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ABSTRACT Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if
isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms
were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activ-
ity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation
of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by
means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from
them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-
351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative
features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such re-
sponses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J.
75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the
salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific
pathways of R* inactivation or Ca?* feedback disabled. We present a theoretical analysis showing that the variabil-
ity of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the
number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of
SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net ki-
netics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR am-
plitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot
be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-
dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs;
there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in
Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.).
Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field,
G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca?*-feed-
back) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.

KEY WORDS: single-photon response reproducibility ® stochastic model ® multiple phosphorylation ® pho-
totransduction ® rod responses

and activity of a single activated rhodopsin molecule
(R*). If R* were to inactivate in a single memoryless

Reliable single-photon detection is a ubiquitous feature
of vertebrate visual systems (Rodieck, 1998). Evolution
has produced biochemical and biophysical machinery
in photoreceptors that can support reliable single-pho-
ton detection despite the inherent high variability in
all molecular reactions. An abiding problem in pho-
totransduction has been to explain the observed repro-
ducibility of vertebrate rod single-photon responses
(SPRs), given that the amplitude and time course of
the response are determined primarily by the lifetime
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step with firstorder Kkinetics, its lifetime would be
highly variable, exhibiting an approximately exponen-
tial distribution with a coefficient of variation (CV =
SD/mean) of unity. In the absence of other mecha-
nisms, this highly variable R* lifetime would be re-
flected, to one degree or another, in the variability of
the SPR amplitude and/or kinetics. The relative repro-
ducibility of SPRs, despite the inherent variability of
the underlying individual biochemical reactions, places
strong constraints on any model of phototransduction.

Abbreviations used in this paper: Arr, arrestin; PDE, phosphodiesterase;
RK, rhodopsin kinase; SPR, single-photon response.
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Evidence for Reproducibility

Empirical measures have shown that the variability of
vertebrate rod SPRs (assessed by any of several mea-
sures of amplitude or kinetics) is considerably lower
than expected for a one-step R*-inactivation process. In
this paper, we focus on four findings reported in the lit-
erature. The first finding is that the coefficient of varia-
tion of the amplitude of the SPRs (CV,,,,) is quite small
(0.2-0.25: Baylor et al., 1979; Schneeweis and Schnapf,
1995; Rieke and Baylor, 1998a; Whitlock and Lamb,
1999; Field and Rieke, 2002). The second finding is
that the ensemble variance of a set of dim-flash re-
sponses is very nearly proportional to square of the
mean of the response over almost the entire response
time course. This observation has been used to sug-
gest that variability in the elementary response wave-
form must be small (Schnapf, 1983; Schneeweis and
Schnapf, 1995; Rieke and Baylor, 1998a). That argu-
ment has been rejected by Whitlock and Lamb (1999),
and we will elaborate on their insight that this finding
alone does not imply that the SPR has low variability
over its entire time course. The third finding is the low
coefficient of variation of the area (CV,,, = 0.3) under
the SPR (Field and Rieke, 2002). This measure has a
natural pragmatic appeal, in that it captures variability
in both the amplitude and time course of the SPR
(Field and Rieke, 2002), and we will show furthermore
that there is a theoretical basis for choosing variability
in SPR area to estimate the number of inactivation
steps of R* over measures of variability of either ampli-
tude or kinetics alone. The fourth measure is based on
the finding that the variance of the SPR is at least an or-
der of magnitude smaller than the square of the mean
response, until some time after the mean response
reaches its peak (Rieke and Baylor, 1998a; Field and
Rieke, 2002). Field and Rieke (2002) found that the
relative times-to-peak of the SPR variance and SPR
squared mean, as well as the width of the SPR variance
waveform aided in discriminating between candidate
models.

A New Stochastic Model of Phototransduction Accounts for the
Variability/Reproducibility of Single-photon Responses, as well
as Other Key Electrophysiological Data

Based, in part, on the ideas and biochemical data of
Gibson et al. (2000), we develop in this paper a kinetic
model of phototransduction that includes a detailed
stochastic simulation of the activation and inactivation
of rhodopsin, G-protein (G), and phosphodiesterase
(PDE). Simulations of the stochastic activation of PDE
have been done previously by Felber et al. (1996) and
Lamb (1994). Our modeling is distinguished from
theirs in four main respects: (a) We model reaction ki-
netics in greater detail than the prior studies, including

competitive, stochastic binding of R* with G-protein,
arrestin (Arr), and rhodopsin kinase. (b) Rather than
simulating the two-dimensional diffusional contact be-
tween molecules, we concentrate on the reactions of
those molecules by assuming that the disc surface is
well mixed. (c¢) Neither Lamb (1994) nor Felber et al.
(1996) coupled the activated PDE to the downstream
reactions generating photocurrent (including cGMP-
hydrolysis, channel closure, Ca’**-feedback, and Ca%*-
buffering). Our model does so, thus allowing direct
comparisons between empirical electrophysiological re-
sponses and model responses under a wide range of
conditions. (d) Lamb (1994) did not simulate inactiva-
tion reactions.

Our model embodies the following four hypotheses:
(a) that R* undergoes a series of sequential phosphor-
ylation steps, mediated by rhodopsin kinase (Kithn
and Wilden, 1982; Wilden and Kiihn, 1982; Aton et
al., 1984; Thompson and Findlay, 1984; Palczewski et
al,, 1991; Wilden, 1995); (b) that competition for
binding to R* occurs between three molecular spe-
cies: inactive G-protein (G-GDP), rhodopsin kinase
(RK), and Arr (Pfister et al., 1983; Miller and Dratz,
1984; Buczylko et al., 1991; Pulvermuller et al., 1993;
Krupnick et al., 1997; Gibson et al., 2000); (c) that each
sequential step of phosphorylation leads to a progres-
sive decrease in affinity between R* and G-GDP, and
concomitantly to a progressive increase in affinity be-
tween R* and Arr (Gibson et al., 2000); and (d) that
the affinity between R* and RK also ratchets down with
each step of phosphorylation (Buczylko et al., 1991;
Gibson et al., 2000). We will refer to our full model
based on these premises as the sequential phosphoryla-
tion model.

Using this model, we simulate ensembles of SPRs and
dim-flash responses using Monte-Carlo methods. The
model accounts for the four quantitative measures of
SPR variability/reproducibility delineated above. In ad-
dition, despite the fact that in the model phosphoryla-
tion is the dominant process inactivating R*, the simu-
lations reproduce key experimental results that Rieke
and Baylor (1998a) interpreted previously as evidence
that phosphorylation could not be the dominant deac-
tivation mechanism.

Moreover, without any additional parameter adjust-
ments, the model reproduces the salient qualitative fea-
tures of SPRs obtained from four genetic knockout and
transgenic studies: three studies in which mouse rods
had been genetically modified with specific pathways of
R* inactivation disabled (Arr—/—, Xu et al.,, 1997,
RK—/—, Chen et al., 1999; CSM, Mendez et al.,
2000), and one study in which the mechanism of feed-
back synthesis of guanylate cyclase had been disabled
(GCAPs—/—; Burns et al.,, 2002). In general, we find
that attempting to simulate the results of knockout and
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transgenic experiments can provide valuable insights
into the kinds of mechanisms that must be present, or
about candidate molecular schemes that can be ruled
out even if, in principle, they could achieve the empiri-
cal SPR reproducibility in one or more of the four
quantitative measures of reproducibility.

Theory for Mechanisms Underlying SPR Reproducibility

Finally, we present a theoretical analysis of mechanisms
underlying SPR reproducibility. It reveals a heretofore
unrecognized tradeoff between variability of SPR am-
plitude and variability of SPR kinetics that depends crit-
ically on R* lifetime in relation to the net kinetics of
the downstream reactions in the cascade. We explain
what the statistics of SPR area tell us about underlying
molecular mechanisms. We show how the coefficient of
variation of SPR area can be used, in the context of a
certain class of models, to estimate a lower bound for
the number of R* inactivation steps required to yield
observed SPR reproducibility. Neither the CV of SPR
amplitude nor the statistics of SPR duration variability
alone can be used in this manner. An important con-
clusion of this theoretical analysis is that, in normal
rods, across species, the kinetics of R* inactivation can-
not be very different from the kinetics of the down-
stream reactions, including the inactivation of the acti-

vated transducin—-phosphodiesterase complex, in the
dim-flash regime.

MATERIALS AND METHODS

Sequential Phosphorylation Model

Stochastic  “front-end” reactions in the sequential phosphorylation
model. To simulate the rod’s response to dim flashes, we formu-
lated an explicit model of the rod phototransduction cascade, in-
cluding detailed stochastic implementation of the initial reac-
tions. The time-varying quantities of reactants in these “front-
end” reactions, defined as those from photon absorption and
isomerization of R* through the activation and inactivation of
PDE* (Egs. 1a—3e and 8a—8c; Fig. 1), were modeled as discrete
signals (time-dependent integers) due to the relatively small
numbers of molecules involved. Simulated PDE* responses to
single photoisomerizations were generated using a Monte-Carlo
approach (see Simulations and Monte-Carlo Methods below).
The stochastic front-end model is based on the representation
of the underlying biochemistry illustrated in Fig. 1. We now
present the assumptions on which we based this model, and we
specify the individual reaction steps in terms of a set of equa-
tions. In these equations, n refers to the phosphorylation state of
R*, and the values of the parameters are given in Table I.
Reactions of activated rhodopsin, R* (Fig. 1 A). We assume (Egs.
1, 2, and 3a) that G-GDP, RK, and Arr bind competitively with R*
(Pfister et al., 1983; Miller and Dratz, 1984; Buczylko et al., 1991;
Pulvermuller et al., 1993; Krupnick et al., 1997; Gibson et al.,
2000). R* is assumed to undergo multiple, sequential phosphory-
lation (Ohguro et al., 1993, 1994, 1995, 1996) at up to seven

Transducin Activation

A
G-GDP &P
3a 3b | 3c
GDP
v 1 n=n+1 1
- a c O
R)—— RR—— &
._'1 : (1Y
ATP 'ADP
v Phosphorylation
Arrestin Quench
B PDE Activation PDE Inactivation
~ 5= ™
- 8a ’ 8bh 8c

G, GTP
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Ficure 1. (A) Stochastic model of
“front-end” reaction (Eqs. 1-3e). Model
showing the stochastic activation of G
and PDE, the inactivation of R*, G¥,
and G-PDE¥, as well as the competition
between Arr, G, and RK for R, *, where
G[i';‘ n (0 =< n=7) is the number of times R*
has been phosphorylated at any given
point in time. Three mutually exclusive
pathways for R, * are depicted: (1) R*
inactivation by Arr-capping, the proba-
bility of which increases with n (Gibson
et al., 2000); (2) phosphorylation of R*
by RK, the probability of which is as-
sumed to decrease with n; or (3) activa-
tion of G-protein, the probability of
which decreases with n (Gibson et al.,
2000). The gray arrows indicate the “re-
turn” pathways for R*, i.e., when it is re-
leased from G protein or RK. Phosphor-
ylation-dependent reactions are indi-
cated by purple arrows. (B) Activation
and inactivation of PDE (Eq. 8a—c). Ac-
tivated transducin (G, GTP) binds to
the PDEvy subunit (Eq. 8a). Inhibition
by the PDEy subunit is then relieved

) (Eq. 8b), yielding activated transducin—

PDE* complex. For simplicity, inactiva-
tion of PDE* is assumed to occur in a
single step (Eq. 8c; see text for details).



phosphorylation sites on the carboxy terminus of rhodopsin
(Kiithn and Wilden, 1982; Wilden and Kuhn, 1982; Aton et al.,
1984; Thompson and Findlay, 1984; Palczewski et al., 1991;
Wilden, 1995; Eqs. la—c). These reactions lead to a progressive
reduction in R* activity, defined as the rate at which molecules of
G* are activated per R*. Inactivation of R* is defined as the re-
duction in this activity due either to phosphorylation or arrestin
binding, or any other mechanism that reduces the rate of G-pro-
tein activation by R* (e.g., feedback or local depletion of G-pro-
tein). R* inactivation is achieved by multiple phosphorylation ac-
cording to the following equations,

R, +RK =8 RURK (1a)
RyRK, +ATP—'2® >R .RK _ + ADP (1b)
R:-H .R‘Kposr #) R;+1 + RK (IC)

with the final, complete quench of R* activity occurring upon
Arr binding to phosphorylated R*:

R + Arr—2 5 R < Arr )

The notations “pre” and “post” in Eqgs. la—c distinguish RK-
bound states of R* before and after phosphorylation.

Transducin is assumed to be activated by a conventional series
of reactions (Egs. 3a—e; see Lamb and Pugh, 1992).

R +G- GDPJkkGL:")——‘ R;+G-GDP (3a)
RG- GDP—:‘%RJ-G +GDP (3b)
R +G+GTP—t= > R'+G-GTP (3c)
R +G-GTP—*<—R’ +G-GTP (3d)

G-GTP—2—G,-GTP+Gy, (3e)

where G, GTPis the activated form of transducin.

Based on the biochemical results of Gibson et al. (2000), the
affinity of rhodopsin for G-protein is assumed to decrease expo-
nentially with increasing phosphorylations (Eq. 4), while its affin-
ity for Arr is assumed to increase linearly with n (Eq. 5). Arrestin
is able to bind R*, with increasing probability, at any time follow-
ing the first phosphorylation (n = 1), to terminate whatever R*
activity remains in that state.

kgi(n) = kg (0) exp(-on), (4)
ky(n) = nky(1). (5)

The exponential rate, w, was set to 0.6 from an exponential fit to
the data in Fig. 2 A in Gibson et al. (2000).

Choice of Phosphorylation Dependence for R—RK Affinity

Although the explicit dependence of R-RK binding affinity and
rate on R* phosphorylation state has not been documented with
the same detail as the R—G and R-Arr affinities (Gibson et al.,
2000), there is biochemical support for the notion that R-RK af-
finity decreases systematically with the phosphorylation state of
R*. For example, Buczylko et al. (1991) found that phosphory-
lated RK has significantly lower affinity for phosphorylated R*
than for unphosphorylated R*. Moreover, the data and analysis

of Gibson et al. (2000) shows that, given the opportunity for
RK to interact with phosphorylated versus unphosphorylated
rhodopsin, it preferentially interacts with unphosphorylated
rhodopsin, consistent with the idea that R-RK affinity decreases
systematically as R* becomes phosphorylated.

