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Objective: To compare the performance of clinical factors, FS-T2WI, DWI, T1WI+C
based radiomics and a combined clinic-radiomics model in predicting the type of serous
ovarian carcinomas (SOCs).

Methods: In this retrospective analysis, 138 SOC patients were confirmed by histology.
Significant clinical factors (P < 0.05, and with the area under the curve (AUC) > 0.7) was
retained to establish a clinical model. The radiomics model included FS-T2WI, DWI, and
T1WI+C, and also, a multisequence model was established. A total of 1,316 radiomics
features of each sequence were extracted; the univariate and multivariate logistic
regressions, cross-validations were performed to reduce valueless features and then
radiomics signatures were developed. Nomogram models using clinical factors, combined
with radiomics features, were developed in the training cohort. The predictive performance
was validated by receiver operating characteristic curve (ROC) analysis and decision curve
analysis (DCA). A stratified analysis was conducted to compare the differences between the
combined radiomics model and the clinical model in identifying low- and high-grade SOC.

Results: The AUC of the clinical model and multisequence radiomics model in the training
and validation cohorts was 0.90 and 0.89, 0.91 and 0.86, respectively. By incorporating
clinical factors and multi-radiomics signature, the AUC of the radiomic-clinical nomogram
in the training and validation cohorts was 0.98 and 0.95. The model comparison results
show that the AUC of the combined model is higher than that of the uncombined models
(P= 0.05, 0.002).

Conclusion: The nomogrammodels of clinical factors combined with MRI multisequence
radiomics signatures can help identifying low- and high-grade SOCs and a provide a more
comprehensive, effective method to evaluate preoperative risk stratification for SOCs.
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INTRODUCTION

Ovarian cancer (OC) is the deadliest type of gynecological
malignancy worldwide (1), and SOC is the most common
histological type, accounting for approximately 70% of cases
(2). High-grade serous ovarian carcinomas (HGSOCs) are the
largest category of OC, comprising 90% of the total, and have
high recurrence and mortality rates (3, 4). In contrast, LGSOCs
are much less common, accounting for less than 10% of the
remaining cancers and have a strong association with borderline
tumors (2). Some previous studies have shown that apparent
diffusion coefficient (ADC) histogram parameters based on
whole solid tumor volume could be helpful for differentiating
between HGSOC and LGSOC (2), single or multisequence MRI-
based texture features of the whole tumor also might assist in
characterizing the differences between borderline tumors and
LGSOCs (5), and based on whole solid-tumor histogram
analysis, could effectively differentiate benign OCs from
malignant OCs (6). HGSOCs and LGSOCs are two separate
tumors with distinct genetic risk factors, epidemiological
differences, biological behaviors, different spreading patterns,
response to chemotherapy, and prognosis (3, 7). Moreover,
accurate preoperative diagnosis of subtypes will be helpful for
achieving a more effective subtype specific treatment. However,
no combination of radiomics and clinical models has been used
to distinguish HGSOCs from LGSOCs. Based on the current
study progress and the necessity of solving clinical problems, the
purpose of the present study was to compare the performance of
clinical factors, fat-suppressed T2-wighted imaging (FS-T2WI),
diffusion-weighted imaging (DWI), contrast-enhanced FS T1WI
(T1WI+C) radiomics, and a combined multiple features model
in predicting the subtype of SOCs.
MATERIALS AND METHODS

Patients
The present retrospective study was approved by the institutional
review board and the need for an informed patient consent was
waived. Between December 2014 and August 2019, a total of 226
patients diagnosed clinically with OCs were identified. In order
to eliminate the effects of the MRI parameters and OC subtype
on the results, the investigators only included patients with LG-
and HGSOCs scanned on the same MRI platform with a unified
imaging protocol (n=185). Then, investigators excluded the
following patients: (1) MRI contraindications or MRI quality
that cannot meet the diagnostic requirements, (2) patients
treated with neoadjuvant chemotherapy, and (3) a tumor with
few solid components. Finally, 138 patients with ovarian cancers
(104 HGSOCs and 34 LGSOCs) confirmed by surgery and
histology were included. The mean age was 54.83 ± 11.04
years. The tumors were staged according to the 2014
International Federation of Gynecology and Obstetrics (FIGO)
staging system. The process of patient selection is illustrated in
Figure S1.
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MRI Protocol
MRI examination was performed using a unit system (GE Signa
HDXT 3.0T MRI scanner, GE Healthcare, USA) equipped with
an 8-channel phased-array abdominal coil. Excluding
contraindications, all patients received an intramuscular
injection of 15 mg hyoscine butylbromide at 30 minutes before
the MRI scan to prevent gastrointestinal motility. The bladder
was kept approximately half-filled, in order to improve lesion
visibility without changing the anatomy. Patients were placed in
the supine position and were breathing freely during
the acquisition.

