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Changes to social settings caused by migration, cultural change or pan-
demics force us to adapt to new social norms. Social norms provide
groups of individuals with behavioural prescriptions and therefore can be
inferred by observing their behaviour. This work aims to examine how cog-
nitive learning processes affect adaptation and learning of new social norms.
Using a multiplayer game, I found that participants initially complied with
various social norms exhibited by the behaviour of bot-players. After gain-
ing experience with one norm, adaptation to a new norm was observed in
all cases but one, where an active-harm norm was resistant to adaptation.
Using computational learning models, I found that active behaviours were
learned faster than omissions, and harmful behaviours were more readily
attributed to all group members than beneficial behaviours. These results
provide a cognitive foundation for learning and adaptation to descriptive
norms and can inform future investigations of group-level learning and
cross-cultural adaptation.
1. Introduction
Social norms are the unwritten rules that prescribe and guide behaviour within
a society and with which group members generally comply [1–3]. Social norms
govern a group’s behaviour, are manifested in the behaviour of most individ-
uals most of the time and may change between social groups and over time.
For example, the norm governing how we greet each other when we meet
can differ quite arbitrarily from one culture to the next, or during global
events such as the COVID-19 pandemic (figure 1). Adhering to group norms
can ensure cooperation within a group [2,4], make social conduct more predict-
able [5] and signal one’s group affiliation to others [6]. Failure to learn and
adapt might unintentionally send the wrong signals through inappropriate be-
haviour that may lead to frustration, isolation, resentment and intergroup
distress [7]. While the challenge of learning and adapting to new social
norms has been studied from the perspective of the social structures and mech-
anisms supporting socialization [8] as well as from an evolutionary, normative
point of view [1,2], far less attention has been devoted to the contribution of
social cognitive learning mechanisms to this problem.

Social norms change how individuals behave. Such norms include injunc-
tive norms, which indicate how people should behave, and descriptive norms
indicate how other people behave [9], which are at the focus of this work.
Descriptive norms have been shown to affect people’s behaviour, for example,
when exposed to other people’s recycling habits [10], finance management [11]
or alcohol use [12]. Such norm effects have also been observed in laboratory
experiments, notably in the seminal works on social influence and conformity
by Sherif [13] and Asch [14] regarding perceptual decisions. Other studies have
shown that people adapt their behaviour and preferences after learning about
others’ preferences [15–17], indicating the importance of social information in
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Figure 1. Learning a new social norm’s behavioural prescription. When introduced to a new social setting, one may need to adapt one’s behaviour according to the
prevalent social norm. (a) Such social norms stochastically govern the behaviour of individuals in a group, affecting most group members most of the time. New-
comers (e.g. the person in blue plaid in the figure) can infer the social norm through accumulated observations and experiencing of interactions between group
members and can adapt their behaviour accordingly. (b) Such learning can occur at a group level (top), i.e. attributing the behaviour to all group members, or on an
individual level (bottom), i.e. learning only about specific individuals. (Online version in colour.)
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forming one’s own behaviour and beliefs [18–20]. While it is
possible to explicitly state a descriptive norm, in many cases,
people form their perception of norms on their own [21]. The
effects of social norms on behaviour may therefore rely on
how people learn about others’ behaviour and form such a
descriptive norm.

One way to learn about a descriptive social norm is by
observing the behaviour of members of a group, and
accumulating such observations over time [22–26]
(figure 1a). Such accounts borrow from non-social compu-
tational models of associative and reinforcement learning
[22]. For example, when learning about a person’s honesty,
one may observe whether a person gives truthful advice
over time, increasing the estimation of her honesty when
she gives accurate advice, and decreasing it when she
gives misleading advice [27]. When learning about
groups, learners may use the same learning mechanisms,
learning about specific individuals in a group, and adjust
their behaviour according to the specific partner they
encounter. However, learners may learn a group-level
trait, attributing observations from individuals to all
group members, indicating learning about a social norm
that governs the group’s behaviour [28–31] (figure 1b).