We set the R-RK affinity to have the same dependence on 7 as
the affinity between R* and G-protein by varying kgg;.

krii(n) = kpg(0) exp(-on). (6)

We treat the rate of incremental phosphorylation of the R-RK
complex by ATP as n dependent, in that it reduces to zero when
all available sites on the R* carboxy terminus are occupied.

kRK3(O)’ n< Mopax

kris(n) = { (7)

0, n=n

max

In a model where RK and G bind R* competitively and Arr is
only permitted to bind once R* is fully phosphorylated, this ar-
rangement (Egs. 4-7) would cause, on average, an equal number
of PDE* to be produced in each phosphorylation state, and it can
be demonstrated analytically that this would minimize variability in
the number of activated G-proteins produced per photoisomeriza-
tion. In our implementation of the model, Arr is permitted to bind
with increasing probability after the first phosphorylation (Fig. 4
D, inset). Consequently, derivation of the optimal phosphoryla-
tion-dependence for R-RK affinity is quite complicated. However,
we have estimated the ideal affinity profile by numerical optimiza-
tion techniques, and have verified that, with model parameters
that provide a good account of the data, the affinity profile em-
bodied in Eq. 6 yields nearly ideal minimization of variability.!

We also examined the effect of having a different exponential
phosphorylation dependence for the R-G and R-RK affinities.
We found that (assuming the w for R-G affinity in Eq. 4 was fixed
at the empirical estimate of 0.6), if w for R-RK affinity in Eq. 6
varied between ~0.3 and ~0.7, the predicted variability of PDE*
production would only vary by ~5 percent. Finally, we examined
other profiles for R-RK affinity, such as linear decrease in affinity
with n, or a flat profile (no dependence on phosphorylation
state). These profiles led to a significant increase in the predicted
variability in the number of PDE*s produced compared to the ex-
ponential profile used in the sequential phosphorylation model.

Because the phosphorylation dependence profile for R-RK af-
finity we adopted yields good statistical performance of the
model (e.g., low SPR variability), and because some of the details
of such phosphorylation dependence have yet to be fleshed out
experimentally, our choice of phosphorylation dependence for
R-RK affinity may be viewed as a testable biochemical prediction
of our model.

Activation and inactivation of PDE (Fig. 1 B). For the activation
of PDE*, we assumed that activated transducin binds to the -y
subunit of PDE (Eq. 8a), and that the inhibition of cGMP hydro-

IThe choice to place all the phosphorylation dependence in the first
of the RK reactions (kgg;, Eqs. 2a and 6) was made for computational
simplicity. It is possible that other phosphorylation rate constants in
Eqs. la—c are also n dependent. For example, kgg; could conceivably
decrease with increasing n due to charge repulsion between ATP and
the phosphates already attached to the COOH terminus of R*. How-
ever, we verified by simulation that as long as the combined effect of
all the RK rate constants yielded the appropriate net rate of phos-
phorylation of R* (i.e., close to that yielded by placing all the phos-
phorylation dependence in kgg;), the specific phosphorylation de-
pendence of the individual rate constants was not important (unpub-
lished data).
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lysis by the PDE<y subunit is then relieved (Eq. 8b). For the inacti-
vation of PDE*, we did not include explicit equations for acceler-
ation of transducin (and, hence, PDE) inactivation due to inter-
actions with the proteins RGS9-1 and GB5 (Skiba et al., 2001;
Lishko et al., 2002; Martemyanov and Arshavsky, 2002; for review
see He and Wensel, 2002). Instead, we assumed that these reac-
tions were fast, and we incorporated their effect into a single step
of PDE~inactivation (Eq. 8c).? We have examined the effects of
including such reactions, and found the effects on the simula-
tions to be negligible.

PDE +G, - GTP—2— PDE-G, - GTP (8a)
PDE-G,-GTP—*2>— PDE"-G, - GTP (8b)
PDE’-G, - GTP—2: 5 PDE.G, - GDP + PO, (8¢c)

where PDE*-G, - GTP represents the activated form of the trans-
ducin-PDE complex, referred to as PDE* throughout this paper,
and PDE-G, * GDP represents the inactivated form (PDE). In all
simulations, unless otherwise stated, Tppr was 3 s. The mean sto-
chastic lifetime of R* (with all effects of multiple phosphoryla-
tion and Arr-binding included) was ~2.8 s. However, the effec-
tive first-order time constant (defined as the first moment of the
mean R* activity function) approximating the mean R* inactiva-
tion waveform was ~1.3 s. Thus, PDE—inactivation was (on aver-
age) the rate-limiting front-end reaction.

Deterministic model of “back-end” reactions (Fig. 2). The front-end
steps contribute considerable amplification, and Leskov et al.
(2000) report that a single amphibian rod R* molecule activates
~150 PDE*/s.® The frontend parameters we used reproduce
this PDE* activation rate up to the time of the first phosphoryla-
tion of R*. However, as phosphorylation of R* proceeds, the rate
of PDE* production decreases (due to the phosphorylation-depen-
dent decrease in R-G affinity, Eq. 4). The net result is that each
R* leads to the production of, on average, ~220 PDE*.

Since the number of activated PDE* molecules per R* is rea-
sonably large, it is appropriate to treat the downstream “back-
end” reactions as continuous signals, and to model them using a
system of differential equations (Eqgs. 9-11). These steps are:
Ca’*-sensitive synthesis of cGMP by guanglyl cyclase and hydroly-
sis of cGMP by PDE* (Eq. 9); Ca?* influx through cGMP-gated
membrane cation channels and Ca?* efflux via the Na*/Ca%*-K*
exchanger (Eq. 10); and sequestration and release of Ca®* by in-
tracellular buffers (Eq. 11).

g = 0, [1+(c/K)"T" = (Byun+ ByPDE g 9)
L f(]a]dmk(g/gdurk)n(g_ PR
¢ = HlugB Bty (o) s (10)

2Thus, in our formulation, activated G-protein cannot be inactivated
unless it is bound to PDE.

*Heck and Hofmann (2001) reported a higher rate (~600 G*/s
per R¥) in bovine tissue. Their value was an extrapolated maximal
rate under optimized conditions in vitro, with a high density of
G-protein, a high concentration of GTP, and a low concentration of
GDP. Arshavsky et al. (2002) have argued that, with reasonable as-
sumptions about cellular conditions, the rate calculated from the re-
sults of Heck and Hofmann (2001) would correspond to around 220
G*/s per R* in amphibian rods in vivo, close to the value of Leskov et
al. (2000) that we adopted for the simulations. In additional simula-
tions (unpublished data), we found that changing the rate of G* acti-
vation from 150 to 600 G*/s/R* had no effect on the four measures
of reproducibility, and only reduced the fine-structure of noise in the
rising phase of the response by a modest amount.
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FiGure 2. Schematic representation of differential equation
model of “back-end”. Model showing reactions subsequent to PDE
activation, including cGMP-hydrolysis and synthesis, channels clo-
sure, Ca®* feedback, Ca**-buffering. These reactions were simu-
lated as deterministic reactions with differential equations.

b = ky(er—cp)c—kycy, (11)

where PDE* = [PDE*-G, - GTP], g = [¢GMP], ¢ = [Ca®*'], and ¢,
represents intracellular calcium buffers (all in wM), and the “dot”
notation represents the time derivative. The parameters employed
in these equations are: a,,,, the maximal rate of cGMP synthesis;
K, the concentration of Ca%" at which ¢cGMP is synthesized at half
its maximal rate; m, the Hill coefficient for the action of Ca®*on cy-
clase; By, the dark rate of cGMP hydrolysis; B,,;, the rate constant
of cGMP hydrolysis per activated PDE subunit; f,, the fraction of
circulating current carried by Ca?*; F, the Faraday constant; v,
the effective cytoplasmic volume; J,,4, the dark circulating current;
Ziaro the steady-state concentration of cGMP in darkness; n,, the
Hill coefficient for channel opening by cGMP; v, the rate con-
stant of calcium extrusion by the Na*/Ca?*-K* exchanger; ¢), the
minimum intracellular Ca®* concentration; k; and k,, the associa-
tion and dissociation rate constants of Ca?" with intracellular buff-
ers; and ¢ the total calcium buffer concentration. The units and
values of all parameters are given in Table I.
Photocurrent is given by

T = Juol®/ au) (12)

We assumed that Ca?* feedback occurs at guanylate cyclase
only. Having cyclase feedback as the dominant feedback mecha-
nism is consistent with recent evidence from GCAPs—/— rod re-
sponses (Burns et al., 2002), suggesting that Ca®* feedback via
recoverin and RK onto R* phosphorylation rate does not signifi-
cantly affect the dim-flash response, though it does affect
responses at high intensities.

Model Parameters

The values of the parameters for the sequential phosphorylation
model (Egs. 1-12) are given in Table I. Parameters were set at
modern literature estimates when these were known. In general,
all parameter values for which estimates were available in the liter-
ature were within a factor of two of the literature values. A dark in-
ternal calcium concentration of 500 nM was assumed (Lagnado et
al., 1992; Gray-Keller and Detwiler, 1994; Sampath et al., 1998).

In order to capture the stochastic nature of the “front-end” of
the cascade, in addition to R*’s interaction with Arr and RK, we im-
plemented seven activation steps from photon absorption to PDE



TABLE 1
Sequential Phosphorylation Model Parameters

“Front-end” parameters “Back-end” parameters

[3) 0.6 W pax 87 pM s~ 12
Ry(1) [Ar] 0.15 5! K 0.11 pM
krii(0) [RK] 110s7! m 2
kri2 50s7! Baark Is7!
kri3(0) [ATP] 200 s7! B 0.00038 57!
kris 200 s7! Jea 0.16
k¢ (0) [G-GDP] 10,000 s~1° F 0.096485 C pmol ™!
ke 500 s~! Voyto 1 pL
kes 1,000 s~'P Jaark 42 pA
ke GDP) 4000 57! G 4 M
ks [GTP 1,000 51 Mg 3
kes 2,000 s~ 1P Yea 77s71a
ke 200 s~ ¢ Carte 0.5 pM
kpy [PDE] 200 571 @ 0.05 pM
kps 200 571 k; 0.2 uM 151
TeDE 3s ky 0.8s7!

er 850 puM

“The parameter «,,,, was automatically adjusted depending on the opti-

max
mized value of K, within the steady-state equation a,,,, = Bu&iatl 1 + (Chan/
K)™]. The parameter 7y, was determined by the optimized value of f,
within the steady-state equation Y, = (feo/ 2F0,510) Jaark(Caarn = G0) -
"Lamb and Pugh (1992) noted that the total effective delay due to the four
reactions embodied in our Egs. 3a—d could not exceed vps~! (also see Eq.
15). Leskov et al. (2000) estimated v to be ~150 s~! for amphibian rods,
corresponding to a total effective delay of 6.7 ms. In practice, our parame-
ter choices for the front-end reactions led to an average lag of ~7 ms be-
tween G* production with R* in its unphosphorylated state, consistent with
the overall delay for G-activation estimated by Lamb and Pugh.

“Three other front-end rate-constants (kg kp;[PDE] kps) were set to a
value (200 s!) that, along with faster rate-constants in the transducin/
PDE cascade, yielded (in separate simulations) an excellent fit to the lead-
ing edge of the photocurrent activation of salamander rods over a 6 log
unit dynamic range.

activation (Egs. 3a—e and 8a and b), based largely on the sequence
delineated by Lamb and Pugh (1992). While empirical estimates
were not available for each of these parameters, limits on some of
these were estimated in Lamb and Pugh (1992) (see legend to Ta-
ble I for details). The front-end rate constants and the rate constant
of cGMP hydrolysis per PDE hydrolytic subunit, 8,,,, were adjusted
as needed to achieve a close fit (by eye) to the ensemble mean of
the Whitlock and Lamb (1999) data, to generate a target number
of PDE* activations per photoisomerization (200-300), as well as to
achieve the appropriate qualitative behavior in the ATP/GTP ma-
nipulation experiments of Rieke and Baylor (1998a).

The back-end parameters K, B, fc., ki, Ko, and ey were opti-
mized so that the model would generate flash responses that
matched a representative set of empirical flash responses ob-
tained from toad rods (from Rieke and Baylor, 1998b) over a
wide range of flash intensities. More details about the choices of
parameter values can be found in the legend to Table I.

Simulations and Monte-Carlo Methods

All aspects of the model and analyses were implemented using
Matlab/Simulink (The Mathworks). The code is available upon
request (contact first author).

Monte-Carlo simulations of 1,000 SPRs were run. Simulations
were carried out using the Gillespie method (Gillespie, 1976,

1977; Felber et al., 1996). The probability that a molecular spe-
cies takes a particular reaction pathway is given by the reaction
rate for entering that pathway divided by the sum of rates of all
available pathways. The dwell time or waiting time before taking
one of the pathways is an exponentially distributed random vari-
able with a mean given by the inverse sum of reaction rates for
the possible pathways. For example, a free R* molecule’s next
event could be a binding with either G-GDP, RK, or Arr. To deter-
mine which of these happens, we generate a random number, ,
uniformly distributed between 0 and 1. G-GDP binds if » < kg /
ko + krig + Ry, RKDbinds if kg / ke + kpig + ky = v < kg + kpia/
ke1 + kgxy + k4, otherwise Arr binds. The lag-time in the free R*
state is determined by generating a second random number
from an exponential distribution with mean equal to 1/k; +
ki + R

To simulate experimental data we generated a series of PDE*
responses to Poisson numbers of photoisomerizations. Failures
are all-zero vectors, and multiples are generated by summing
the PDE* responses from randomly selected single-photon re-
sponses. The PDE* response is transformed to photocurrent
through the deterministic back-end of the model (Egs. 9-12).
Noise (both the continuous component of photoreceptor noise
and instrument noise) was then added to the photocurrent re-
sponse, as was done in Fig. 9 of Whitlock and Lamb (1999). Fi-
nally, a 2.5 Hz digital low-pass filter was applied to the responses
(Whitlock and Lamb, 1999).

Simulation of Other Conditions

In order to simulate alternate conditions (including effects of ge-
netic modification of R* inactivation mechanisms), we made the
following modifications to the sequential phosphorylation model
and/or parameter values. Apart from the changes explicitly
listed, all other parameters were unaltered. In each case, the
mean number of photoisomerizations was 0.65, and we added
noise as above.

Simulations of Transgenic and Genetic Knockout Data

The simulated genetically modified responses shown in Figs. 4 H,
7 F, and 8 F were generated using the means of 10 model SPRs in
order to approximate the number of responses averaged in the
corresponding experimental studies. These simulations repre-
sent the predictions for toad rods with the genetic manipulations
used in four studies on mouse rods (Xu et al., 1997; Chen et al.,
1999; Mendez et al., 2000; Burns et al., 2002).