The routine pelvic MRI protocol consisted of the following
sequences: axial T1-weighted imaging (T1WI), axial/sagittal T2-
weighted imaging (T2WI), axial FS T2WI, DWI (b value = 0,
1,000 s/mm2), and multiple phases of contrast-enhanced
(LAVA-FLEX) MRI. When scanning the axial images, the
transverse plane was perpendicular to the long axis of the
uterine body and for the sagittal images, the longitudinal plane
was parallel to the main body of the uterus. T1WI+C sequence
was acquired at the arterial, venous, and delayed phases of
contrast medium enhancement in axial planes, which were
acquired at 25, 60, and 120 s after the intravenous injection of
0.1 mmol/kg gadodiamide (Omniscan, GE Healthcare) using an
Ulrich power injector. The scanning sequences and parameters
are shown in Table S1.

MRI Images Analysis
Two radiologists with more than 10 years of experience in
gynecological imaging analyzed the images without knowing
the pathological results of these patients and reached a
consensus (Figure 1). Using the GE ADW 4.6 post-processing
workstation, the DWI images of the tumor layer with b = 1000 s/
mm2 were analyzed and the ADC values were calculated. The
measurement was repeated three times and the average value was
obtained. When sketching for the region of interest (ROI), the
T2WI and T1WI+C images were referenced to determine the
tumor boundary and the mucus, necrosis, cystic change, and
bleeding areas were avoided.

MRI Image Segmentation and Radiomics
Feature Extraction
Manual segmentation was performed based on FS-T2WI, DWI,
and T1WI+C sequences by using the ITK-SNAP software
(version 3.8.0, www.itksnap.org). The region of interest (ROI)
of each ovarian tumor was manually contoured along the
boundary of the tumor and the VOI was constructed by ROI
interpolation for each slice. The interobserver reproducibility
was initially analyzed using 30 randomly chosen images for the
VOI by the 2 radiologists mentioned above. Intraclass correlation
coefficients (ICCs) were used to evaluate the interobserver
agreement in the measurement of radiomics features
(ICC>0.75 was indicative of almost perfect agreement).

To reduce the discrepancies between imaging parameters,
several preprocessing steps of the MR images were applied before
the process of radiomics feature extraction. All images were
June 2022 | Volume 12 | Article 816982
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resampled to a voxel size of 1×1×1 mm3 using B-Spline
interpolation. Each MRI scan was normalized in order to get a
standard normal distribution of image intensities. Radiomics
features were extracted from 3 types of multisequence MR
images (FS-T2WI, DWI, and T1WI+C) for each lesion using
PyRadiomics software http://pyradiomics.readthedocs.io/en/
latest/index.html, which could automatically obtain the
histogram parameters for whole solid tumor VOI. Seven
classes of 1,316 radiomics features were extracted: shape
features (2D, 3D), first-order features, gray-level cooccurrence
matrix (GLCM) features, gray-level run length matrix (GLRLM)
features, gray-level size zone matrix (GLSZM) features,
neighborhood gray-tone difference matrix (NGTDM) features,
and gray-level dependence matrix (GLDM) features (Table S2).
The detailed description of the radiomics images preprocessing is
shown in Figure 2.

Data Preprocessing
The dataset was randomly assigned in a 7:3 ratio to either the
training cohort or validation cohort. All cases in the training
cohort were used to train the predictive model, while cases in the
validation cohorts were used to independently evaluate the
model’s performance.