In the literature concerning learning about action-
outcome associations, such as Pavlovian and operant con-
ditioning, the strength of associative learning is often
mapped to two dimensions—the appetitive/aversive out-
come of an action and the active/passive nature of the
action [32,33]. For example, one may learn to increase a pat-
tern of behaviour after it has been actively rewarded, or
when it leads to the omission of an aversive response
(avoiding punishment). Similarly, the omission of an appe-
titive outcome and receiving punishment may lead a
learner to reduce the likelihood of displaying a behaviour
pattern. While these contingencies may rely on similar
computational principles, they are known to be processed
differently. Punishments and rewards are processed by
different neural mechanisms [34] and can have different
effects on learning. Similarly, omission and action are per-
ceived and processed differently [35,36]. Such asymmetries
can therefore give rise to different biases in learning and
shape the way people learn and adapt to social norms.
This work seeks to examine how features of the behaviour-
al prescription of social norms affect adaptation to these
norms and the learning process constraints underlying
such effects. Specifically, it is hypothesized that due to con-
straints of the cognitive learning mechanisms, behavioural
features of social norms will make some norms easier to
attain and harder to relinquish in favour of new norms.
One constraint has to do with the perceptual aspects of
learning, as some behaviours are more readily detected
than others, e.g. action versus omission. In addition, the
transfer from individual-level learning to group-level
learning may be influenced by the norm’s behavioural pre-
scriptions. For example, as negative moral behaviour is
more readily attributed to an individual’s character than
positive behaviour [37], behaviours with aversive out-
comes may be more readily generalized to all group
members than helping behaviours.

To study these hypotheses, I adapted the appetitive/
aversive and action/omission dimensions to the domain of
social norms, using norms that prescribe behaviour that can
benefit/harm others through action/omission acts (figure 2).
In a sequential social dilemma paradigm called the Star-
harvest Game [38], participants collected stars and could
sacrifice a move to zap other players. In different experimen-
tal conditions, zap outcomes were either harmful or
beneficial to other players. The participants were exposed
to different social norms displayed by the behaviour of
three bot-players. The action/omission dimension was
formed by the bot-players’ active zapping or zap avoidance
behaviour (figure 2). Different combinations of these features
formed different types of norms, which were characterized by
different behavioural prescriptions. The Harm-Action norm
was marked by active zaps that had negative outcomes for
others, i.e. zapping a player who is on your route to a star.
The Harm-Omission norm was manifested in avoidance of
negative zaps. The Benefit-Action norm was manifested in
active zaps that had positive outcomes for others, while the
avoidance of positive zaps was a manifestation of the
Benefit-Omission norm. This allowed examination of how
participants learn and adapt to social norms and which
social norms persist when moving to a new social
environment.
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Figure 2. Experimental design—the Star-harvest Game. Participants played the Star-harvest Game online. (a) The game layout consisted of four players who moved
across a two-dimensional grid and collected stars, with players marked by coloured squares. The participant in this case played the blue square (marked P), playing
against three other bot-players. In each trial, players could either move using the blue arrows or zap using the arrows and the zap button. (b) Players could either
zap each other by sending a ray that affected other players or avoid zapping other players. (c) The zap outcome was either harmful, sending the zapped player to a
time-out zone for three turns, or beneficial, such that the affected player received a small star worth a tenth of a regular star. (d ) The algorithms governing the
behaviour of the bot-players led to four different social norms with different behavioural prescriptions. (e) Participants played two experimental blocks, with different
bot-players displaying different norms. The zap outcome remained consistent over the two blocks. (Online version in colour.)
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2. Methods
(a) Participants
The Amazon M-Turk platform was used to recruit 276 partici-
pants for this study, including 157 men (age: mean ± s.d.: 35.45
± 9.75) and 119 women (age: 39.12 ± 11.1). Participants were ran-
domly assigned to one of four experimental conditions, which
differed in the order of experimental blocks and the zap outcome
(positive/negative). I aimed for at least 60 participants in each of
the four conditions based on estimation of an effect size of 0.5 for
a within-participants difference in zapping rates between Harm-
Omission and Harm-Action conditions, based on a pilot of 20
participants (not included in this study). Due to the random
assignment and to ensure there were enough participants in
each condition, the number of participants in each block differed
slightly (Harm-Action First N = 76, Harm-Omission First: N = 71,
Benefit-Omission First: N = 63, Benefit-Action First: N = 66). No
participant was excluded from the analyses. All participants pro-
vided informed consent and received monetary compensation at
a fixed rate of 3.5 USD for 15 min of participation. The study
was approved by the research ethics committee at the Faculty of
Social Sciences at the University of Haifa, Israel (number 038/18).
(b) Star-harvest Game
The Star-harvest Game was developed to provide a flexible and
rich setting in which multiple types of social norms can be dis-
played in a user-friendly manner. The game included four
players, represented by coloured squares that move around a
10 × 10 grid (figure 2, see example here: http://socialdecisionlab.
net/resources.html). The game is played on a turn-by-turn basis,
and the order of players remains constant throughout the game.
In each turn, the players could either move in one of four direc-
tions and collect stars that appeared on the grid, or zap by
emitting a pink ray in one of the four directions. Players caught
in the ray in the negative zap outcome conditions were sent to a
‘time-out zone’ visible to the player for three turns. Those
caught in the ray in the positive zap outcome conditions received
a small bonus star. After each round in which all players took a
turn, a new star could appear somewhere on the grid with a
0.75 probability, and uncollected stars could disappear. Each
player’s collected stars appeared in their ‘score’ section on the
screen. The participants did not receive any bonus based on the
stars they collected beyond the fixed monetary rate.