In order to simulate rhodopsin kinase knockout (RK—/—) re-
sponses (Chen et al., 1999), the parameter kg, [ RK] was set to zero
across all »in Eq. 1a. Arr—/— (Xu et al., 1997) was simulated by
setting k4[Arr] = 0 across all n. In order to simulate the transgenic
disabling of all phosphorylation sites on the carboxy terminus of
rhodopsin (analogous to Mendez et al., 2000, “completely substi-
tuted mutant”, or CSM, in which serine and threonine residues
were replaced by alanine), we set kpg; = 0 across all n.

Altered Levels of ATP and GTP

In order to simulate the ATP and GTP manipulations used to
generate the data in Fig. 14 of Rieke and Baylor (1998a), we
scaled the parameters kpg;[ATP] and kgs[ GTP] shown in Table 1
by 0.04 and 0.4, respectively, the same factors used in Rieke and
Baylor (1998a) (see Eqgs. 1b and 3c, respectively).

Early Saturation Model

An early saturation model was implemented by restricting the
amount of PDE locally available subsequent to a photoisomeriza-
tion. R* shutoff was achieved in a single step by setting k,(1) to in-
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finity, so that after the first phosphorylation, Arr-capping was auto-
matic and instantaneous. This ensured that the only mechanism
available to reduce SPR variability was the local depletion of PDE.

The local depletion of PDE was achieved by scaling kp;[ PDE]
(Eq. 8a) by the factor (1 — PDE*/PDE,, ), where PDE* is the run-
ning count of PDE-subunit activations and PDE,,, is the total num-
ber of PDE subunits locally available. In simulations, we found that
in order to achieve empirical levels of SPR variability (CV,,,) using
only this local saturation mechanism, the number of PDEs locally
available to R* (PDE,,,,) had to be restricted to ~300. In contrast,
for the full sequential phosphorylation model, PDE,,, is set to in-
finity, so that there is no local saturation (i.e., the response to a sin-
gle R* will not cause any local depletion of PDE).

Calcium Clamping

Ca?" clamp was simulated by replacing the time-varying calcium
variable, ¢, with the constant, ¢, (so that ¢ = 0), which reduces
the back-end deterministic equations (Eqgs. 9-11) to the single
equation

g = Oyu— (Buun+ B, ,PDE*)g, (13)

ma-1
where Oyark = amax[l + (czlmk/Kc) ] = Bdmkgzlm‘k‘
Data Analysis

In order to establish an empirical baseline for SPR variability,
four analyses of SPR variability of Whitlock and Lamb’s (1999)
original data were performed. Two of these analyses were also
presented in Whitlock and Lamb (1999), and two were new anal-
yses not presented in their paper. The results analyzed here were
those presented in their Figs. 1-3, comprising responses of a toad
rod to a set of 350 identical flashes that delivered on average
~(0.6 photoisomerizations per flash. The methods and proce-
dures used in collecting Whitlock and Lamb’s original electro-
physiological data are described in detail in their paper (Lamb et
al., 1986; Whitlock and Lamb, 1999).

Zeroing and Data Selection

Raw data records were first corrected for low-frequency drift,
then objectively tested for being at baseline at the time of the de-
livery of the stimulus, and then zeroed by subtraction of a DC off-
set using the method we now describe.

The full data set consisted of 350 recording epochs of 10-s dura-
tion each, with the 20-ms (500 nm) flash presented 1 s into the re-
cording epoch. Since the prestimulus portion of each recording
comprises one tenth of the total epoch, we assume that at least
10% of each response should be at baseline levels, and extract the
10th percentile from the sorted current values for each record to
form an estimate of the baseline drift over the experiment (~1 h).
This time-varying baseline drift waveform was low-pass filtered (—3
dB at 0.013 Hz) and subtracted from the raw responses.

The means of each of the 350, 1-s prestimulus intervals from
the drift-corrected data were computed, and their distribution
was fit with a Gaussian probability density function. Using the pa-
rameters of the Gaussian fit, responses whose pre-stimulus means
were more than three standard deviations from the overall mean
were excluded from further analysis (“bad-zero” records). 36 re-
sponses were excluded on this basis. The mean of the remaining
314 prestimulus means (a scalar DC offset for the entire experi-
ment) was calculated and subtracted from each record, ensuring
that all responses used for analysis start from zero, on average.

One additional response containing a large negative artifact
was manually excluded, leaving 313 dim-flash response records
for analysis.
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Classification of Responses as Failures, SPRs, or
Multiple-photon Responses (MPRs)

SPRs were identified from analysis of the histogram of response
amplitudes. Amplitude was defined as the scaling factor provid-
ing the best (least squares) fit of the normalized mean response
to each individual response. Fits were carried out over the time
interval between t = 0 (time of the stimulus) and the time to
peak (1.91 s) of the ensemble mean response (Field and Rieke,
2002). A sum of Gaussians model (Del Castillo and Katz, 1954;
Baylor et al., 1979) was then fit to the histogram, yielding esti-
mates of the mean number of photon absorptions, mean SPR
amplitude, SPR amplitude variance, and additive background
noise variance, for the underlying distribution. These four pa-
rameters were used to determine analytically a range of ampli-
tudes where the probability that the response resulted from a sin-
gle photon absorption was =50%. Responses were classified as ei-
ther failures, SPRs, or MPRs on the basis of whether their
amplitude fell below, within, or above this range. In simulations,
this approach turned out to provide high sensitivity and positive
predictive value (>95% for each).

Isolation of SPR Variance

To separate variability due to background noise from stochastic
variability in the actual underlying response to photon absorp-
tion, we subtract the variance of responses classified as failures
from the variance of those classified as SPRs. In any subsequent
discussion of SPR variability, this correction is implied. This tech-
nique is used in the CV calculations for SPR amplitude and SPR
area, as well as in the time-varying SPR variance plot described
below.

SPR Area

In the first new analysis, we were interested in CV,,,, for the SPR
(Field and Rieke, 2002). For each failure and SPR (identified by
the method just described) we integrated the response from time
zero until the end of the recording epoch att = 9s. CV,,,, was cal-

culated as the square root of the variance difference between
SPRs and failure areas, divided by the mean SPR area.

Squared Mean SPR Versus SPR Variance

Another new analysis was a comparison of the time-varying en-
semble variance ((jzpR ) and squared mean (MiPR ), for identified
SPRs only. This analysis was presented in Rieke and Baylor
(1998a), and featured prominently in Field and Rieke (2002).

The other two variability measures we used had also been used
in Whitlock and Lamb (1999): a histogram of dim-flash response
amplitudes and calculation of CV,,,,; andga comparison of the
variance of the full dim-flash ensemble (Gy;,, ) with the squared
mean (I3, ).

RESULTS

A Diverse Suite of Empirical Data Provides Strong Constraints
on Any Model

Fig. 3 shows the empirical data with which the model
results are compared. Eight data panels are shown.
Fig. 3, A-E, shows analyses of original data from
Whitlock and Lamb (1999). Fig. 3 A shows the wave-
forms of 101 responses classified as SPRs (red), 51 re-
sponses classified as multiple photon absorptions
(MPRs, green), and 161 waveforms classified as fail-



ures (gray). The solid blue curve is the ensemble  grouped, with the SPRs and MPRs being distinguish-
mean of the SPRs. With the help of the color-coding,  able from the failures, indicating the regularity of the
it is evident that the dim-flash responses are fairly well ~ elementary response.

FiGUuRE 3. The empirical data sets with
which model results are compared. The
first five panels (A-E) show analyses of
original data from Whitlock and Lamb
(1999). (A) Waveforms of 101 SPRs
(red) and 51 MPRs (green), as well as
161 waveforms judged to be failures
(gray). We have reanalyzed Whitlock
and Lamb’s data using the methodology
described in MATERIALS AND METHODS.
The solid blue curve is the ensemble

Response (pA)

mean of the SPRs. (B) Histogram of am- QO I . - C B
ontrol

plitudes for all recording epochs shown > g 1t F i

in A. Amplitude for each response was Q (=) o

calculated as described in MATERIALS 5 % 128 ;’/D g?;

AND METHODS. The solid black curve g. Q 05 " .

shows the result of fitting a sum-of-Gauss- e :

ians model to the data, yielding esti- L ) 2 .

mates of the o and . of each of the pre- (14 0 —= \_\M‘:

sumed underlying distributions. These 0 é 1'0 1 5'

S

parameters were then used to classify re-
sponses as either failures, SPRs, or
MPRs by determining upper and lower
amplitude limits beyond which the
probability that a response was an SPR
fell below 50%. The CV for SPR ampli-
tudes identified in this manner (red
overlay in histogram) was 0.15. (C)
Comparison between the light-evoked
ensemble variance increase (red) and
the square of the ensemble mean
(blue). The variance increase was calcu-
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classified from the amplitude histogram
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culated by integrating the response over 0
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tion. For the failures, ~50% of the re-

sponses had negative areas, as expected. The CV for area of the SPRs (red overlay) was 0.36. (E) The time-dependent residual variance of
SPRs (GéPR — Ofailure s Ted curve) and the square of the mean SPR (blue curve). The SPRs were categorized from the model fit to the ampli-
tude histogram as in B. The SPR variance is approximately an order of magnitude smaller than the square of the mean response until after
the peak of the mean response, peaks much later than the mean and is broader. F and G reproduce data from Fig. 14 of Rieke and Baylor
(1998a), showing the effects of lowering transduction gain in the presence of normal, control levels of ATP (500 uM) or low ATP (20 uM)
levels in truncated toad rod outer segments. Responses are averages of 10-15 trials, each eliciting ~10 photoisomerizations. For each ATP
condition, GTP concentration was decreased by a factor of 2.5 (control GTP: blue; low GTP: red). With normal ATP (F), lowering GTP
caused the dim-flash response amplitude to decrease with no effect on the response kinetics. In low ATP (G), the same GTP manipulation
decreased response amplitude and slowed the response. Rieke and Baylor (1998a) interpreted these results to imply that neither phos-
phorylation nor arrestin-binding controlled the majority of rhodopsin’s cumulative activity. Insets in panels F and G show the responses be-
fore peak amplitudes were equated. The peak amplitudes were, control ATP: 19 pA (control GTP), 11 pA (low GTP); low ATP: 23 pA (con-
trol GTP), 14 pA (low GTP). (H) The results of one study in which feedback synthesis of cGMP was genetically disrupted, plus three studies
in which R* inactivation mechanisms were disrupted by genetic knockout or transgenic manipulation of mouse rods. (Red) Arr—/— (Xu
etal., 1997, Mn of 21 responses); (Blue) RK—/— (Chen et al., 1999, mean of 14 responses); (Green) transgenic disabling of six phosphor-
ylation sites on rhodopsin (Mendez et al., 2000, CSM responses, mean of 10 responses; see text for details); (Orange) GCAPs—/— (Burns
et al.,, 2002, mean of 31 rod responses). The WT responses from each of these studies are shown as thin curves. The WT responses were
scaled to the same relative peak amplitude (1.0), but the relationship to the corresponding genetically manipulated responses in each case
was not altered. The actual mean WT SPR peak amplitude in each study was on the order of 0.3 - 0.6 pA.
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In our analyses, we use four empirical measures of
SPR variability/reproducibility to evaluate each model.

Variability of SPR Amplitude

A classical method of quantifying the variability of the
SPR amplitude is to plot a histogram of the dim-flash
amplitudes (Fig. 3 B) and fit a statistical (sum-of-Gauss-
ians) model (black curve) to the histogram of dim-
flash response amplitudes. As described in MATERIALS
AND METHODS, we used the model fit to define ampli-
tude boundaries with which to classify responses statis-
tically as most likely resulting from zero, one, or multi-
ple photon absorptions. The subset of the histogram
resulting from SPRs identified by this method is
shown as a red overlay. The CV of SPR amplitudes for
the Whitlock and Lamb data estimated in this manner
is 0.15, which is somewhat lower than some previously
published values (~0.20; Baylor et al., 1979; Schnee-
weis and Schnapf, 1995; Rieke and Baylor, 1998a;
Whitlock and Lamb, 1999; Field and Rieke, 2002).
The relatively low CV,,,, is due to the definition of am-
plitude we used and our method of classification of re-
sponses. Larger values would be obtained using our
classification scheme if amplitude were defined as in
Whitlock and Lamb (1999), or if we had estimated CV
from the parameters of the sum-of-Gaussians fit. The
SPRs identified from the amplitude histogram were
used in the analysis of SPR area (Fig. 3 D) and SPR
variance over time (Fig. 3 E).

Dim-flash Variance Versus Dim-flash Squared Mean

A second measure of variability is based on comparing
the light-evoked ensemble variance increase and the
square of the ensemble mean (Schnapf, 1983; Rieke
and Baylor, 1998a). Fig. 3 C shows this classical compar-
ison between the o, (red) and the pj;,, (blue) for the
Whitlock and Lamb data. The variance increase was cal-
culated by subtraction of the variance of the failures
from the variance of all responses. As in Whitlock and
Lamb (1999), our reanalysis of their data shows virtu-
ally the same relationship between o, and pj,, .

This measure of SPR variability has some limitations.
Whitlock and Lamb (1999) pointed out that, although
a stereotyped elementary response will necessarily lead
to a close match between the variance and squared
mean responses, a close match between these does not
necessarily imply a high degree of SPR reproducibility.
This is because, for dim flashes, the variance is domi-
nated by Poisson noise stemming from the quantal na-
ture of light. Thus, the result in Fig. 3 C only shows that
the SPR variability over time was not of sufficient mag-
nitude to dominate the Poisson variability of the light
stimulus.

In APPENDIX A we extend Whitlock and Lamb’s in-
sight about the limitations of this analysis, and provide
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a quantitative interpretation of the relationship be-
tween the squared mean response and variance of the
response. Despite these caveats, this analysis can help
to evaluate models since failure of proportionality be-
tween o3, and u3;,, does imply nonstereotypic SPRs.

Variability of SPR Area

A third gauge of SPR variability is the variability of the
response area for SPRs. The motivation for the area
analysis comes from the fact that, as Field and Rieke
(2002) pointed out, the area under the response
waveform is expected to be a good gauge of overall
response variability since it includes the effects of
response variability throughout the entire response
waveform. Apart from this pragmatic consideration,
there is a theoretical basis for using the variability in
response area (over other measures) in the analysis of
mechanisms of SPR reproducibility. In pIscUSSION, we
show why it is the CV of SPR area, and not the CV of
either SPR amplitude or duration, that tracks the vari-
ability in integrated R* activity, and hence, can pro-
vide an estimate of the number of underlying R* inac-
tivation steps.

