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An emerging concept in transcriptional regulation is that a class of truncated transcription factors (TFs), called microProteins
(miPs), engages in protein-protein interactions with TF complexes and provides feedback controls. A handful of miP examples
have been described in the literature but the extent of their prevalence is unclear. Here we present an algorithm that predicts miPs
and their target TFs from a sequenced genome. The algorithm is called miP prediction program (miP3), which is implemented in
Python. The software will help shed light on the prevalence, biological roles, and evolution of miPs. Moreover, miP3 can be used
to predict other types of miP-like proteins that may have evolved from other functional classes such as kinases and receptors. The
program is freely available and can be applied to any sequenced genome.

1. Introduction

Rearrangements in gene architecture are a driving force
behind the evolution of novel functions in biology [1]. Genes
can acquire novel genetic information by the reshuffling of
existing genetic modules or the incorporation of novel ones
[1]. Interestingly, the loss of coding sequence in a gene can
also lead to important novel functions. A paradigm of trun-
cated transcription factors (TFs), referred to asmicroProteins
(miPs), is emerging in transcriptional regulation [2, 3]. miPs
carry a protein-protein interaction domain that allows them
to take part in TF complexes but lack the DNA binding
domain (DBD). miPs might have evolved either through
domain loss or by alternative transcription or splicing of
TFs [2]. Alternatively, miPs might have arisen by convergent
evolution, independent of TFs. All miPs described to date
share sequence similarity with and are likely homologous to
TFs. We refer to such TFs as miP target TFs. A miP can affect
the function of its target TF by physically interacting either
directly with its target TF (we classify these as direct target
TFs) [4, 5] or with a partner of the target TF (indirect target

TFs) [6, 7]. Several miPs have been shown to titrate their
target TFs into an inactive form [4–7], while others work as
cofactors in active protein complexes [8]. To date, miPs have
been implicated to regulate developmental programs, hor-
mone signaling, the circadian clock, and stress response path-
ways in metazoans and plants [2, 3]. Notwithstanding a few
examples in the literature, the miP layer of transcriptional
regulation is largely unknown.

Here we present the miP prediction program (miP3), a
software that predictsmiPs and their putative target TFs from
a sequenced genome.The miP3 algorithm has been designed
based on the properties of characterized miPs and exploits
sequence similarity between miPs and target TFs for their
detection.

2. Materials and Methods

2.1. miP3. miP3 is a command line program that predicts
microProteins from a sequenced genome. It is implemented
in Python. As input, it needs a FASTAfilewith all proteins in a
given genome, a FASTA file with a class of proteins for which
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miPs are to be identified, for example, transcription factors,
and a file with a list of unwanted domains, for example, DNA
binding domains. To lower runtime, it makes use of the local
BLAST+ tools [9]. As input, miP3 takes FASTA-formatted
TF sequences to query against a database of proteins from a
genome using BLASTP and a list ofDNAbinding domain IDs
from Interpro database [10]. After the initial BLAST searches,
a list of potential miPs is returned in a FASTA-formatted
file. The putative miPs and their target TFs are subjected to
InterproScan [11] to map protein domains. Putative miPs that
are larger than 1.1 times the length of their target TFs are
filtered out. PutativemiPs that haveDNAbinding domains or
domains that are not found in any of their target TFs are also
filtered out. The putative miPs that have not been filtered out
are written into a tab-delimited file containing the predicted
miPs, their target TFs, domains they contain, and their pro-
tein lengths.

The version described here (version 2) has been improved
from version 1 by removing the dependency of a locally
installed InterproScan, using default parameters determined
by a more thorough performance testing, and a number of
other improvements detailed in the README (https://dpb
.carnegiescience.edu/sites/dpb.carnegiescience.edu/files/
readme miP3V2.txt).

2.2. Availability of Supporting Data. The code is freely availa-
ble at https://dpb.carnegiescience.edu/labs/rhee-lab/software.
The software is distributed under the GNU General Pub-
lic License (version 3 or later). Additional documentation is
available from https://dpb.carnegiescience.edu/sites/dpb.car-
negiescience.edu/files/readme miP3V2.txt.

3. Results and Discussion

The miP3 algorithm detects putative miPs through sequence
similarity with TFs and uses a number of filters to discard
potential false positives. The algorithm is summarized in a
diagram (Figure 1) and Pseudocode 1. Two types of BLAST
searches are performed to identify putative miPs that share
sequence similarity with TFs. First, a file containing TF
sequences of an organism is used by miP3 as query in a
BLASTP search against all proteins shorter than 550 amino
acids in the genome with a default 𝑒-value cut-off of 1e-7. The
protein length filter has been set at 550 amino acids because
all miPs characterized to date and the average size of protein-
protein interaction domains are smaller [12]. To our knowl-
edge, the Arabidopsis thaliana LITTLE SIPPER is the largest
miP (541 aa) characterized to date [2]. The 𝑒-value cut-off
was determined empirically by testing different cut-off values
against a set of known miPs in A. thaliana (see Supplemental
Tables 1 and 2 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/734147).

Second, because miPs are relatively short proteins (typi-
cally smaller than 200 amino acids), the TF sequences are also
searched against proteins shorter than 200 amino acids at a
lower stringency (default 𝑒-value cut-off of 0.5). In this second
BLAST search, we opted for a higher 𝑒-value because the
length of the protein found in a BLAST search is inversely
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Figure 1: Diagram of miP3 showing all BLAST searches and filters
used.

proportional to the 𝑒-value. To reduce the number of false
positives due to the less stringent 𝑒-value, the resulting hits
are then filtered by a reverse BLASTP search against the TFs
(default 𝑒-value cut-off of 0.1), and hits that do not match TFs
are discarded.The efficacy of such a strategy has been already
tested before [13] and proved successful in the miP3 algo-
rithm. The 𝑒-values of these searches were empirically set to
the most stringent values at the highest recall rate (Supple-
mental Tables 1 and 2).