(c) Social norms algorithms
The behaviour of the bot-players was governed by algorithms
implementing different social norms. In each experimental con-
dition, the behaviour of all three bot-players was governed by
the same algorithm. A short description of the different algor-
ithms is given below, and a detailed description of the
algorithms is provided in the electronic supplementary material.

All bot-players began each turn by looking for stars. If they
were the player closest to a star, they would move towards it.
Otherwise, when the zap outcome was negative, Harm-Action
bot-players zapped other players that were on their way to a
star, while Harm-Omission bot-players would move away from
other players without zapping. When the zap outcome was posi-
tive, Benefit-Omission bot-players would also move away
without zapping anyone. Benefit-Action bot-players would
start every turn with a probability of zapping others, even if
they were closest to a star. This probability was dependent on
their distance from the closest star and decreased the closer
they were to the star (distance of 1 was associated with a zap
probability of 0.02)

(d) Analysis
Statistical analyses were carried using Matlab R2018b (Math-
works Inc., USA). The Markov chain Monte Carlo (MCMC)
Metropolis–Hastings algorithm was used for model fitting and
estimation for each participant [39]. For model comparisons,
for each model, a deviance information criterion [40] was calcu-
lated for each individual. I used in-house Matlab code and an
MCMC toolbox for Matlab developed by Marko Laine [41].
3. Results
Participants played the Star-harvest Game online, where they
moved across a two-dimensional grid using arrows and col-
lected stars that appeared (and disappeared) from time to
time, with three other bot-players (figure 2). Participants
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Figure 3. Adaptation to new social norms. Participants played the Star-harvest Game under four experimental conditions, in two blocks that differed according to
the social norms displayed by the bot-players. In each experimental condition, the percentage of times participants zapped others when they had the opportunity to
do so was examined. In the first experimental block, participants adapted their zapping behaviour and matched the zapping norm around them. In the second block,
participants adapted their behaviour to the new norm during all transitions except the transition from Harm-Action norm to Harm-Omission norm (red to yellow
bars). On all the graphs, grey dots represent individual scores, bars represent the mean, and error bars represent the standard error of the mean. (Online version in
colour.)
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were randomly assigned to one of the four experimental
conditions. Each experimental condition began with one
experimental block in which the three bot-players displayed
one of the four norms (Harm-Action, Harm-Omission,
Benefit-Action, Benefit-Omission), followed by a second
block with a new set of bot-players, marked by changes in
the players’ colours, which displayed a different norm. Each
experimental block included 70 turns for each player. To
make the experimental instructions consistent, the zap’s out-
come did not change between blocks, such that the norms
displayed by the bot-players changed from Harm-Action to
Harm-Omission (and vice versa) or from Benefit-Action to
Benefit-Omission (and vice versa).