A histogram of dim-flash response areas for the Whit-
lock and Lamb data is shown in Fig. 3 D. This analysis
was not presented in the original Whitlock and Lamb
(1999) paper. The red overlay in the histogram shows
the subset of areas from the responses that had been
classified as SPRs in Fig. 3 B. The CV for area for the
SPRs derived in this fashion was 0.36, similar to values
recently reported for mammalian rods (~0.3, Field and
Rieke, 2002). Using our sequential phosphorylation
model, we found that after 1000 random additions of
simulated noise to a single Monte-Carlo run of 350 tri-
als (dim flashes), 95% of the estimates for CV of SPR
area fell in the interval 0.30 to 0.44.

SPR Variance Versus SPR Squared Mean

The fourth measure of SPR reproducibility comes from
an analysis of the time-dependent residual variability of
the SPRs (Fig. 3 E). This analysis was introduced by
Rieke and Baylor (1998a; see their Fig. 5) and was fea-
tured prominently in a recent paper by Field and Rieke
(2002). The panel depicts the time course of the noise-
corrected SPR variance (red curve; SPR variance minus
failure variance) and the square of the mean SPR (blue
curve). The SPRs were categorized in the same manner
as for the amplitude histogram in Fig. 3 B. As noted in
Rieke and Baylor (1998a) and Field and Rieke (2002),
Capr i approximately an order of magnitude smaller
than H;PR until after the peak of the squared-mean re-
sponse. In addition, GEPR peaks much later than ngR
(1.5 times), and is broader. Field and Rieke (2002) em-
phasized that these features provide constraints on



models of SPR reproducibility, aiding in the discrimina-
tion between models.

Aside from the variability/reproducibility measures
described above, other data in the literature provide
additional constraints on any candidate model.

Transduction Gain Manipulation by Alteration of
Nucleotide Levels

Fig. 3, F and G, reproduces data from Fig. 14 of Rieke
and Baylor (1998a) showing the effects of lowering
transduction gain in the presence of normal (500
uM) or low (20 wM) ATP levels in dialyzed toad rod
outer segments. With normal ATP (Fig. 3 F), lowering
GTP by a factor of 2.5 caused the dim-flash response
amplitude to decrease with no effect on the response
kinetics. The kinetics were slowed by the GTP manip-
ulation, however, if phosphorylation was substantially
slowed by reducing ATP (Fig. 3 G). Rieke and Baylor
(1998a) interpreted these results to imply that neither
phosphorylation nor arrestin-binding controlled the
majority of rhodopsin’s cumulative activity. We will
show that this pattern of results under GTP and ATP
manipulation does not rule out phosphorylation dom-
inating R* inactivation, contrary to Rieke and Baylor’s
reasoning.

Genetic Knockout (KO) and Transgenic Manipulations

Implementation of a detailed stochastic model offers
an opportunity to simulate genetic KO or transgenic
substitution experiments targeting mechanisms ex-
pected to affect activation, inactivation or feedback in
the phototransduction cascade. In the present study,
we evaluate the ability of the model to predict the re-
sults from three recent experiments that genetically
manipulated R* shutoff mechanisms, plus one experi-
ment in which feedback synthesis of cGMP was dis-
rupted. The results of these studies are reproduced in
Fig. 3 H. The panel shows data obtained from mouse
rods that had six major phosphorylation sites on the
rhodopsin C-terminus disabled by substitution of ala-
nine for the WT serine and threonine residues nor-
mally occurring at these sites (green: complete substitu-
tion, or CSM, rods; Mendez et al., 2000), that had Arr
knocked out (red: Arr—/—; Xu et al., 1997), or RK—/—
(blue: Chen et al., 1999), or GCAPs—/— (orange:
Burns et al., 2002). The WT responses from each of
these studies are shown in Fig. 3 H as thin curves. The
WT responses were scaled to the same relative peak am-
plitude (1.0), but the relationship to the correspond-
ing genetically manipulated responses in each case was
not altered.

Both the RK—/— and CSM responses rose at the
same rate as the WT until ~100 ms, and continued to
rise until they reached a peak ~2 times the WT peak
amplitude. The SPRs in both CSM and RK—/— rods

were step-like, shutting off abruptly at highly variable
times. Histograms of the duration of SPRs from CSM
and RK—/— rods were approximately exponential,
with time constants of 5.1 and 3.3 s, respectively. The
Arr—/— responses reached approximately the same
peak amplitude as the WT responses, then exhibited a
partial recovery with nearly normal kinetics. When
viewed on a long time scale, the mean Arr—/— re-
sponses manifested the initial, relatively rapid recovery
phase, and then settled into a long, slow recovery phase
(with a mean recovery time constant = 51 s; results not
shown here).* The GCAPs—/— responses rose with
~WT Kkinetics to peak at ~4 times the WT amplitude at
~300 ms.

The Sequential Phosphorylation Model Accounts for All the
Data Examined

The sequential phosphorylation model dramatically re-
duces SPR variability relative to the expected behavior
of a single-step inactivation model, bringing it to empir-
ical values. The model yields the correct qualitative be-
havior in all tests, including reproduction of the Rieke
and Baylor (1998a) transduction gain manipulation ex-
periments (Fig. 4, F and G), as well as the response fea-
tures from four genetic knockout and transgenic stud-
ies: three in rods in which R* inactivation mechanisms
had been genetically disrupted (Xu et al., 1997; Chen
et al., 1999; Mendez et al., 2000), and one in which
feedback synthesis of guanylate cyclase has been dis-
abled (Burns et al., 2002).

Realistic Dim-flash Responses

The model generates responses that look closely simi-
lar to the real data (compare Fig. 4 A with Fig. 3 A).
The similarity between the simulated and real re-
sponses may be evaluated more quantitatively by the
four variability tests, and by simulation of other experi-
mental manipulations.

“The mechanisms underlying the slow R* inactivation under CSM,
RK—/—, and Arr—/— are not known. For Arr—/—, the slow recovery
may reflect thermal inactivation of R* (Ebrey, 1968; Cone and Cobbs,
1969; Xu et al., 1997). The recovery in CSM and RK—/— is much
faster than expected for thermal R* inactivation, but is still very slow
compared to the rate-limiting time constant of inactivation of WT
mouse rods (~200 ms; e.g., Chen et al., 2000). Mendez et al. (2000)
hypothesized that some form of slow Arr-binding that is able proceed
in the absence of six phosphorylation sites on the carboxy terminus
might be shutting off R* in the CSM rods. If so, perhaps the same
mechanism is operating in the RK—/— rods. In our simulations, we
did not build in alternate pathways of R* inactivation (although this
is certainly feasible for future research). In our model, without phos-
phorylation, R* activity plateaus at a fixed level. In the absence of Arr
binding, R* activity can still be ratcheted down by phosphorylation,
but will never shut off completely. See Fig. 5.
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FIGURE 4. Predictions of sequential
phosphorylation model. The model
generates SPRs with empirical repro-
ducibility (B-E) and captures all the
other data, including the salient fea-
tures of the transgenic and KO mouse
rod data (H). The model responses in-
clude the addition of simulated record-

ing and photoreceptor noise and re-
sponse failures (MATERIALS AND METH-
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responses were carried out using the
same methodology as was applied to
Whitlock and Lamb’s data in Fig. 3. The
CV of SPR amplitudes identified statisti-
cally (red overlay in B) was 0.16, nearly
identical to the value obtained from the
Whitlock and Lamb (1999) data (0.15;
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D). The inset in D shows the distribu-
tion of the number of phosphorylations
at Arr-capping, with the vertical red line
marking the mean (6.1). As in the data,
] the variance of the SPRs peaked much
later than the squared mean of the
SPRs (1.6 times later; E). The sequen-
tial phosphorylation model also repro-
- duces the transduction gain manipula-
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10 1 5I s tion data from Fig. 14 of Rieke and Bay-
lor (1998a) (F and G). F shows the

results of a simulation under the control ATP condition. The decrease in GTP by a factor of 2.5 (blue: control GTP; red: low-GTP) de-
creases transduction gain (shown in inset) without significantly altering the kinetics of the response (shown by the larger normalized
curves). However, when ATP is lowered by a factor of 25 (G) as in Rieke and Baylor (1998a), the same GTP manipulation decreased the
gain (inset) and slowed the kinetics of the response (compare with F and G, Fig. 3). The peak amplitudes of the responses shown in the
two insets in F and G were, control ATP: 4.7 pA (control GTP), 2.6 pA (low GTP); low ATP: 9.6 pA (control GTP), 5.5 pA (low GTP). The
absolute amplitudes were lower than those reported in Rieke and Baylor (1998a) because we simulated single-photon responses, not re-
sponses to 10 R*. These results show that, contrary to Rieke and Baylor’s (1998a) interpretation of their data, this pattern of responses un-
der nucleotide manipulation is not incompatible with phosphorylation dominating R* inactivation.

Low SPR Variability Matches Empirical Values

The relatively low response variability can be seen in
raw model responses (Fig. 4 A), where the simulated
response failures, SPRs and MPRs, can be distin-
guished. The distribution of amplitudes (Fig. 4 B) re-
produces the behavior obtained empirically (Fig. 3
B). The subset of amplitudes classified as SPRs by the
statistical method used in analysis of the Whitlock and
Lamb data is shown as a red overlay. The solid blue
curve in panel B depicts the histogram of the ampli-
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tudes of the actual SPRs (which, unlike in the electro-
physiological data, can be identified perfectly in the
simulated responses). This illustrates that our method
of amplitude measurement and response classifica-
tion identifies SPRs in the presence of (simulated) re-
cording and photoreceptor noise with high statistical
accuracy (sensitivity and positive predictive value both
exceed 95%).

The CV for SPR amplitudes identified statistically is
0.16, nearly identical to the value we derived from



the Whitlock and Lamb data (0.15; Fig. 3 B). The
close match between the uiim (blue) and the scaled
Giim (red) in Fig. 4 C indicates that SPR and MPR vari-
ability is low enough to allow the ensemble variance to
be dominated by variability in the number of photon
absorptions.

The distribution of SPR areas is Gaussian like (Fig. 4
D, red overlay) with a low CV of 0.38 that nearly
matches the CV,,,, in the Whitlock and Lamb toad rod
data (0.36; Fig. 3 D). This value is somewhat larger than
the only other value reported in the literature (~0.30
for mammalian CV,,; Field and Rieke, 2002).

The CV for SPR area produced by the model (0.38)
is close to the theoretical limit for an eight-step model
(0.35; see Eq. 16, piscussioN), and reflects the contri-
bution of approximately seven of the eight possible in-
activation steps. The reason that all eight possible
steps did not contribute is that, in our model, the
R-Arr affinity increases monotonically with the num-
ber of phosphorylations and there is a finite probabil-
ity of Arr capping as early as the first phosphorylation.
Thus, Arr capping occurs before the maximum num-
ber of phosphorylations. On average, R* was capped
when 6.1 of the 7 possible phosphorylations had oc-
curred (Fig. 4 D, inset), corresponding to a total of
~'7 shutoff steps (including Arr-capping), which is in
agreement with the observed CV,,, (1/(J7) = 0.38).
The fact that CV,,,, achieves the theoretical limit for
the mean number of phosphorylations at shutoff indi-
cates that the relative rates of G* activation and R*
phosphorylation across phosphorylation states were
nearly optimal.

The sequential phosphorylation model also repro-
duces the empirical relationship between ugPR and
GZPR (compare panel E in Figs. 4 and 3). The GiPR
waveform peaks at 1.6 times the time-to-peak of u;PR ,
close to the peak shift when this analysis is applied to
the Whitlock and Lamb data (1.5 times; Fig. 3 E).

Rieke and Baylor’s Transduction Gain Manipulation
Is Reproduced

The sequential phosphorylation model captures the
transduction gain manipulation data from Fig. 14 of
Rieke and Baylor (1998a). Fig. 4 F shows the results
of a simulation under the control ATP condition.
The decrease in GTP by a factor of 2.5 affects trans-
duction gain (shown in inset) without significantly
altering the kinetics of the response (shown by the
larger normalized curves). However, when ATP is

Voo(n) = 1 [@(km[GDP]
e ki ()[ G- GDPlLkgs\ ks GTP]

lowered by a factor of 2.5 (Fig. 4 G), the same GTP
manipulation slowed the kinetics of the response in
addition to decreasing the gain (inset). This finding
is significant and will be discussed further in the DIs-
CUSSION.

Qualitative Features of Transgenic and Genetic Knockout
Data Are Reproduced

The sequential phosphorylation model reproduces the
salient qualitative and quantitative features of the
Arr—/—, CSM, RK—/— and GCAPs—/— genetic ma-
nipulations (Fig. 4 H). Allowing for the difference in
timing between mammalian and amphibian rods, the
model does well at capturing these features. These sim-
ulated responses represent predicted responses if the
same genetic manipulations were performed in toad
rods as were done in the mouse rods.

Analytical Expression for R* Activity and the Time Course of
R* Inactivation

Because G-protein competes with RK and Arr, and be-
cause of reversibility in some of these reactions (Egs. 1a
and 3a and b), G* activation rate (i.e., R* activity) is a
complicated function of 10 front-end parameters.
Thus, it is not feasible to identify a single parameter
that controls the maximum G* activation rate or its de-
pendence on n, the phosphorylation state of R*. How-
ever, we have solved the stochastic front-end equations
to obtain an analytical expression for the mean steady-
state activity of R* conditioned on the continued circu-
lation of R* around the catalytic loop. This can be
thought of as the rate of G* production at a late time
(after the initial appearance of R* in a given phosphor-
ylation state), averaged over all cases where neither
capping nor further phosphorylation has yet occurred.
The expression thus derived gives a theoretical rate of
G* activation per R* (i.e., vgg in s71) that is not physi-
cally observable, and therefore is not exactly the same
as the chemical reaction rate of G* production. How-
ever, because R* typically circulates around the cata-
Iytic loop many times before being phosphorylated or
capped, we can expect that the true maximum rate of
G* production achieved will be close to this theoretical
value. Although we do not show the full expression
here, it can be approximated by the expression shown
in Eq. 14.