Before analyses, variables with zero variance were excluded
from analyses. Then, the missing values and outlier values were
replaced by the median. Finally, the data were standardized by
the standardization.
Frontiers in Oncology | www.frontiersin.org 3
Feature Selection and Classifier Modeling
Firstly, features with ICCs >0.75 were retained. Secondly, feature
selection was performed by using univariate logistic analysis
(Correlation_xx), multivariate logistic analysis, and gradient
boosting decision tree (GBDT) with stepwise selection method.
The rad-score value was calculated by the sum of (radiomics
signature × coefficient) + intercept. Finally, logistic-based rad-
score model and nomogram was built based on the established
optimal feature subsets of the training cohort (Figure 3).

Receiver operating characteristic (ROC) curve was performed
to determine the performance of the machine learning model;
accuracy, sensitivity, specificity and area under curve (AUC) was
calculated. The differences for radiomics models were compared
using the DeLong method (Figure 4).

Statistical Analysis
A commercial software (SPSS 22.0, IBM Corporation, Armonk
NY, USA) was used for the statistical analysis. We tested whether
the numerical variables were normally distributed by using a
one-sample Kolmogorov-Smirnov test. The data that had a
normal distribution were expressed as mean ± standard
deviation (SD), while nonnormally distributed data were
expressed in median (interquartile range (IQR), 25th and 75th
percentile). Independent sample t-test was used to conform to
the normal distribution, while Mann-Whitney U-test in the
nonparametric rank sum test was used to conform to the
nonnormal distribution. The Chi-square test was used for
A B

D E F

C

FIGURE 1 | (A–C) A 56-year-old woman with LGSOC in the right ovary. (A) Axial FS-T2WI shows a mixed cystic-solid mass. (B) Axial DWI (b=1000 s/mm2) shows
high signal of the solid component, indicating limited diffusion. (C) Axial T1WI+C image shows a mild enhancement in the solid component and septation. The red
ROI was manually drawn along the margin of the whole tumor. (D–F) A 63-year-old woman with HGSOC in the right ovary. (D) Axial FS-T2WI shows a mass with
mixed signals dominated by solid components. (E) Axial DWI (b=1000 s/mm2) shows high signal of the tumor, indicating limited diffusion. (F) Axial T1WI+C image
shows a heterogeneous mild enhancement in the tumor. The red ROI was manually drawn along the margin of the whole tumor.
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unordered categorical variables. P<0.05 was considered as a
statistically significant.
RESULTS

Clinical Factors Analysis
Table 1 reports the comparisons of clinical factors between
HGSOCs and LGSOCs. The preoperative carbohydrate antigen
125 (CA125) and human epididymis protein 4 (HE4) indicators
in HGSOCs are significantly higher than that of LGSOCs
(801.900 (381.100, 2066.750) VS 161.600 (80.622, 422.550)
P<0.001, 429.550 (213.875, 922.850) VS 109.800 (70.795,
Frontiers in Oncology | www.frontiersin.org 4
185.825) P<0.001, respectively). The ADC value in HGSOCs is
0.865 (0.743, 9.955), which is significantly lower than that of
LGSOCs (0.980 (0.817, 1.110), P<0.001). No significant
difference is found between HGSOCs and LGSOCs in age,
peritoneal metastasis (PM), lymph node metastasis (LNM),
and location. Based on the variables mentioned above, a
clinical model was established, the AUC was 0.89 (95%
confidence interval [CI] 0.78–0.96).

Radiomics Models and Model
Comparisons
In total, 1,316 radiomics features were extracted from each VOI
of the three sequences. The ICC values range from 0.771 to 0.988
FIGURE 2 | The detailed description of the radiomics images preprocessing.
June 2022 | Volume 12 | Article 816982
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and show great interobserver agreement. Four, eight, and six
features were extracted from DWI, T1WI+C, and FS-T2WI
sequences, respectively (Table S3). Based on the above
features, the radiomics models of single sequence and
multisequence combinations are established, respectively. The
AUC of the combined radiomics model was 0.86 (95% CI 0.81–
0.97), ACC 0.79. The combination of signatures from the
multisequence resulted in a better predictive model than that
from a single sequence (Table 2).