The main behavioural marker of adaptation to social
norms was the percentage of times participants zapped
other players when they had the opportunity to do so, i.e.
when they shared a column or row with another player
(see numbers of zaps and zap opportunities in electronic sup-
plementary material). Adaptation to the norm would result
in lower zapping rates when the bot-players avoid zapping
(Harm-Omission and Benefit-Omission norms) than when
bot-players actively zap others (Harm-Action and Benefit-
Action norms). In the first experimental block, the partici-
pants in all conditions adapted their zapping behaviour to
the behaviour of their surroundings (figure 3). This adap-
tation was quantified using an ANOVA, with zapping
percentages as the dependent variable and Zap Outcome
(Harm/Benefit) and Zap Behaviour (Action/Omission) and
their interactions as main effects. I found a significant effect
of Zap Behaviour (F1,272 = 35.92, p < 0.0001, partial η2 =
0.115), indicating that participants were more likely to zap
others when they were in the company of other zappers. In
addition, participants were more likely to zap others when
zaps were associated with harmful outcomes (F1,272 = 37.09,
p < 0.0001, partial η2 = 0.122), indicating a bias towards com-
petitive behaviour in such video-game scenarios. The
interaction between Zap Behaviour and Zap Outcome was
not significant (F1,272 = 2.29, p = 0.13, partial η2 = 0.008).
These results indicate that in the first experimental block,
lacking prior experience in the task, participants generally
learned and adapted to all social norms.

The next behavioural analysis examined adaptation to
new social norms between the first and the second exper-
imental blocks by subtracting each participant’s zapping
rate in the omission norm block from the action norm
block. When this measure was positive, it indicated high be-
havioural adaptation between conditions, in line with the
change in norms. When it was close to zero, it indicated
low behavioural adaptation. An ANOVAwas used to analyse
the individual adaptation patterns, with Zap-Behaviour Order
(Action First/Omission First), Zap-Outcome (Benefit /Harm)
and their interaction as main effects. A significant Zap-Behav-
iour Order effect was found (F1,272 = 12.65, p = 0.0004, partial
η2 = 0.044), indicating that participants displayed higher
levels of adaptation when moving from an omission norm to
an action norm. In addition, a significant interaction was
found between Zap-Norm Order and Zap-Outcome (F1,272 =
5.73, p = 0.017, partial η2 = 0.02), with no significant Zap-Out-
come effect (F1,272 = 0.00002, p = 0.97, partial η2 < 0.0001). As
can be seen in the averaged zap-rate graph (figure 3), partici-
pants showed adaptations in all conditions but one—when
moving from a Harm-Action norm to a Harm-Omission
norm, giving rise to the interaction effect.