Here, R* activity depends on 6 rate constants, plus
the phosphorylation state of R*, n. Substituting for the

+1)+1}+ l(w+l)+; 1}1 (14)

_ + —
k(}?) k(}i’)[ GTP] k(}(j

kes[ GTP]
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rate constants in Table 1, and combining Eq. 4 with Eq.
14 we obtain

1
0.0065 + 0.00035°"

(15)

Vyee(n) =

which gives a theoretical rate of activation of 146 G*/s
at n = 0, consistent with recent estimates in the litera-
ture (e.g., Leskov et al., 2000). From these equations,
we can predict the R* activity for each phosphorylation
state, and, in particular, if Arr-quench occurs between
n = 6 and n = 7 phosphorylations, the R* activity will
have decayed to ~35% or 23% of its initial level, re-
spectively. Thus, theory shows that decay of R* activity
is dominated by phosphorylation in our model.

Using our model, and simulations of genetic manipu-
lations, we can illustrate the relative contributions of
phosphorylation and Arr-binding to the inactivation
process. To do this, we recorded the mean G-activation
rate from 1,000 simulated SPRs under three condi-
tions, the results of which are all illustrated in Fig. b:
(a) WT (i.e., using our sequential phosphorylation
model; blue curve), where both phosphorylation and
Arr-capping contribute to R* inactivation. (b) CSM
(green curve), depicting the case where both phos-
phorylation and Arr-quench are disabled. In the ab-
sence of phosphorylation, R* activity goes to a fixed,
steady-state level close to the theoretical initial maximal
R* activity of ~146 G*/s (derived from Eq. 15, for n =
0). (c) Arr—/— (red curve) depicting the case where fi-
nal Arr-quench is disabled, but phosphorylation is not.
Thus, this curve depicts the mean reduction in R* activ-
ity due to phosphorylation per se.

The three R* activity curves in Fig. 5 demonstrate
qualitatively that phosphorylation dominates R* inacti-
vation. In order to quantify the fractional decrease of
R* activity due to phosphorylation alone, we calculated
the decrement in R* activity at the time of Arr-quench
for each of the 1,000 Monte-Carlo trials, and then aver-
aged these decrements. The decrease in R* activity due
to phosphorylation measured in this way was 66% of
the unphosphorylated activity, with Arr-quench ac-
counting for the remaining 34% of R* activity reduc-
tion. This shows, by numerical simulation, that phos-
phorylation dominates R* inactivation in the sequen-
tial phosphorylation model.

These results are expected from general theoretical
considerations if optimal variability reduction is to be
achieved: when Arr quench of R* activity is only one fi-
nal step out of eight potential inactivation steps, the
multiple steps of phosphorylation preceding Arr-bind-
ing must dominate R* inactivation. Otherwise, the sto-
chastic nature of the final Arr-binding would contrib-
ute a disproportionate amount of variability to the
overall inactivation process.
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FIGURE 5. Numerical simulations showing that phosphorylation
dominates R* inactivation. Mean R* activity (defined as G* acti-
vations s~!) in response to a single photon absorptions was simu-
lated by recording the stochastic G-activation events associated
with each of 1,000 SPRs under three conditions: (1) WT (i.e., us-
ing our sequential phosphorylation model; blue curve). Here,
both phosphorylation and Arr-capping contribute to R* inactiva-
tion. (2) GSM (green curve). Both phosphorylation and Arr-
quench are disabled. In the absence of phosphorylation, R* ac-
tivity goes to a fixed, steady-state level close to the theoretical ini-
tial maximal R* activity of ~146 G*/s (derived from Eq. 15, for
n = 0). (3) Arr—/— (red curve). Arr-quench is disabled, but
phosphorylation is not. Thus, this curve depicts the mean reduc-
tion in R* activity due to phosphorylation per se. These three R*
activity curves demonstrate qualitatively that phosphorylation
dominates R* inactivation at all times, including at the mean
time of Arr-quench (vertical dotted line at 2.7 s). This was quanti-
fied in the following manner: For each of 1,000 Monte-Carlo tri-
als under the WT condition, the fractional decrease in R* activity,
due to phosphorylation alone, at the time of Arr-quench was
measured. The average of these 1,000 values was taken as a mea-
sure of the mean fractional decrease of R* activity due to phos-
phorylation alone. The decrease in R* activity at measured in this
way was 66%, with Arr-quench accounting for the remaining 34%
of R* activity reduction.

DISCUSSION

Detailed Stochastic Modeling

We have presented analytic and computational meth-
ods with general application for testing theories of the
reproducibility of the SPR of retinal rods. The compu-
tational methods are based on detailed stochastic mod-
eling of the underlying biochemical kinetics and utilize
Monte-Carlo simulations. Our emphasis was on testing
the sequential phosphorylation model inspired by the
biochemical experiments of Gibson et al. (2000) show-
ing that the affinity of phosphorylated rhodopsin for
G-protein declines exponentially with phosphorylation
number, while the affinity of phosphorylated rhodop-
sin for arrestin grows linearly with phosphorylation
number. In addition, as discussed below, we have simu-
lated some experiments and analyses of Whitlock and
Lamb (1999) in order to evaluate their evidence that
calcium feedback plays a central role in the reproduc-
ibility of rod responses.



Conclusions about the Sequential Phosphorylation Model

Previous authors have suggested that the processes of
phosphorylation and arrestin binding may constitute
multiple steps of R* inactivation that contribute to
reducing SPR variability (e.g., Whitlock and Lamb,
1999; Gibson et al., 2000; Mendez et al., 2000; Field
and Rieke, 2002). Using a full stochastic, biochemi-
cal model, our simulations and analyses demonstrate
quantitatively for the first time that multiple phosphor-
ylation of R* (plus Arr-binding) can account for the
SPR reproducibility observed in vertebrate rods. Se-
quential, phosphorylation-dependent ratcheting down
of R* activity, and ratcheting up of inactivation rate,
can change the distribution of R* lifetimes from ap-
proximately exponential (with CV = 1) to a much less
variable distribution, substantially reducing the vari-
ability of SPR amplitude, kinetics, and area below the
levels that would otherwise occur if R* were shut off in
a single, memoryless step (see APPENDIX B; compare
Figs. 4 and 8).

We found that the sequential phosphorylation model
accounts for the four measures of reproducibility and
generates responses that exhibit the correct features in
almost all details. The model also accounts for the sig-
nature qualitative features of four genetic experiments
in mouse rods (see Fig. 4 H). The match to these data
was achieved without any additional parameter adjust-
ments, other than the simulation of the genetic manip-
ulation. The model also reproduces the results of one
of Rieke and Baylor’s (1998a) transduction gain experi-
ments that was thought to rule out phosphorylation
(and/or Arr-binding) as the dominant mechanism in
the deactivation of R*.

The Transduction Gain Manipulation Experiments of Rieke
and Baylor (1998a) Do Not Rule Out R* Phosphorylation as
the Dominant Mechanism Controlling R* Inactivation (and
Hence SPR Recovery)

Rieke and Baylor (1998a) reasoned that the low GTP
concentration (40% of control) in their transduction
gain experiments would increase the amount of time a
G-protein spent bound to R*. Because inactive G-pro-
tein, RK, and Arr are thought to compete in a mutually
exclusive manner for R*, this should reduce the avail-
ability of R* for phosphorylation and arrestin capping.
Consequently, if phosphorylation and Arr binding were
responsible for a large portion of R* inactivation, one
would expect both a reduction in amplitude and a
slower response recovery in low GTP. They interpreted
the result, that transduction gain was reduced and that
response kinetics were unchanged, to mean that phos-
phorylation and arrestin binding do not make a major
contribution to the inactivation kinetics of R*. They
further tested this hypothesis by lowering ATP to slow

phosphorylation so that it would be expected to con-
trol a significant fraction of R*’s cumulative activity.
Under this condition, lowering GTP by the same
amount did significantly slow the response (Fig. 3 G).
Our simulations reveal that Rieke and Baylor’s nucle-
otide manipulation experiments do not, in fact, rule
out R*’s inactivation being dominated by phosphoryla-
tion. In the sequential phosphorylation model, R* is in-
activated entirely by phosphorylation followed by ar-
restin capping, with phosphorylation accounting for
~66% of the total R* activity reduction, and the final
Arr-quench accounting for the remaining 34% (Fig. 5).
Yet, as discussed in the following section, when revers-
ibility of some of the early reactions in the cascade is
taken into account, we find that the model can repro-
duce the transduction gain results of Rieke and Baylor.

Reversibility of Early Reactions in the Cascade Allows the
Sequential Phosphorylation Model to Reproduce the
Transduction Gain Experiments of Rieke and Baylor (1998a)

Rieke and Baylor’s reasoning would be correct if the
reactions governing the interaction between R* and
G-protein were unidirectional. The reasons that revers-
ibility in these early reactions allows the sequential
phosphorylation model to reproduce the Rieke and
Baylor (1998a) nucleotide manipulation results may be
understood in the following way.

Lowered GTP in the presence of normal ATP (Figs. 3 F and
4 F). Reversibility of the interactions between R* and
G-protein creates two possible outcomes for a G-pro-
tein molecule that has formed a complex with R*. It
can dissociate from R* either in its active form, after re-
placement of the GDP by GTP (the catalytic route), or
while still in the inactive GDP-bound form (see Eq.
3a—c).

Lowering the intracellular GTP concentration de-
creases the likelihood of G-proteins taking the catalytic
route, so that a G-GDP molecule requires a greater
number of R* encounters, on average, before it is acti-
vated. This, of course, reduces the rate of G-GTP for-
mation, i.e. the gain of the response. In addition to de-
creasing the probability of catalysis, decreasing the
GTP concentration will also increase the average
time between the formation and dissociation of an
R-G-GDP complex (whether by the catalytic or non-
catalytic pathway). The increase in lifetime of R-G
complexes will perforce slow phosphorylation and Arr-
binding, due to the competitive nature of the interac-
tion with R*.

Thus, Rieke and Baylor (1998a) were correct to con-
clude that, in addition to lowering the gain, the in-
crease in lifetime of the R—G complexes would lead to a
slowing of inactivation kinetics, if phosphorylation and
arrestin controlled R* shutoff. However, we found that
if the rate constants in Eq. 3a—c are such that the net
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probability of proceeding along the noncatalytic path
(i.e., back to free R* plus G-GDP) is made sufficiently
high, the lifetime of the R-G complex can be made to
be much less sensitive to changes in GTP concentration
than is the rate of catalysis. In particular, our parame-
ters yield a probability of ~0.3 that free R* will emerge
from complex with G via the catalytic pathway, and a
probability of 0.7 that it will proceed along the noncata-
Iytic route. Under such conditions, our analysis shows
that, with only phosphorylation and Arr binding to in-
activate R*, a decrease in GTP concentration can cause
a substantial decrease in gain but almost no slowing of
kinetics (Fig. 4 F).

Lowered GTP in the presence of low ATP (Figs. 3 G and 4
G). When the concentration of ATP is low, the slowing
of kinetics elicited by the lowered GTP concentration
will no longer be negligible. The lowered ATP concen-
tration reduces the rate of phosphorylation of R* by
RK, so that a given R* molecule will bind a substantially
greater number of G-proteins in each of its phosphory-
lation states. Since each and every G-bound state of R*
represents a timeout from the inactivation reactions,
summing across a greater number of such timeouts
magnifies the absolute difference in inactivation rate
between the control and low GTP conditions.

Without reversibility. When the R-G reactions are as-
sumed to be unidirectional, the R-G complexes are un-
able to take the noncatalytic route, so that the GTP ma-
nipulation leading to a gain reduction will necessarily
cause a comparable increase in the lifetime of the com-
plex, and this in turn will slow the rate of phosphoryla-
tion and Arr capping, and hence the overall response
kinetics. Thus, when reversibility is not included in
these reactions, the only way of accounting for Rieke
and Baylor’s GTP/ATP manipulation data would be if
R* inactivation occurred primarily by mechanisms that
were not competitive with G-protein (e.g., Rieke and
Baylor’s putative multiple R* transitions).

For the sake of completeness we implemented such a
modification to our stochastic model, and we found (as
expected) that it failed to account for the results pre-
sented by Rieke and Baylor (1998a) in their Fig. 14 (un-
published data).

Stochastic Variability in Activation and Inactivation in the
Cascade Is a Significant Source of Variability in
Transduction Gain

Whitlock and Lamb (1999) analyzed variability in the
rising phase of SPRs by fitting their discrete model to
each response and extracting from each fit Lamb and
Pugh’s (1992) amplification constant, A. They found
that the CV of A was 0.13, and hypothesized that this
variability in apparent transduction gain could be due
to variability in the packing density of proteins on the
1,000 or so disc surfaces upon which the photoisomer-
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izations occur across stimulus trials (see Calvert et al.,
2001).

We have applied this same analysis to the SPRs gener-
ated by the sequential phosphorylation model (by fit-
ting Whitlock and Lamb’s discrete model to the simu-
lated SPRs in the absence of recording or photorecep-
tor noise), and find that, as in the physiological data,
the simulated SPRs do not have stereotypical rising
phases—the CV for A is 0.19. Since the model does not
have explicit implementation of packing density and
diffusion kinetics, nor a mechanism simulating longitu-
dinal variations in transduction gain (Schnapf, 1983),
and since recording and photoreceptor noise were ex-
cluded from this analysis, this result demonstrates that
a substantial proportion of the variability in photocur-
rent activation in the dim-flash regime may be due to
the underlying stochastic variability in G-protein and
PDE activation per se. The balance of contribution of
these different mechanisms remains to be evaluated.

On the Number of Functional Phosphorylation Sites In Vivo

Biochemical studies in vitro indicate that seven or more
phosphates per rhodopsin are incorporated (Kithn and
Wilden, 1982; Wilden and Kuhn, 1982; Aton et al.,
1984; Thompson and Findlay, 1984; Palczewski et al.,
1991; Wilden, 1995). However, there are well-known
technical difficulties in determining sufficiently quickly
the number and identity of the rhodopsin sites phos-
phorylated under dim-flash conditions in vivo. For one
thing, dephosphorylation events subsequent to physio-
logic quench can readily cause the number of phos-
phorylations to be underestimated (Ohguro et al,,
1995, 1996; Hurley et al., 1998; Kennedy et al., 2001;
Maeda et al., 2003). Thus, in vivo studies have not been
able to demonstrate the incorporation of more than
one (Ohguro et al., 1995, 1996) or, at most, three or
four phosphates per rhodopsin (Kennedy et al., 2001).
Moreover, these studies were conducted at intensities
orders of magnitude above the single-photon level,
where rhodopsin kinase may well be saturated, and
therefore they may not accurately reflect the incorpora-
tion of phosphates under dim-flash conditions.