Then, the Rad-score was calculated for the radiomics features
of individual sequences, then new combination model and
Nomogram were established with combining clinical factors.
The diagnostic efficacy of the combined model was higher than
that of the clinical model or radiomics model (AUC = 0.95 (95%
CI 0.90-0.98), ACC 0.87. Finally, the DeLong test results of
model comparison show that the performance of the combined
model is better than that of the uncombined models (P=
0.002, 0.05).
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

Tumor heterogeneity is one of the most important characteristics
of malignant tumors (8, 9). It refers to the changes in molecular
biology or genes of its daughter cells after multiple division and
proliferation in the growth process of the tumor, resulting in
differences in tumor growth rate, aggressive behaviors, response
to treatment, and other aspects. In general, HGSOCs generally
exhibit more aggressive behavior than LGSOCs (3). As a result,
patients with HGSOCs have a poor prognosis, with a five-year
survival rate of less than 40% (10). The optimal treatments for
patients with HGSOCs include comprehensive staging surgery,
cytoreductive surgery, and platinum-based chemotherapy (11).
Most HGSOC patients, in contrast to LGSOCs, show an initially
higher chemosensitivity (3, 12). LGSOCs typically occur in
younger women with slow-growing behaviors (3). The
treatment strategy of LGSOCs mainly rely on optimal surgical
cytoreduction for best long-term survival (2). For patients in
A B

FIGURE 3 | (A) Nomogram based on radiomics signatures and clinical factors. In the nomogram, a vertical line was made according to each parameter to
determine the corresponding value of points. The total points were the sum of the three points above. Then, a vertical line was made according to the value of the
total points to determine the probability type of SOCs. (B) Calibration curves of the nomogram model (clinical factors + multisequence radiomics signatures) in
validation cohort. The 45° dotted line represents the ideal prediction, while the blue line represents the prediction performance of the nomogram. The closer the blue
line is to the dotted line, the better the performance of the nomogram.
A B C

FIGURE 4 | Model’s performance assessment and comparison. (A) Receiver operating characteristic curve analysis in the validation cohorts. (B) Decision curve
analysis of radiomics signature, clinical model, and nomogram respectively. (C) Delong test for the given models. Model 1is based on MRI multisequence radiomics
Model 2 is based on clinical factors and Model 3 is a combination of clinical and multi-radiomics.
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advanced stage, the formulation of surgical plan is also very
important, not only to maximize the removal of tumor tissue, but
also to take into account the postoperative quality of life of
patients. Thus, accurate preoperative subtype diagnosis will
be necessary for achieving a more effective subtype-
specific treatment.

Conventional magnetic resonance imaging (cMRI) plays a
significant role in the diagnosis of pelvic diseases due to its high
soft-tissue resolution (13, 14). It can clearly reveal the lesion
characteristics (cystic, bleeding, edema, fibrosis, and so on), the
relationship between the tumor and surrounding tissues, and the
Frontiers in Oncology | www.frontiersin.org 6
status of lymph node disease (metastasis or inflammation). Some
previous studies have shown that the qualitative diagnosis of
EOCs by MRI is obviously superior to other imaging methods
(10), but HGSOC and LGSOC images have many overlapping
signs on cMRI (T1WI, T2WI, T1WI+C) sequences, and as a
result, it is difficult for experienced radiologists to make a definite
diagnosis. In addition, cMRI relies on the experience of
radiologists and to some extent lacks objectivity (3). Here,
especially the novel technique of DWI, has been widely used to
investigate the heterogeneity of tumors in many clinical studies
(1, 15–17). DWI can reflect the microbiological state of tissues
noninvasively, according to the Brownian motion of water
molecule, and indirectly reflect the biological changes in tissues
(17–19). Radiomics analysis is a postprocessing method for
extracting information by quantifying the spatial distribution
of pixels or voxels with different gray intensities and counting the
variables, that is, calculating and extracting texture features based
on the texture matrix of images (10, 20, 21). However, some
previous studies only analyzed simple parameter values, used
different ROIs, including round, single-slice, and whole solid
tumor volume, for OC analysis (3, 16, 17, 21, 22). This approach
inevitably leads to a loss of important heterogeneous
information. Considering the large size and complexity of
ovarian masses, histogram analysis based on whole solid tumor
VOI could more accurately reflect the heterogeneity of OCs by
quantifying complex parameter distributions and provide a more
accurate information for clinical practice (3, 17).