The next analysis steps were aimed at examining potential
learning mechanisms that underlie the behavioural adap-
tation patterns, using computational learning models. The
models were used to examine how zap behaviour (action/
omission) and zap outcome (benefit/harm) are treated by a
learner, in line with the asymmetries in adaptations observed
so far. In addition, the models were designed to examine
whether and how observation of one player’s behaviour are
used to infer group-level norms (figure 4). Specifically, the
models included individual-level learning, group-level learn-
ing and a hybrid biased-attribution model that allows
weighted level of attribution from individual to group level
(electronic supplementary material; figure 4).
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All models were aimed at predicting the participants’
decision to zap a target player, i.e. a player that shares a
column or row with the participant. This decision on each
trial t was logistically dependent on a number of variables
(equation (3.1)): the participant’s overall tendency to zap,
his current distance from a star (variable StarDist), his current
distance from the target player (variable TargetDist), and the
estimated zapping behaviour of this target player (the prob-
ability that the target would zap other players, parameter
ZapProb). The contribution of these variables to the decisions
was determined by a set of free parameters {w0, w1, w2, w3},
and the value of these variables was calculated in each
turn. These weights were used to model the cost associated
with zapping, as they allow the availability of stars to
overcome the tendency to zap others.

pt(Zap a target) � w0 þ w1 � StarDistt þ w2

� TargetDistt þ w3 � ZapProbTargett Þ: ð3:1Þ

The distance to stars and targets can be calculated
directly from the data available in each turn. However,
the target player’s zapping behaviour, i.e. the probability
that the target player would zap other players, had to be
learned from observations and interactions in previous
turns. This learning mechanism differed between models
(figure 4). In all models, no learning was done if the
observed player did not have an opportunity to zap
anyone, i.e. did not share a row or a column with any
player, or if the observed player was the closest player to
a star and moved toward it. In addition, the models were
fitted to the data with no information regarding the
outcome of the zaps, harmful or beneficial, and were
affected only by the estimated likelihood of zapping and
distance to stars and targets.

The first model assumed that learning occurred only at
the individual level. When observing player p’s zap (or
avoidance), the learner updates his belief about the likeli-
hood of player p to zap in the future (figure 4). When
player p zaps another player at time t, the variable Zt is
set to 1, and when player p avoids zapping (he had the
opportunity but did not zap), Zt is set to 0. A prediction
error is calculated between Zt and the previous estimation
of the player’s zapping probability, ZapProbpt , and is used
to update this probability with different learning rates for
zap and avoidance. Zapping probabilities for all players
were initially set by another free parameter prior. To
account for asymmetry in learning, the model included
different learning rates for action (zaps) and omission
(avoidance).

ZapProbptþ1 ¼ ZapProbpt

þ LRZap � (1� ZapProbpt ) Zt ¼ 1
LRAvoid � (0� ZapProbpt ) Zt ¼ 0

�
: ð3:2Þ

The second model assumed a complete attribution to
group level, where each observation is used to update a
group-level zap probability which applies to all players,
apProbGroup

t . Such transfer can speed up learning and adap-
tation to new norms, as it accumulates information across all
players, and is especially useful when displays of the new



Table 1. Parameter estimations of the hybrid learning model separately for the negative and positive outcome conditions.

w0 LRZap LRAvoid w1 w2 w3 GZap GAvoid Prior

negative zap conditions (N = 136)

estimate mean ±

s.e.m.

−4.5 ± 0.078 0.41 ± 0.012 0.12 ± 0.01 1.53 ± 0.15 −3.36 ± 0.21 4.59 ± 0.22 0.62 ± 0.015 0.57 ± 0.014 0.45 ± 0.014

t(d.f. = 135) −31.8 5.42 −8.98 11.39

p <0.0001 <0.0001 <0.0001 <0.0001

positive zap conditions (N = 113)

estimate mean ±

s.e.m.

−5 ± 0.11 0.44 ± 0.013 0.3 ± 0.015 1.3 ± 0.21 −1.8 ± 0.23 3.74 ± 0.27 0.49 ± 0.014 0.71 ± 0.013 0.49 ± 0.015

t(d.f. = 112) −23.36 3.23 −3.87 6.88

p <0.0001 0.0016 0.0002 <0.0001

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210293

6

norm’s behaviour are sparse [29].

