang Glass Co. Ltd., Dalian) was washed ultrason-
ically in ace-tone, isopropyl alcohol, and deionized water mixed solution and dried, and then the FTO 
substrate was soaked in the mixed H2SO4/H2O2 aqueous solution with the volume ratio of 3:1 for 1 hour 
and washed with distilled water to make its surface hydrophilic. Subsequently, the PMMA template was 
self-assembled through the vertical deposition process. The hydrophilic FTO substrate was submerged 
into the prepared PMMA colloidal suspension (5% solid content) and kept at 35 °C in an oven for 2 days. 
The PMMA colloidal spheres were slowly self-organized into highly ordered colloidal arrays on the FTO 
substrate, driven by surface tension of the liquid in the evaporating process. Following deposition, the 
photonic crystals were sintered for 40 min at 120 °C to enhance their physical strength.

Cu (NO3)2•3H2O (2.5 g) was dissolved in 10 mL ethanol solution as the copper ions precursor. Then, 
an appropriate amount of citric acid was added to the solution as chelating agent. The mixture eventually 
formed a bright blue and transparent solution after stirring for 1 hour. The prepared precursor solution 
was used to infiltrate into the interstices of the templates under the capillary force from one side of 
the PMMA templates. After sufficient infiltration, the templates were dried in air overnight. Then, the 
samples were heated to 500 °C at a rate of 1 °C/min and kept for 3 hours to remove the original PMMA 
template.

CdS QDs modified CuO IOPCs FTO electrode.  The CuO IOPCs were modified with CdS QDs 
using a previously reported SILAR route50,51. In a typical procedure, the CuO IOPCs were immersed in 
a 20 mL ethanol solution containing 50 mM cadmium nitrate tetrahydrate (Cd (NO3)2•4H2O) for 1 min, 
to allow Cd2+ to adsorb onto the surface of CuO IOPCs. Then, the electrodes were immersed in ethanol 
solution and dried in a N2 stream. The dried electrodes were dipped into a mixture solution of ethanol 
and water containing 50 mM Sodium sulfide nonahydrate (Na2S•9H2O) for 1 min, where the adsorbed 
Cd2+ reacted with S2- to form the desired CdS. The electrodes were then rinsed in ethanol for 1 min to 
remove the excess ions and dried again in a N2 stream. This procedure was repeated several times to 
obtain the desired thickness of CdS.

Apparatus.  The morphology of the samples was inspected using a JEOL JSM-7500F field emission 
scanning electron microscope (SEM) (Japan) and a JEM-2010 transmission electron microscope (TEM) 
(Japan) under a working voltage of 200 kV. The high-resolution TEM (HRTEM) images and EDX pat-
terns were measured on a JEOL-2100F high-resolution transmission electron microscope (Japan) with 
a working voltage of 200 kV. X-ray diffraction (XRD) patterns were conducted on a RigakuD/max 2550 
X-ray diffractometer. Electrochemical measurements were performed on a model CHI630D electrochem-
ical analyzer (ChenHua Instruments Co.Ltd., Shanghai, China). Ultraviolet-visible (UV-vis) absorption 
spectra were measured with a Shimadzu UV-3101PC scanning spectrophotometer. The electrochemical 
measurements were carried out using a three-electrode system, which employed a platinum wire as the 
counter electrode, a saturated calomel electrode (SCE) as the reference electrode, and CdS QDs modified 
CuO IOPCs FTO electrodes as the working electrode.
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