Our present study developed a series of predictive models
based on clinical factors combined with radiomics analysis based
on FS-T2WI, DWI, and T1WI+C sequences to provide a practical
clinical tool for risk stratification and individualized treatment of
SOCs. In the present study, patients with HGSOCs have higher
levels of serum CA125 (801.900 (381.100, 2066.750) VS 161.600
(80.622, 422.550), P<0.001) and HE4 (429.550 (213.875, 922.850)
VS 109.800 (70.795, 185.825), P<0.001), these results are
consistent with the findings reported in previous studies (1, 12,
23). Indicating that the faster and more aggressive the tumor, the
higher the levels of CA125 and HE4 secreted by the body. In other
studies, CA125 has been shown to contribute to the early detection
of asymptomatic OCs patients, leading to early diagnosis and
treatment and eventually improve the prognosis of patients (4, 24).
Other studies have pointed that CA125 has an advantage in
distinguishing OCs from healthy individuals, but HE4 is more
sensitive in distinguishing OCs from benign pelvic masses. And
TABLE 1 | Demographic and clinicopathologic characteristics of patients with
serous ovarian carcinomas.

Variables LGSOC (n=34) HGSOC (n=104) P value

Ages, median
(IQR)

52 (45, 62) 55 (50, 64) 0.2981

Overall FIGO stage, N (%)
IA 0 (0) 2 (1.9%)
IB 1 (2.9%) 2 (1.9%)
IC 6 (17.6%) 10 (9.6%)
IIA 1 (2.9%) 0 (0)
IIB 2 (5.9%) 5 (4.8%)
IIIA 3 (8.8%) 6 (5.8%)
IIIB 2 (5.9%) 6 (5.8%)
IIIC 9 (26.5%) 52 (50.0%)
IVA 4 (11.8%) 6 (5.8%)
IVB 6 (17.6%) 15 (14.4%)
ADC value,
median (IQR)

0.980 (0.817, 1.110) 0.865 (0.743, 9.955) <0.0011

CA125,
median (IQR)

161.600
(80.622, 422.550)

801.900
(381.100, 2066.750)

<0.0011

HE4,
median (IQR)

109.800 (70.795,
185.825)

429.550 (213.875,
922.850)

<0.0011

Location, N (%)
Bilateral 20 (58.8%) 46 (44.2%) 0.1392

Unilateral 14 (41.2%) 58 (55.8%)
LNM, N (%)
– 19 (55.9%) 39 (37.5%) 0.0592

+ 15 (44.1%) 65 (62.5%)
PM, N (%)
– 14 (41.2%) 25 (24.0%) 0.0542

+ 20 (58.8%) 79 (76.0%)
LGSOC, low-grade serous ovarian carcinoma; HGSOC, high-grade serous ovarian
carcinoma; IQR, interquartile range; FIGO, international federation of gynecology and
obstetrics; ADC, apparent diffusion coefficient; CA125, carbohydrate antigen 125; HE4,
human epididymis protein 4; LNM, lymph node metastasis; PM, peritoneal metastasis.
1Mann-Whitney U test, 2Chi-square test.
TABLE 2 | Performance evaluation of the models.