ZapProbGroup
tþ1 ¼ ZapProbGroup

t

þ LRZap � (1� ZapProbGroup
t ) Zt ¼ 1

LRAvoid � (0� ZapProbGroup
t ) Zt ¼ 0

(
:

ð3:3Þ

The third model was a hybrid biased-attribution model
that included the individual learning mechanism (equation
(3.2)) and an additional group-level updating to all other
players. This is captured by two free parameters {GZap, GAvoid},
which specify how much each observed zap or avoidance be-
haviour of one player is attributed to the group, i.e. to the
updating of the zap probability of the other players. When
GZap is set to 1, it increases the zap probability of other players
as if these players were doing the zapping, converging with
the group-model. When GAvoid is set to 1, it decreases the
zap probability of other players as if they avoided zapping,
again converging with the norm learning model. However,
when {GZap, GAvoid} are close to 0.5 the transfer is non-informa-
tive, essentially setting an expectation that other players are
just as likely to zap or avoid. Asymmetries in the generaliz-
ation parameters would lead to biased attribution to group
level, as is demonstrated in a set of simulations in the
electronic supplementary material.

ZapProbOthers
tþ1 ¼ ZapProbOthers

t

þ LRZap � (GZap � ZapProbOthers
t ) Zt ¼ 1

LRAvoid � ðð1� GAvoidÞ � ZapProbOthers
t Þ Zt ¼ 0

(
:

ð3:4Þ

All models were fitted to each participant’s decisions
(zap/avoid) across both experimental blocks (see methods
and electronic supplementary material). To avoid unreliable
parameter estimation, only participants who zapped at least
once were included in this analysis (N = 248 of 276) (the
mixed-effect analysis of adaptation in zap behaviour was car-
ried on this subset of participants with no changes in the
results from the main analysis, see electronic supplementary
material). In a series of model comparisons, taking into
account both model fit to the data and the number of par-
ameters used by the model, the biased-attribution model
was found to significantly outperform other models (see elec-
tronic supplementary material, table S1, including a model
with different parameters for direct and indirect reciprocity
[42]). This result indicates that our participants did not use
a reciprocity learning rule, but were flexible in the way they
update beliefs about other players, i.e. group level or norm
inference, from observation of single players.

The model fitting procedure allowed estimation of all free
parameters for all participants, facilitating overall evaluation
of these parameters and comparing them between groups of
participants (table 1). The weights assigned to each factor
affecting zapping (w0, w1, w2, w3) all significantly differed
from 0 in both the positive and negative zap-outcome con-
ditions (table 1). Overall, participants were averse to zaps
(negative w0), more so when zapping had a positive outcome
than when it had a negative outcome (p = 0.04, table 1). Par-
ticipants were more likely to zap when stars were far away
(positive w1), indicating the cost of zaps. They were more
likely to zap targets that were close to them (negative w2),
more so when zaps had harmful outcomes than when they
had beneficial outcomes ( p = 0.01, table 1). These results indi-
cate that the participants were sensitive to the task settings in
each turn, their distance to stars and to other players, and
these affected their decision to zap other players.

The biased-attribution model also indicated that partici-
pants were affected by other players’ likelihood of zapping
(positive w3). This value was learned by observing the
players’ behaviour over time. The model included two learn-
ing rates, for action (zap) and for omission (zap avoidance)
behaviours (figure 4a). The effects of Zap Behaviour
(action/omission, within-subjects), Zap Outcome (harm/
benefit, between subjects) and their interaction on learning
rates, were examined using a mixed-effects ANOVA, with
individually estimated learning rates (LRZap, LRAvoid) as inde-
pendent variables. A significant Zap Behaviour effect was
observed (F1,529 = 79.81, p < 0.0001, partial η2 = 0.23), such
that learning rates for action (zaps) were higher than for
omission (avoidance). In addition, a significant Zap Outcome
effect was found (F1,529 = 19.96, p < 0.0001, partial η2 = 0.07),
such that participants in the beneficial zap conditions had
higher overall learning rates. Finally, a significant interaction
effect was observed (F1,529 = 14.83, p = 0.0001, partial η2 =
0.052), such that learning from Harm-Omission behaviour
was associated with lower learning rates than learning from
Benefit-Omission behaviour.