A recent study by Mendez et al. (2000) has provided
evidence that, under physiological conditions, all the
available phosphorylation sites are required for the
normal kinetics of deactivation of rhodopsin. They
used transgenic techniques to substitute various serine
and threonine residues in the carboxy-terminal region
with alanines, and they found that the rate of recovery
of the dim-flash response increased systematically as
the number of phosphorylation sites available was in-
creased, implying that all the native phosphorylation
sites were needed to support normal inactivation kinet-
ics. While this in vivo study did not actually show that
each of these sites underwent phosphorylation, it did



show that the presence of all the native sites is impor-
tant for normal response Kkinetics. Accordingly, the
Mendez et al. (2000) results are consistent with our as-
sumption that all seven sites are available for phosphor-
ylation, and furthermore we are not aware of any con-
vincing evidence against the notion that, under single-
photon conditions, as many as seven phosphorylations
do indeed occur.

Three Phosphorylation Sites Are Not Sufficient to Account for
SPR Reproducibility

Mendez et al. (2000) concluded that three phosphory-
lation sites are necessary for normal SPR reproducibil-
ity, and we agree with this, but they further concluded
that more than three sites do not further improve SPR
reproducibility, even though the rate of deactivation
may be decreased. However, from theoretical consider-
ations we can show that, in the absence of contribu-
tions from other mechanisms, the number of R* inacti-
vation steps needed to achieve the observed SPR repro-
ducibility must be greater than three. For example, our
analyses of the sequential phosphorylation scheme
show that if multiple, sequential phosphorylation (with
Arr capping) is the mechanism that reduces SPR vari-
ability, then three phosphorylation sites cannot be suffi-
cient to account for the observed variability in SPR
area. The lowest CV for SPR area that three phosphory-
lations plus Arr-capping could support is 0.50, consid-
erably higher than the empirical values (0.30, mamma-
lian, Field and Rieke, 2002; 0.36, amphibian, Fig. 3 D)
or the value from simulations with our full model
(0.38).

On the Relationship Between Variability of SPR Amplitude,
Duration, and Area, and Its Dependence on the Rate-limiting
Reactions in the Phototransduction Cascade

We will now show that there is not a straightforward re-
lationship between the statistics of the random lifetime
of a single activated rhodopsin molecule and the statis-
tics of either dim-flash response amplitude or response
kinetics alone. In particular, there is a theoretical
tradeoff between variability in SPR amplitude and vari-
ability of SPR duration that depends on the kinetics of
R* inactivation relative to the kinetics of reactions
downstream to R*. Moreover, this tradeoff could be in-
formative in determining what inactivation reactions
might be rate-limiting in the recovery of rod responses
in the dim-flash regime, since the relative CVs of SPR
amplitude, duration, and area may indicate the extent
to which R* is or is not rate-limiting in SPR recovery.
The variability of the photocurrent response in any
biochemical kinetic scheme (in which non-linearities
subsequent to PDE* production do not play a signifi-
cant role) is determined by variation in the number of
PDE* molecules produced, the time at which they are

produced, and the variability in the lifetimes of individ-
ual PDE* molecules. In the sections below, we present a
theoretical basis for the superiority of CV of SPR area as
a measure of variability, and show why variability in SPR
amplitude or kinetics alone are, in principle, less infor-
mative gauges of the variability.

The Theoretical Primacy of the Variability of SPR Area

Let N be a stochastic variable representing the cumula-
tive R* activity during the SPR, i.e., the number of
transducin molecules activated during R*’s lifetime,
and hence the number of activated PDE* subunits. If
SPR reproducibility were to derive purely from the reg-
ularization of R* activity by a sequence of n + 1 inacti-
vation steps (e.g. n phosphorylations plus arrestin),
then under optimal conditions, the lowest attainable
CVy (i.e., op/y) would be given by

CVy21/Jn+1.

Below we show that CV,,, of the SPR provides a good
approximation of the CVy, and hence can be used to es-
timate a lower bound on the number of inactivation
steps of R*.

Consider the net PDE* response to a flash to be the
superposition of N discrete PDE* responses, each with
unit amplitude, random onset time, and random (ex-
ponentially distributed) lifetime. The CV of the area
under the PDE* waveform (Apy;) will be determined
entirely by the statistics of N. Assuming a linear dim-
flash response subsequent to PDE* production, CV,,,
for the SPR will equal CV(Appy), which we show in Ap-
PENDIX C (Eq. C5) can be written as

CVoa = CV(App) = A/ CVy + Uy -

The first term under the square root can be thought of
as the component of CV,,, due to variability in the
number of PDE* activations per R*. The second term
under the square root represents variability, for a given
mean number of PDE*, due to stochastic variation in
individual PDE* lifetimes. In practice, we have empiri-
cal estimates for CV,,,, and py, whereas the variability in
Nhas not been directly measured, but can be estimated
by a rearrangement of Eq. 17.

C‘/N = A CVr;Zrm - H;\/'l = C‘//zrm'

Field and Rieke (2002), and our present analyses, find
CV,,ea In the range of 0.26-0.35. Since the number of
PDE* produced by a single activated R* during its life-
time is expected to be on the order of hundreds (e.g.,
Yee and Liebman, 1978; Heck and Hofmann, 2001), we
expect the term Wy to be at least an order of magni-
tude smaller than CV Consequently, CV,,,, itself

area * area

(16)

(17)

(18)
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provides a close approximation to the variability in in-
tegrated R* activity, and therefore the minimum re-
quired number of inactivation steps (or, in this case, n
phosphorylations) can be estimated from

n+1>CV?>

area

(19)

An Inherent Tradeoff Between Variability in SPR Amplitude
and Kinetics Depends on What Rate-limits Recovery

To illustrate how variability in R* activity could manifest
as variability in either the amplitude or duration of the
response, we now consider two opposing, limiting-case
scenarios using, for the sake of clarity, the following
simple model: R* activity is assumed to be a rectangular
pulse of fixed height and variable duration, and the
SPR depends linearly and deterministically on this
pulse. In the first scenario, the kinetics of the down-
stream cascade are assumed to be very fast compared to
the typical R* inactivation rates. Here, the response is
able to track the R* activity function with little lag, and
the photocurrent response itself will also approximate
a rectangular pulse. In the limiting-case, the SPR is just
a scaled version of the R* activity, so there is no varia-
tion in SPR amplitude, and SPR duration will be equal
to, and thus have the same variability as, the lifetime
of R*,

In the second scenario, R* inactivation is very fast
compared to downstream Kkinetics, so that with respect
to the timescale of the response, R* activity is effectively
an impulse. Here, the amplitude of the SPR will scale
linearly with the random lifetime of R*. In particular,
the coefficient of variation of the SPR amplitude will be
the same as that for the random R¥* lifetime.

For example, if R* were shut off abruptly, following a
series of x nonactivity-changing transitions with equally
distributed waiting times (and there were no other
mechanisms to reduce SPR variability), then the CV of
R*’s lifetime would equal 1/«/&. In scenario 1, the CVs
of SPR amplitude and duration would be zero and
1/Jx, respectively, while in scenario 2, these values
would be reversed. In contrast, the CV of SPR area (see
Eq. 16) would equal 1/./x in both conditions; i.e., in-
dependent of the locus of the rate-limiting process in
recovery.

In order to illustrate this tradeoff within the context
of a full stochastic biochemical model, we ran Monte-
Carlo simulations using seven different values of Tppg,
ranging from 0.75 s (R* recovery highly rate-limiting)
to 12 s (PDE* recovery highly rate-limiting). The result-
ing CVs for SPR amplitude, duration, and area are
shown in Fig. 6 A. The behavior of the full biochemical
model clearly manifests the tradeoff behavior predicted
from the limiting case scenarios: CV,,,, (open squares)
is lowest when R* inactivation is rate-limiting, and
monotonically increases as the downstream reactions
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FIGure 6. CV,,,;, and CVy, (but not CV,,,) tradeoff as a function
of R* inactivation kinetics in relation to kinetics of downstream re-
actions. A. Predicted CVs as a function of Tppg. Monte-Carlo simu-
lations were run using seven different values of Tppg, ranging from
0.75 s (R* recovery highly ratelimiting) to 12 s (PDE* recovery
highly rate-limiting). For each Tppg, the front-end parameters were
adjusted so that the mean simulated dim-flash response closely
matched the mean dim-flash response in the Whitlock and Lamb
(1999) data, and the mean number of phosphorylations at Arr-
binding was about the same as in the sequential phosphorylation
model (so that the expected CV,,,, would approximately equal the
CV,., for the sequential phosphorylation model). For the purposes
of this analysis, CVs for SPR amplitude, duration, and area were
calculated in the absence of noise; amplitude for each SPR was de-
fined as the peak amplitude; and SPR duration was defined as the
SPR area divided by the peak SPR amplitude. Thus, the resulting
CVs will not exactly match those derived from the more empiri-
cally based methods used in the main analyses of the sequential
phosphorylation model (see MATERIALS AND METHODS). The full
biochemical model clearly manifests the tradeoff behavior pre-
dicted from the limiting-case scenarios (see text). Only CV,,,
(open circles) is independent of what rate-limits recovery (CV,,, is
constant over all Tppg values). (B) Number of R* inactivation steps
inferred from CVs in A. The number of inferred steps from A were
calculated as 1/ CV2 The number of steps inferred from the CV,,,,
measures (open circles) match the actual number of R* inactiva-
tion steps used (X, dashed line), whereas CV,,,, and CV,,, severely
overestimate the number of R* inactivation steps over most of the
range of Tppg values.

become rate-limiting; conversely, CV,,, (open triangles)
is high and decreases monotonically as the rate-limita-
tion switches from R* to downstream recovery kinetics.
However, the corresponding CV,,,, (open circles) does
not depend on what rate-limits recovery (CV,

yeq 1S CON-
stant over all Tpp values).



The CVs of SPR amplitude and SPR duration are not
adequate measures of SPR variability, and cannot be
used to estimate the number of R* inactivation steps

The analysis above (see Eqs. 17 and 18) shows that
for a given mean and variance of integrated R* activ-
ity, there will be a unique value of CV,,,,. However, as
illustrated by the two tradeoff scenarios, neither the
CV of SPR amplitude nor SPR duration are predeter-
mined by the statistics of G* production per se; de-
pending on the (average) speed of R* inactivation in
relation to the kinetics of the downstream reactions,
they may take on any value from nearzero to CV,,
(which may be as high as ~1 under some conditions,
e.g., RK—/—).

Thus, without a priori knowledge of the relevant re-
action rate constants, it is inappropriate to use either
SPR amplitude or duration variability to estimate the
minimum number of R* inactivation steps. This is il-
lustrated in Fig. 6 B, where we have plotted the in-
ferred number of R* inactivation steps corresponding
to the CVs in Fig. 6 A. Only the number of steps in-
ferred from the CV,,, measures (open circles) match
the actual number of R* inactivation steps used (X,
dashed line).

In general, CV,,, and CV,, measures will tend to
overestimate the number of R* inactivation steps, and
may do so severely. For example, a typical empirical
CVyi of the single-photon response is ~0.2 (Baylor et
al., 1979; Schnapf, 1983; Baylor et al., 1984; Schneeweis
and Schnapf, 1995; Rieke and Baylor, 1998a; Whitlock
and Lamb, 1999; Field and Rieke, 2002), which would
correspond to an estimated minimum of 25 inactiva-
tion steps. The present analyses provide another strik-
ing example of the fallacy of this approach. The value
of CV,,, obtained from the sequential phosphorylation
model was 0.16, which would correspond to an esti-
mate of 39 inactivation steps, far greater than the num-
ber of steps actually used in the model. The value of
CV,... however, was 0.38, commensurate with the ~7 in-
activation steps that were used (at Arr-binding, an aver-
age of 6.1 phosphorylations occurred, plus Arr-bind-
ing = 7.1 steps, corresponding to a CV,,, of 0.38; Fig. 4,
B and D).

The Data and Analyses Suggest that the Kinetics of R*
Inactivation and the Net Downstream Kinetics Cannot

Differ Greatly

In practice, measures of CV of SPR amplitude and SPR
duration have been reported to be of similar magni-
tudes, in the ranges 0.2-0.25 and 0.2-0.4, respectively
(Baylor et al., 1979; Schnapf, 1983; Baylor et al., 1984;
Schneeweis and Schnapf, 1995; Rieke and Baylor,
1998a; Whitlock and Lamb, 1999; Field and Rieke,
2002). These findings suggest that the rates of R* inac-

tivation and downstream kinetics are not highly dispar-
ate in normal vertebrate rods.

What Kinds of Models Are Still Viable?

Four basic classes of models have been introduced to
account for SPR reproducibility, and they are not mutu-
ally exclusive: late saturation, early (local) saturation,
feedback, and multistep inactivation of R*. As we now
discuss, none of the first three classes alone appear to
be viable as the primary mechanism underlying SPR re-
producibility.

Late Saturation (Depletion of a Species Subsequent to PDE*
Production) Does Not Account for SPR Reproducibility

Single-photon responses might be rendered insensitive
to variability in R* lifetime due to localized depletion
of either cGMP or the number of available open cGMP-
gated membrane channels. Some data from Field and
Rieke (2002) argue against both of these possibilities in
mammalian rods. They found that responses from local
stimulation of the outer segment (1-2 wm, correspond-
ing to ~40 discs) were indistinguishable from re-
sponses obtained using diffuse illumination of the en-
tire outer segment, and that, in both conditions, re-
sponses summed approximately linearly up to 3 R*.
Photocurrent waveforms did not indicate any interac-
tion between responses, even for two or three photo-
isomerizations occurring in the same region of the
outer segment. Since the PDE*s elicited by multiple
photon absorptions within the local stimulation area
were arguably competing for the same overall pool of
cGMP (and cGMP-gated channels), these experiments
indicated that activation of a single R* in normal (dif-
fuse-light) conditions does not tax the limits of avail-
able channels or cGMP.