The resulting set of putative miPs are subjected to a series
of filters based on intrinsic and experimentally validated miP
features. First, because miPs are TF-like proteins lacking a
DNA-binding domain by definition, the algorithm discards
putativemiPs that containDNA-binding domains through an
InterproScan search [14]. Second,miPs are truncated TFs and
hence they are smaller and bear fewer protein domains than
their target TFs. Nevertheless, somemiPsmight have evolved
from imprecise gene duplication and reshuffling events that
incorporated novel unconserved DNA sequences causing
miPs to be similar in size as their target TFs. To leverage this
information,miP3 removes putativemiPs that are longer than
their target TFs with a 10% size tolerance. The 10% size toler-
ance was set to allow the inclusion of miPs that carry longer
linker regions while excluding proteins that are much larger
than the TFs and less likely to be miPs. miP3 also removes
putative miPs that are predicted to carry domains different
from their target TFs through the InterproScan software [11].

The performance of this version of themiP3 programwas
tested in Arabidopsis thaliana. To determine the best set of
𝑒-value thresholds, we compared a number of combinations
of 𝑒-value thresholds for the three BLAST runs against a set
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set evalue all, evalue small, evalue reblast, DBD domains
open transcription factors as input
small proteins database, all proteins database, transcription factors database← initialize BLAST reference databases
putative miPs← new list
for transcription factor in transcription factors do
TF domains← InterproScan(transcription factor)
subjects all← BLAST transcription factor against all proteins database
for subject in subjects all do

if length(subject) ≤ 550 and length(subject) ≤ 1.1 ∗ length(transcription factor) and evalue of subject ≤ evalue all then
subject domains← InterproScan(subject)
if subject domains not in DBD domains and length(subject domains) < length(TF domains)

and length(intersection(subject domains with TF fomains)) ≥ 1 then
putative miPs.append(subject)

end if
end if

end for
subjects small← BLAST transcription factors against small protein database
for subject in subjects small do

if length(subject) ≤ 1.1 ∗ length(transcription factor) and evalue of subject ≤ evalue small then
blast results← BLAST subject against transcription factors database
if transcription factor in blast results and evalue of transcription factor ≤ evalue reblast then
subject domains← InterproScan(subject)
if subject domains not in DBD domains and length(subject domains) < length(TF domains)

and length(intersection(subject domains with TF fomains)) ≥ 1 then
putative miPs.append(subject)

end if
end if

end if
end for

end for
return putative miPs

Pseudocode 1: Pseudocode of miP3.

of characterized miPs in A. thaliana (Supplemental Tables 1
and 2).We used themost stringent set of 𝑒-value thresholds at
the highest recall rate (59% recall) as default parameter values
in the software. The software set with the default parameters
detected 10 of the 17 characterized miPs in A. thaliana
(Supplemental Table 2). The false negatives fall into three
categories (Supplemental Table 2): (1) one characterized miP
does not have a protein sequence available in TAIR [15]; (2)
one characterized miP was too divergent in sequence from
the TFs; (3) 5 atypical bHLH miPs contain the HLH domain
but are missing the basic residues, which is currently not
detectable by domain mapping using InterproScan. It is dif-
ficult to assess precision without extensive experimental val-
idation, which is beyond the scope of this paper. However, if
we use physical interaction between amiP and its target TF as
a criterion for being a true positive, we can assess precision
based on the status of physical interactions of predicted
miPs that have not yet been experimentally characterized.
Five putative miPs that were predicted by miP3 to target A.
thaliana homeodomain transcription factors were previously
tested for physical interaction with their target TFs in yeast
two-hybrid assays (Supplemental Table 2 and [2]). If we con-
sider the three predictedmiPs that failed to interact physically
with the target TFs as false positives, the precision would be
40%. However, this is likely to be an underestimation because

a number of characterized miPs have been shown to interact
only with a partner of their target TFs and not with the
target TFs themselves [2]. Currently the miP3 program relies
on protein domain mapping based on the domain profiles
available in the Interpro database, which canmiss somemiPs.
For example, if a protein has sufficient sequence similarity to
resemble aDNAbinding domain but has other characteristics
that prevent it from binding to DNA (e.g., missing basic
residues in the bHLH domain), the protein will not be
detected as a miP. Additional constraints that can distinguish
functional DNA binding domains from nonfunctional DNA
binding domains could help identify moremiPs in the future.

4. Conclusions

miP3 has been designed to detect miP/TF couples that share
sequence similarity. AllmiPs characterized to date are homol-
ogous to their target TFs. Nevertheless, we cannot exclude
the existence of miP/TF couples that might have diverged
considerably in sequence or evolved through convergent
evolution.The software will help shed light on the prevalence
and evolution of a potentially universal miP function. More-
over, the design of the software allows the prediction of any
group of proteins that have evolved from different types of
proteins by domain loss. For example, to search for proteins
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that are similar to kinases but have lost the kinase domain in
a genome, one simply needs to replace the TF sequences with
kinase sequences and the DNA binding domain list with a
kinase domain list. The software is freely available and can be
applied to any sequenced genome.
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