In addition, two parameters were estimated for group-
level attribution of information from the observed player to
all other players (figure 5b). The effects of Zap Behaviour
(action/omission, within subjects), Zap Outcome (harm/
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benefit, between subjects) and their interaction on group-level
attribution were examined using a mixed-effects ANOVA,
with the individually estimated group-level transfer par-
ameters as independent variables. A significant effect of
Zap Behaviour was observed, such that omission (avoidance)
behaviours were associated with higher group-level transfer
values (F1,529 = 10.53, p = 0.0013, partial η2 = 0.038). Zap Out-
come did not have a significant effect (F1,529 = 0.1, p = 0.75,
partial η2 < 0.001). A significant interaction was observed
(F1,529 = 28.98, p < 0.0001, partial η2 = 0.099), pointing to
higher group-level attribution of behaviours with aversive
contingencies: Harm-Action and Benefit-Omission.
4. Discussion
The aim of this study was to investigate how cognitive learn-
ing mechanisms account for learning and adaption to new
social norms. Specifically, I examined how two features of
the behavioural prescription of norms, its manifestation in
action or omission and the outcome of this behaviour,
whether beneficial or harmful, affect learning and adaptation.
Using a multiplayer Star-harvest Game in which the behav-
iour of three bot-players was governed by algorithms that
implemented four different social norms, I examined how
people learn new social norms and how their experience
with one norm affects adaptation in the transition from one
norm to another. I found that on their first encounter with
the task, participants learned and adapted to the social
norm displayed by the bot-players. Yet, in the second block
of the experiment, when a new social norm was displayed
by a new set of bot-players, their previous experience affected
their adaptation. Specifically, the norm manifested in Harm-
Action behaviour persisted when participants faced a new
set of Harm-Omission players, while in all other transitions,
participants adapted their behaviour. The resistant norm
was characterized both by an active behaviour and by a
harmful outcome for others, implying a competitive intent.
This combination seems to contribute to the unique persist-
ence of this social norm in the current experimental design.

Computational modelling of social learning proposed a
mechanistic explanation for the observed behaviour and
indicated that social learning in the task went beyond indi-
vidual-level learning. The best-fitted model, the biased-
attribution model, suggested that participants’ decisions to
zap or avoid zapping other players were influenced by sev-
eral parameters, among them the distance from stars,
indicating the cost of zapping, and the estimation of the
target player’s likelihood to zap. This estimation was based
on the specific player’s previous behaviour, in line with the
individual-level learning mechanism, and also incorporated
other players’ previous behaviour, in line with group-level
inference. The weight given to other players’ behaviour, or
the magnitude of group-level attribution, was a free par-
ameter in the model. Behaviours that carried an aversive
contingency, omission of benefit or harmful action, were
found to be more readily attributed to group level. Such
group-level transfer facilitates learning as it allows rapid
accumulation of sparse behaviours across players, instead
of accumulating them independently for each participant.
Behaviours with beneficial contingency were associated
with low group-level attribution, suggesting more personal
and reciprocity-based learning for prosocial behaviours [43].
In addition, learning rates associated with actions were con-
sistently higher than for omissions, in line with non-social
learning findings, further supporting the observed asymme-
try in adaptation [36,44]. Both mechanisms can work
together to make behavioural prescriptions persistent even
when social settings change, attenuating adaptation to new
social norms.