It is possible that the situation is different in rods of
some lower vertebrates since Lamb et al. (1981) found
that, even at very low intensities (=3 R*/flash), re-
stricted stimuli generated smaller responses than dif-
fuse stimuli eliciting an equal number of photoisom-
erizations in toad rods. However, Rieke and Baylor
(1998a) provided evidence against late saturation in
amphibian rods by showing that manipulations that in-
creased the amplitude of the SPR (e.g., lowering ATP
to slow phosphorylation, or clamping Ca?*) did not
generate responses with any evidence of saturation. Re-
sponses showed no clipping or other nonlinear behav-
ior. In addition, when they lowered transduction gain
by decreasing GTP (and, in some cases, also increasing
GDP), the responses had the same shape as control re-
sponses when scaled to match in amplitude. If late satu-
ration had played a significant role in shaping the re-
sponses in normal gain conditions, then the reduction
in gain should have resulted in differently shaped re-
sponses (i.e., less distorted by saturation).
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process, ensuring that only the PDE sat-
uration could reduce SPR variability.
The resulting measured CV,,, (0.32; D)
and CV,,,, (0.18; B) were low, close to
empirical levels. In addition, the vari-
ance of the ensemble dim-flash re-
sponses was close to the square of the
ensemble mean (C), and the individual

simulated responses (A) look similar to
the real data (Fig. 3 A). However, an
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early saturation model fails completely
to reproduce the correct Arr—/—,
RK—/—, and CSM response features;
these all recover fully with nearly WT ki-
netics (F), in striking contrast to the
data (Fig. 3 H). The predicted SPR vari-
ance peaks too early, and is too narrow
(compare panel E with Fig. 3 E). In ad-
] dition, this model produces an inordi-

Arr-/- |

10 15s nate number of small-amplitude, small-
area SPRs (solid blue curves in B and D

showing the veridical distributions) that overlap substantially the distribution of response failures (gray distributions centered at zero on
the abscissas in B and D). The variability of the veridical distributions is much higher (CV,,,, = 0.45 vs. 0.18; CV,,,, = 0.57 vs. 0.32, panels B
and D) than the CVs derived when the responses are analyzed as empirical data.

Early Saturation (Local Depletion of Transducin or PDE)
Cannot be the Dominant Mechanism for SPR Reproducibility

In principle, responses could also be rendered insensi-
tive to variability in integrated R* activity due to deple-
tion of an early transduction intermediate (PDE or
G-protein). This appears to be ruled out as a main
mechanism by empirical data from at least four studies
(Xu et al., 1997; Chen et al., 1999; Mendez et al., 2000;
Rieke and Baylor, 1998a), by the theoretical analyses in
Field and Rieke (2002), and by our own analyses and
simulations, as explained below.

First, a model in which SPR reproducibility is
achieved solely by R* running out of G-protein (or
G-proteins running out of PDE) in a local neighbor-
hood on the disc surface would fail to account for the
data from genetic experiments in which R* phosphoryla-
tion is disrupted. Assuming that in Arr—/—, RK—/—,
and CSM rods rod structure is normal, and other pro-
teins are unaffected by the genetic intervention, one
would expect the same local saturation to occur in these
rods as in WT rods. Thus, if saturation were responsible
for the bulk of time-dependent effective R* activity re-
duction, one would expect the SPRs from Arr—/— (Xu
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et al.,, 1997), RK—/— (Chen et al., 1999), and CSM
(Mendez et al., 2000) rods to exhibit recovery with kinet-
ics similar to WT, contrary to what is observed (Fig. 3 H).

Second, the transduction gain manipulation experi-
ments of Rieke and Baylor (1998a) argue against depletion
of either G or PDE as the main variability-reducing mecha-
nism for the same reasons as cited in the section above.

Third, in their theoretical analyses, Field and Rieke
(2002) showed that local depletion of PDE predicts an
incorrect relationship between the time to peak of the
SPR variance and SPR mean (GEPR peaks too early),
and predicts a waveform for SPR variance that is much
less broad than the observed waveform.

Finally, we have implemented a stochastic biochemi-
cal model in which early saturation (local depletion of
PDE) was the sole mechanism that reduced SPR vari-
ability (Fig. 7; see MATERIALS AND METHODS for model
details). We systematically reduced the total pool of lo-
cally available PDE until the CV,,, (0.32; Fig. 7 D) and
CVyuy (0.18; Fig. 7 B) matched empirical levels, as well
as the CVs obtained from the full sequential phosphor-
ylation model (Fig. 4). In addition, the variance of the
ensemble dim-flash responses was close to the square of



the ensemble mean (Fig. 7 C), and the individual simu-
lated responses (Fig. 7 A) looked similar to the real
data (Fig. 3 A).

In these respects, the performance of the model is
not readily distinguishable from the performance of
the full sequential phosphorylation model (compare
with Fig. 4, A-D). However, as predicted, the early satu-
ration model fails completely to reproduce the correct
Arr—/—, RK—/—, and CSM response features; these
all recover fully with nearly WT kinetics (Fig. 7 F), in
striking contrast to the data (Fig. 3 H). In addition, the
predicted SPR variance peaks too early and is too nar-
row (compare Fig. 7 E with Fig. 3 E), confirming the
analysis of Field and Rieke (2002).

The early saturation model also produces an inordi-
nate number of small-amplitude, small-area SPRs that
overlap substantially the distribution of response fail-
ures. This is not evident if the raw model responses are
analyzed using the same statistical methods used to an-
alyze real data (red overlays in Fig. 7, B and D). How-
ever, when we plot the distribution of veridical SPR am-
plitudes and areas (solid blue curves, Fig. 7, B and D),
the substantial overlap with the corresponding distribu-
tions of response failures (gray distributions centered
at zero on the abscissas of Fig. 7, B and D) can be seen.
The variability of these veridical distributions is much
higher than the CVs derived when the responses are an-
alyzed as empirical data (CV,,,; = 0.45 vs. 0.18; CV,,, =
0.57 vs. 0.32). More detailed discussion of this issue is
presented in APPENDIX B, where we show the results of
implementing a model with a 1-step inactivation of R*
and no other variability reducing mechanisms.

Feedback Is Not the Agent that Regularizes Rhodopsin Lifetime
or Activity

Feedback regulation of R* lifetime or activity, whether
mediated by intracellular Ca?* or some other messen-
ger, seems to be ruled out as the main mechanism of
SPR reproducibility by several lines of evidence. The
evidence provided by Rieke and Baylor’s (1998a)
Ca?"-clamp and high-gain/low-gain experiments ar-
gue against any kind of feedback messenger (including
Ca?*) being the sole mechanism for SPR reproducibil-
ity. Field and Rieke (2002) examined the predictions of
both Ca’?*-mediated and non-Ca?"—mediated feedback
models. The non-Ca?*—mediated model predicted SPR
variance waveforms that were significantly more narrow
than their data or than the predictions from a multi-
step model. Moreover, the SPR variance waveforms
peaked too soon relative to the SPR mean waveforms.
In addition to the experiments and analyses by Rieke
and colleagues just cited, several other lines of evidence
argue against Ca?*-mediated feedback as the main
mechanism reducing R* lifetime variability. Briefly,

some of the major arguments against a Ca®>-feedback
regulation of SPR variability are:

(a) Burns et al. (2002) found that SPRs from
GCAPs—/— mouse rods were nearly unaffected by ap-
plication of the strong Ca?* buffer, BAPTA. The logic
here is that, in the absence of GCAPs, the main sites left
for Ca?* feedback are recoverin-RK and Ca?* effects at
the cyclic nucleotide gated channel (Hsu and Molday,
1993, 1994; Gordon et al., 1995; Sagoo and Lagnado,
1996; Haynes and Stotz, 1997; Rebrik and Korenbrot,
1998; Rebrik et al., 2000). Since they found that BAPTA
had no effect on the SPR amplitude or kinetics when
cyclase feedback was taken out of the picture, the impli-
cation was that any Ca?* feedback onto recoverin-RK in
the GCAPs—/— rods was not strong enough to affect
the responses in the single-photon regime. That such
feedback does exist and is functional in GCAPs—/—
rods was suggested by their finding that GCAPs—/— re-
sponses showed evidence of Ca?"-mediated effects at
high intensities.

(b) At least two theoretical analyses argue against a
Ca?tfeedback model. First, Field and Rieke (2002)
simulated the effects of early Ca?*-feedback and found
that the predicted Gng waveform peaked too late rela-
tive to the HEPR in comparison to the empirical data or
the predictions of their multi-step model. Second, we
have simulated Ca2?*-feedback onto R* lifetime via re-
coverin-RK with a deterministic version of the sequen-
tial phosphorylation model. We find that SPR ampli-
tudes and kinetics are nearly unaffected by the Ca’*
changes induced in the single-photon regime, even
when local Ca®" changes are simulated by assuming
that all the change in internal Ca%?* concentration is re-
stricted to only 10% of the OS volume (Lamb et al.,
1981; Whitlock and Lamb, 1999; unpublished data).

(c) The sequential phosphorylation model repro-
duces some key results from Whitlock and Lamb
(1999) that were interpreted as evidence for Ca?*-
mediated regulation of R* lifetime variability (via re-
coverin-RK). They fit a single-photon, discrete version
of the Nikonov et al. (1998) model to their SPR wave-
forms (Egs. 2 and 3 in Whitlock and Lamb, 1999) col-
lected from control rods as well as from rods infused
with BAPTA. The variability in their model was gov-
erned by a parameter, {;, the stochastic lifetime of (all-
or-none) R* activity. Whitlock and Lamb (1999) found
that both CV,,,, and the mean of the distribution of 4,
values increased under BAPTA, suggesting (within the
context of their model) that the slowing of Ca%" dy-
namics had increased R* lifetime variability.

There is an alternative interpretation of the results of
the Whitlock and Lamb’s (1999) BAPTA experiments
that derives from the tradeoff between amplitude and
duration variability discussed in the previous section.
The effect of BAPTA (or full Ca?*-clamp) would be to
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slow the net kinetics of the downstream reactions rela-
tive to R* inactivation by slowing (or stopping) the
feedback synthesis of ¢cGMP. Our tradeoft analysis
would predict that, in addition to increasing mean f;,
BAPTA (or Ca?*-clamp) would increase CVomps DUt
would decrease the CV of i, (a measure SPR dura-
tion). This is, in fact, what Whitlock and Lamb (1999)
observed. We confirmed this prediction in additional
simulations with the sequential phosphorylation model
(which has no Ca?*-feedback onto R* lifetime or activ-
ity). When full Ca%*-clamp was applied to the model,
both CV,,, and mean {, increased, but the CV of ¢,
decreased (unpublished data).

The above interpretation provides a mechanistic ex-
planation for Field and Rieke’s (2002) caution that
“..the inferred increase in rhodopsin lifetime [by
Whitlock and Lamb] in BAPTA-loaded rods could
have...been caused by a slowed Ca?* feedback to cGMP
synthesis (p. 743).”

(d) Some empirical evidence that Ca?* is not affect-
ing R* variability comes from Field and Rieke (2002),
who found that the CV of SPR area in BAPTA-loaded
rods was indistinguishable from that measured under
control conditions. We have shown in the present pa-
per that the CV of SPR area provides a gauge to under-
lying variability of integrated R* activity (Egs. 17 and
18). If calcium feedback were contributing significantly
to the reduction of variability of R* shutoff, then slow-
ing down this feedback signal with BAPTA should have
made single-photon responses more variable, and in-
creased the CV,,,, but it did not. The sequential phos-
phorylation model also reproduces this result (the CV
of SPR area is unchanged under Ca?"-clamp; unpub-
lished data).

Multistep R* Inactivation

Models based on multiple deactivation steps seem to
the only viable remaining class of model.

The Rieke and Baylor (1998a) multistep model. Rieke
and Baylor (1998a) applied an array of experimental
tests which, along with some modeling, they argued
provided strong evidence against any form of satura-
tion or feedback as the sole mechanism conferring SPR
reproducibility. This left multistep rhodopsin shutoff as
the only remaining viable mechanism. Although Rieke
and Baylor (1998a) acknowledged that the known pro-
cesses of R* inactivation—phosphorylation and Arr-
capping—would contribute to recovery and hence to
the overall response variability, their experiments in
which nucleotide levels were manipulated led them to
conclude that these two processes could not dominate
R* inactivation, a conclusion that our results directly
dispute (see Fig. 4, F and G, and conclusions about the
sequential phosphorylation model above). Their rejec-
tion of phosphorylation as the dominant inactivation
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mechanism (in conjunction with their arguments
against saturation or feedback) is what led Rieke and
Baylor (1998a) to propose that 10-20 phosphorylation-
independent intrinsic conformational changes of R*
occur to alter its catalytic activity, even though evidence
for these steps in the known biochemistry and biophys-
ics of rhodopsin is lacking. Because they did not have
an explicit stochastic biochemical model, they could
not test their hypotheses regarding the role of phos-
phorylation and Arr-binding, or the role of putative
phosphorylation-independent R* states.

For the sake of completeness, we implemented a
model that incorporated Rieke and Baylor’s (1998a)
putative conformational R* transitions within the con-
text of a stochastic, biochemical model structure. In or-
der for this model to capture dim-flash response behav-
ior, as well as the Rieke and Baylor (1998a) gain manip-
ulation data as well as the knockout and transgenic
data, we had to make a number of assumptions. First,
we assumed that the putative rhodopsin transitions re-
quired a phosphorylation step, and would only occur af-
ter phosphorylation was complete. If phosphorylation
and the transitions proceeded concurrently, the model
could not reproduce the qualitative features of the
RK—/— or CSM data; simulation of these responses
would exhibit recovery not observed in the data. We
implemented the model using only one phosphoryla-
tion step prior to the R* transitions, in order to capture
the scenario suggested by Rieke and Baylor (1998b).

In order to be able to capture the Arr—/— data, we
assumed that, in WT rods, after phosphorylation and
the R* transitions were complete, there still remained
~25% of R*’s activity. In this case, when Arr—/— was
simulated, the model could exhibit the partial recovery
to ~50% baseline seen in the data. If, on the other
hand, we assumed that in WT rods, each of the 10-20
total inactivation steps (phosphorylation, R* transi-
tions, and Arr included) ratcheted down R* activity by
an equal amount, the simulated Arr—/— responses
would recover nearly to baseline, in contrast to the
data.

Under these constraints, we verified that a Rieke/
Baylor-like multistep model can reproduce the ob-
served properties of empirical SPRs, including the four
variability measures, the transduction gain experiments
of Rieke and Baylor (1998a), and the transgenic and
KO data examined here (unpublished data). Despite
this success, the model is not grounded in well-estab-
lished biochemistry; there is no experimental evidence
for a long sequence of postphosphorylation molecular
transitions of rhodopsin. In contrast, the sequential
phosphorylation model has substantial experimental
(and now, theoretical) support.