The results of this study are in line with previous findings
on social learning of individuals’ traits and behaviour, and
demonstrate how these are linked to group-level inference
findings. On the individual level, research has shown that
people are quick to infer about bad social behaviour from
sparse data, as such negative behaviours are deemed more
diagnostic of a person’s moral character [37,45]. In addition,
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actions were shown to be more readily attributed and indica-
tive of a person’s general character than acts of omission, as
they are both more likely to be detected and less likely to
be explained away (plausible deniability) [36]. Social learning
of individuals’ traits was shown to be important to form pre-
dictions about others’ behaviour and to adapt one’s
behaviour accordingly [24,46]. Beyond inferring from one’s
behaviour in a specific situation about his general trait,
people also infer from one person to all other group members
[30,47]. Adults and children can attribute a set of behaviours
to all other group members, mostly when such group mem-
bership is salient [31,48]. The current results indicate that
social learning about others’ behaviour can be set on a conti-
nuum, with some behaviours more readily attributed than
others on the individual level (action versus omission), and
some more readily generalized to indicate group-level norm
(harmful versus beneficial contingencies). A unified cognitive
learning framework can account for both types of social
learning, operating simultaneously for individual and
group-level inference, and affecting adaptation and one’s
future behaviour.

The current study examines adaptation to norms in new,
unfamiliar surroundings, the Star-harvest Game, and the
effect of experience on adaptation to new norms. It, therefore,
examines dynamic, quick, behavioural adaptation. It is a
departure from studies aimed at characterizing cooperation
and prosocial behaviour as a stable trait [49–51] or from
examining gradual changes across development and accul-
turation [7,52]. The current study’s approach is limited in
the sense that the learned social norms may not represent a
long-lasting behaviour or tendency, as it does not rely on
real-life contexts, such as monetary or resource sharing,
which are common in the study of social norms [28,53]. How-
ever, the current paradigm allows control of the effect of
experience on social adaptation, and a rich and flexible lab-
oratory model of social learning. As such, it may be useful
for understanding cross-cultural differences in adaptation to
social norms and the contribution of cognitive learning pro-
cesses and cultural background (previous experience) to
this process [53–55].

Some limitations arise from the use of bot-players instead
of live-interaction with humans. Participants were not given
explicit information regarding the identity of the other
players, either if these were humans or bots. As the exper-
iments were taking place online, where it is possible to
interact anonymously both with other humans and with
algorithmic bots, supported this ambiguity. While it is poss-
ible that during interactions with humans the patterns
observed here will be amplified or different, participants’
behaviour in the positive zaps conditions, where zaps were
mainly to benefit others and had no clear benefit for the par-
ticipant, suggests that participants did treat the other players
as if they were fellow participants, to some extent. Another
limitation of the current experimental design was that the
bot-players’ behaviour was homogeneous, following the
notion that social norms are carried by most group members,
most of the times [2]. This meant that it was hard to dis-
tinguish between learning from first-hand experience (direct
reciprocity) and second-hand observations (third-party reci-
procity) [42], and examining how people learn in a non-
homogeneous environment, with different people displaying
different norms. However, future studies may build on the
current paradigm and manipulate the rate of first and
second-hand experiences, and the homogeneity of behaviour,
as well as introducing groups and coalitions, to examine
different social learning dynamics and their interaction with
cognitive learning mechanisms [56,57].

To conclude, this study aimed to provide a cognitive
learning perspective on the problem of learning and adap-
tation to social norms. The behavioural results indicated
asymmetries in the learning of social norms, and the compu-
tational models indicated two mechanisms that may underlie
these asymmetries. One such mechanism was an omission
bias in learning, whereby actions were more readily learned
than omissions. Another mechanism was a bias in group-
level attribution, where behaviours with negative outcomes
to others were more readily attributed to other group mem-
bers than behaviours with positive outcomes. These
mechanisms may influence adaptation to social norms out-
side the laboratory, making social norms whose behavioural
manifestations are active and harmful more persist even
when social settings change. Finally, the experimental
approach used here can be elaborated to account for many
different norms, and the use of principles and computational
frameworks from cognitive learning can inform future inves-
tigations of cross-cultural differences and adaptation to
descriptive social norms.
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