Sequential phosphorylation model. The sequential phos-
phorylation model is consistent with a broad array of



electrophysiological and biochemical data (compare
Figs. 3 and 4), and reproduces all the empirical results
examined, including the nucleotide-manipulation ex-
periment of Rieke and Baylor (1998a) that led them to
reject such a scheme. There is thus no compelling need
to invoke a long series of non-phosphorylation depen-
dent state changes of R* in order to account for SPR re-
producibility.

Concluding Remarks

One of the most difficult and enduring problems in
the history of research on photoreceptor physiology
has been to understand the single-photon response,
and in particular its relatively high degree of repro-
ducibility (Pugh, 1999; Pugh and Lamb, 2000) despite
the high variability inherent in all molecular reac-
tions. Such reproducibility in the single-photon re-
gime imposes strong constraints on any model of pho-
totransduction.

We introduce a stochastic biochemical model, the
sequential phosphorylation scheme, that is able to
account for all aspects of observed SPR behavior ex-
amined here (Fig. 4), including four quantitative
measures of reproducibility, and the transduction
gain manipulations of Rieke and Baylor (1998a).
The latter results and associated analyses call into
question Rieke and Baylor’s rejection of phosphory-
lation and arrestin-binding as the dominant mecha-
nisms of R* inactivation, and suggest the testable bio-
chemical hypothesis that one or more of the early re-
actions between R* and G-protein has a significant
reverse component.

The paper also utilizes the analysis and simulation of
knockout and transgenic experiments as an invaluable
tool for testing and rejecting candidate models. The se-
quential phosphorylation model was able to reproduce
salient response features from rods either with vari-
ous R* inactivation mechanisms genetically disabled
(RK—/—, CSM, Arr—/—), or with the mechanism of
feedback synthesis of cGMP disrupted (GCAPs—/—).
The simulations of the knockout and transgenic data il-
lustrate vividly how some models may be able to re-
produce the empirical levels of SPR reproducibility
(CV,..), but may fail completely to reproduce funda-
mental qualitative features of a suite of extant (or simu-
lated) knockout data, and can thus be rejected (e.g.,
see Fig. 7).

The sequential phosphorylation model has the virtue
that it achieves all this while being based on a broad
range of biochemical evidence. We believe that the
model provides a solid foundation for further develop-
ment and testing of models. It is clear that the pho-
totransduction cascade is complicated enough so that
stochastic modeling techniques of the sort used in this

paper will play a central role in the evaluation of future
hypotheses and data.

APPENDIX A: LIMITATIONS OF THE
ANALYSIS OF DIM-FLASH VARIANCE VS
DIM-FLASH SQUARED MEAN

Whitlock and Lamb (1999) have pointed out that, al-
though a stereotyped elementary response will neces-
sarily lead to a close match between the variance and
squared mean responses, a close match between these
does not necessarily imply a high degree of SPR repro-
ducibility. This is because, for dim flashes, the variance
is dominated by Poisson noise stemming from the
quantal nature of light.

This idea can be stated in a quantitative manner as
follows. The variance of the dim-flash response is re-
lated to the mean of the dim-flash response, the vari-
ance of the single-photon response, the mean of the
single-photon response, and the mean number of pho-
toisomerizations (), by

2 9
Odim _ 1 1+GSPR

2 T 2|
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Note that the rlght side of the equation represents the
scaling between Hm and Gdlm , and the term added to
1 in parentheses (GSPR/HSPR) is the square of the coef-
ficient of variation of the single-photon response (i.e.,
CVZSPR( t) ). Now with this equation in mind, the obser—
vation that the variance of the dim-flash response is ap-
proximately proportional to the square of the mean re-
sponse over time means only the following: over the
time course of the dim-flash response, the square of the
coefficient of variation of the single photon response
plus 1 does not vary much over time. It does not neces-
sarily imply that the CVpg(?) is small in magnitude.

Baylor et al. (1979), Schnapf (1983), and Rieke and
Baylor (1998a) assumed that the proportionality be-
tween Gilm and udm implied that the SPR had a ste-
reotyplc waveform, corresponding to an assumption
that GSPR = 0 in the equation above (and, hence
Cc SPR( t) will equal zero).

Whitlock and Lamb’s (1999) insight may also be re-
cast in terms of our equation: although the CViPR( 1)
must be substantially <1 to give the observed propor-
tionality, the CVgpr(?) could still be significant and
hence be associated with visibly non-stereotypic SPR
waveforms (as their data analysis showed).

Our analysis extends the theoretical understanding
of the problem by showing that, in principle, the
CVipr(t) could be of any magnitude as long as it was not
time- Varymg, and the proportionality between Cliim
and udlm would still hold.

In practice, data in the literature show that CVpp(?) is
time varying, but is small until late in the response
(Field and Rieke, 2002; also, see Figs. 3 E and 4 E).

(A1)
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Ficure 8. Consequences of single-
step R* inactivation. R* activity was sim-
ulated as an all-or-none pulse of activity
until inactivation. Inactivation occurred
by arrestin binding immediately upon
the phosphorylation, so that inactiva-
tion was effectively a single-step process.
In all other respects, the model and
analyses (including the addition of sim-
ulated noise) were the same as for the
2 sequential phosphorylation model. De-
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spite being able to reproduce a reason-
able mean SPR (solid blue curve in A;
compare with Fig. 3 A), this model fails
it to capture the critical features of the
empirical data shown in Fig. 3. As ex-
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and an inordinately high SPR variance
(E). Because there is an unavoidable
tradeoff between amplitude and dura-
tion variability that depends on the
relative kinetics of the “front-end”
and “back-end” phototransduction reac-
tions, we cannot know in advance how
much of the variability of R* lifetime
will manifest in the SPR amplitudes.

GCAPs-/- 1
RK-/-
CSM

When the response amplitudes are ana-
lyzed as they were for the Whitlock and
Lamb (1999) data and for the sequen-

tial phosphorylation model, the amplitude histogram shows clear multimodality, with a calculated SPR CV,,,,, of 0.24. The amplitudes of re-
sponses identified statistically as SPRs are shown as a red overlay in B. Calculation of CV,,, for SPRs identified from this amplitude histo-
gram yields a relatively high value (0.77; red overlay, D), but substantially lower than the theoretically expected value of ~1. However, as
described in APPENDIX B, the relatively low CV,,,,, and CV,,, are a consequence of the method of amplitude measurement and of classifica-
tion of responses whenever the underlying response distributions are highly non-Gaussian. This is demonstrated in B and D where the re-
sponse amplitudes and areas based on perfect identification of SPRs are shown by solid blue curves. The CV,,,, from this distribution is
substantially larger (0.48), and the CV,,,,is now nearly one (0.97), as expected based on theory. Because the model inactivates immediately
upon Arr-binding, the simulated Arr—/— response (F) is the same as the RK—/— (blue) and CSM (green), contrary to what is seen in the

empirical Arr—/— data (Xu et al., 1997).

Thus, the ensemble variance and ensemble squared
mean tend to be closely matched, at least up to the
peak of the squared ensemble mean response
(Schnapf, 1983; Schneeweis and Schnapf, 1995; Xu et
al., 1997; Rieke and Baylor, 1998b; Whitlock and Lamb,
1999; Mendez et al., 2000).

APPENDIX B: CONSEQUENCES OF
SINGLE-STEP R* INACTIVATION

For more than two decades it has been understood
that, without other mechanisms to regularize re-
sponses, the observed variability/reproducibility of
SPRs was inconsistent with single-step inactivation of a
single R* molecule (Baylor et al., 1979) given the sto-
chastic nature of biochemical reactions. It is useful to
show the consequences of single-step R* inactivation
within the context of a detailed stochastic phototrans-

441 HAMER ET AL.

duction model. Some of these consequences can be
predicted a priori, but others cannot.

Fig. 8 shows the behavior of a stochastic model in
which R* was forced to inactivate in a single step. This
was achieved by setting k4(1) to infinity, so that after
the first phosphorylation, Arr-capping was automatic
and instantaneous. The result was that R* had fixed ac-
tivity with approximately exponentially® distributed life-
times. In all other respects the model was identical to

°As noted by Felber et al. (1996), the distribution of R* lifetimes will
not be exactly exponential when the inactivation reaction is competi-
tive with other species. In this case, RK and G-protein compete, with
the G-bound states of R* representing timeouts from the inactivation
reaction. In practice, for the parameters we used, the distribution of
R* lifetimes was indistinguishable from exponential. However, in or-
der to acknowledge the theoretical influence of the competitive na-
ture of the reaction with R*, we will refer to the distributions as ap-
proximately exponential, and to the theoretical CVs as ~1.



our implementation of the sequential phosphorylation
model, including the simulation of recording and pho-
toreceptor noise.

As expected, the responses exhibit a high degree of
variability that is evident by inspection of the waveforms
in panel A. The responses contain many long-duration
responses never seen in normal rods. The variability of
response waveform manifests as a severe mismatch be-
tween the Gﬁim and the H?nm (Fig. 8 C), and an inordi-
nately high SPR variance (Fig. 8 E).

We know that the R* lifetimes associated with these re-
sponses must have an approximately exponential distri-
bution, with a CV of ~1. In this case, where R* activity is
an all-ornone pulse, we have shown that R* lifetime is
proportional to the number of PDE*s activated, and
hence to SPR area as well (ApPENDIX C). Consequently,
the variability of the distribution of R* lifetimes must be
reflected fully in the analogous distribution of SPR areas.
We can thus predict in advance that, in the absence of
noise, the CV of SPR area will be ~~1. This is confirmed by
simulations without added noise, and where the SPRs
were identified perfectly based on a priori knowledge
from the model. The model generates an approximately
exponential distribution of R* lifetimes with CV = 1,
which leads to the expected approximately exponential
distribution of SPR area with CV of ~1 (not depicted).

However, when recording and photoreceptor noise
and failures are simulated, and the data are analyzed as
was done for the Whitlock and Lamb (1999) data, the
resulting distribution of SPR areas is not exponential,
and CV,,, is less than one (0.77; red overlay, Fig. 8 D).
This result is not due to the added noise affecting the
intrinsic variability of the SPRs. Rather, it is due to the
empirical method of classification of responses (see
MATERIALS AND METHODS) when we treat the model re-
sponses as real data in which one does not know in ad-
vance which responses are SPRs, MPRs, or failures. It
turns out that this method leads to a biased classifica-
tion of responses when one or more of the true under-
lying distributions of response amplitude categories is
markedly asymmetric. The effect of this bias may be
seen by comparing the amplitude histograms for the
two cases, one in which the empirical classification
method was used (red overlay in panel B), and one in
which responses were classified perfectly (solid blue
curve in B). The empirical classification identified SPRs
incorrectly, so that the histogram of SPR amplitudes ap-
peared Gaussian-like, with a low CV of 0.24. The CV of
response areas calculated from this group of SPRs was
also biased low (0.77; compare blue curve with red his-
togram in panel D). The group of actual SPR ampli-
tudes (blue curve in B) is highly asymmetric and non-
Gaussian, and when CV,,,, is calculated from these re-
sponses, it is close to the expected value of ~1 (0.97;
blue curve, panel D). The rounded onset of the area

histogram is a result of the addition of noise to the
model; without noise, the histogram is approximately
exponential (not depicted).

We checked to see how much this factor might have
biased the calculation of CV,,,, for the responses from
the sequential phosphorylation model. In this case, the
underlying distribution of response amplitudes was rel-
atively symmetrical. Hence, the derived CV,,,, and CV,,,,
did not change very much when perfect response iden-
tification was used instead of our empirical classifica-
tion method (the CV,,, increased modestly from 0.38
to 0.42). To the extent that the sequential phosphoryla-
tion model is a good representation of the underlying
biology, this result reassures us that the empirical
method did not significantly bias the estimate of CV,,,
from the Whitlock and Lamb data (Fig. 3 D).

From our understanding of the role of phosphoryla-
tion and Arr-binding in R* inactivation, we can predict
the results of simulating the three genetic experiments
(CSM, RK—/—, Arr—/—). In particular, since the single
shutoff step is achieved by a single phosphorylation/Arr-
binding event, we expect the simulated Arr—/— re-
sponses to parallel the simulated RK—/— and CSM re-
sponses. This, again, is confirmed by our modeling. Fig.
8 F shows that the simulated Arr—/— responses (red)
peak at about twice the WT amplitude, and do not ex-
hibit the partial recovery seen in the data (Fig. 3 H). In
addition, although the simulated RK—/— and CSM re-
sponses are similar to the behavior seen in the data, a
model in which R* terminates in a single step would
not be able to reproduce any of the intermediate cases
examined in the Mendez et al. (2000) experiments
(where only one or two or three phosphorylation sites
had been transgenically disabled).

Other behaviors cannot be predicted in advance.
For example, due to the tradeoff that we now know
exists between amplitude and duration variability, we
cannot know a priori how the variability in R* life-
time will parse out between these two domains: we
can only make a clear prediction about the variability
of SPR area in the absence of noise, since this mea-
sure is not dependent on the relative “front-end”
and “back-end” inactivation kinetics. In addition, the
quantitative details of how response variability would
manifest over time in the ensemble and SPR vari-
ances was not known in advance.

APPENDIX C: DERIVATION OF COEFFI-
CIENT OF VARIATION OF THE NUMBER
OF PDE* PRODUCED BY A SINGLE PHOTO -
ISOMERIZATION (EQ. 18)

We assume that activated transducin molecules activate
PDE* subunits with one-to-one stoichiometry, and de-
fine N as the random number of transducin or PDE ac-
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tivations per SPR, i.e., the integrated R* activity. We
also assume that the active lifetimes of G-PDE* com-
plexes are exponentially distributed with a mean of
Tppe- The area of a PDE* response (Appy) is determined
by summing the N random PDE* lifetimes elicited by
the R*. For a given value of N, the expected value and
variance of Ap; are given by

E[Appg| N1 = Ntppg (C1)
VIAppe| N1 = NT;ZDDE- (C2)

When variability in Nis taken into account, the overall
expected value and variance of Appy are

E[Appp] = ZE[APDEV]P(N: 1) = TpppgL[N]. (C3)

i=0

VIAppel = E[ADe] — (E[Appe])°
(C4)

ViAppe] = SLE Appp| NI+ VIApps| NIIP(N = i) = (T ELND)?

i=0

VIAppg]l = Til)E(V[N] + E[N]).

Combining Eqgs. C3 and C4, the CV of Appy; can be de-
rived

CV[Appgl = (C5)

ViAppel

VIN] + E[N] T
= = JCVy + Uy,
(ElApe])® N (EIN])? A

where CVy and py are the coefficient of variation and
mean of N, respectively.
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