Training cohort Validation cohort

AUC ACC SEN SPE PPV NPV AUC ACC SEN SPE PPV NPV

Clinical model 0.90 (0.84, 0.95) 0.83 0.78 0.90 0.91 0.75 0.89 (0.78, 0.96) 0.85 0.91 0.77 0.84 0.87
DWI Radiomics 0.84 (0.73, 0.92) 0.78 0.71 0.85 0.83 0.75 0.83 (0.76, 0.89) 0.75 0.70 0.79 0.77 0.73
DCE Radiomics 0.89 (0.81, 0.95) 0.80 0.64 0.96 0.95 0.73 0.86 (0.80, 0.91) 0.78 0.65 0.92 0.89 0.72
FS-T2WI Radiomics 0.87 (0.81, 0.93) 0.83 0.89 0.77 0.79 0.88 0.83 (0.73, 0.92) 0.74 0.72 0.72 0.87 0.67
Multi- Radiomics 0.91 (0.83, 0.97) 0.87 0.73 0.87 0.87 0.72 0.86 (0.81, 0.97) 0.78 0.83 0.72 0.80 0.76
Nomogram 0.98 (0.93, 0.99) 0.90 0.91 0.90 0.92 0.88 0.95 (0.90, 0.98) 0.87 0.91 0.83 0.90 0.77
June
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AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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CA125 levels were strongly correlated with clinical evolution
during chemotherapy. Not all OCs express CA125 abnormally
and HE4 may be a useful addition to the test (23, 25). In addition,
the ADC values of HGSOC patients are lower than that of LGSOC
patients (0.865 (0.743, 9.955) VS 0.980 (0.817, 1.110), P<0.001,
AUC<0.7), indicating that HGSOCs have higher tumor cell
density and vigorous growth, which is also related to the high
invasiveness and high recurrence rate of HGSOCs (1, 2, 12). Too
many studies have found similar results, which is why DWI is
widely used in clinical practice. However, there was no significant
difference in age between the two groups in our study, HGSOC
patients are slightly older than LGSOC patients (55 (50, 64) VS 52
(45, 62), P=0.298), which is different from the known views (3, 17,
26). The possible reason is that the clinical onset of SOCs is
insidious, LGSOCs are less invasive, have a longer course of
disease, and the symptoms are severe when hospitalized (16). In
the future, we should focus on ‘high alert’ symptoms: pelvic or
abdominal pain, increase abdominal size or bloating and difficulty
eating/feeling full (27).

Eighty percent of SOC patients already have metastatic
disease at diagnosis, with poor prognosis despite surgery and
chemotherapy (28). In the present study, there were no
significant differences in tumor location, peritoneal, and lymph
node metastasis between the two groups. The present study
showed that HGSOC patients were more likely to be unilateral
(58/104, 55.8%), while LGSOC patients were slightly more likely
to be bilateral (20/34, 58.8%). Our findings are consistent with
previous studies that show HGSOC arises from the epithelium of
the fallopian tube, whereas LGSOC usually arises from the ovary
and is often bilateral (2, 24). Both HGSOC and LGSOC patients
are prone to peritoneal metastasis, and HGSOC is more likely to
occur (79/104, 76.0% VS 20/34, 58.8%). This may be related to
the fact that the two subtypes are often found and treated in an
advanced stage (29, 30). Lymph node metastasis was more
common in HGSOC patients (65/104, 62.5%) than in LGSOC
patients (15/34, 44.1%). The reason may be related to the late
stage of patients enrolled in the present study, the high
invasiveness of HGSOCs, and the small number of patients in
the LGSOCs group. If patients with SOCs can achieve early
detection and carry out relevant research at the early stage of the
disease, the prognosis should be better. The clinical model based
on the above clinical factors were built in the training cohorts to
predict the type of SOCs, and validated to have good accuracy,
sensitivity, and specificity in the validation cohorts.

In the other part of our study, 4 DWI features, 8 T1WI+C
features, and 6 FS-T2WI features were screened out from
radiomics analysis, after dimensionality reduction by the
univariate, and multivariate logistic regression method,
respectively. These radiomics represent the heterogeneity of
SOC tumors and reflect the size and spatial distribution of
gray level. HGSOCs are more heterogeneous than LGSOCs,
which assoc iate with vigorous mass growth, high
aggressiveness, and high recurrence. Previous studies have
found similar findings, and a convincing explanation is the
HGSOCs possess more tortuous vascular structure and
heterogeneous cellular morphology, which contribute to
Frontiers in Oncology | www.frontiersin.org 7
intratumoral parenchyma heterogeneity (1, 12, 31). Single
sequence and multiple sequences models were established by
using the selected radiomics features. After model comparison
and DeLong’s test, the results show that the multisequence
combination model has better performance, higher accuracy
and sensitivity (0.86 (0.81, 0.97), 0.78, 0.83), the model based
on T1WI+C signatures has the highest specificity (0.92), and all P
values were less than 0.05. It has been proved that features based
on image texture high-throughput extraction can more
objectively and effectively predict the diagnosis, pathological
grade, histological classification, lymph node metastasis, and
prognosis of different diseases (20, 22, 32, 33). Combined with
clinical factors and radiomics features, the nomogram was
further established. The results show that the combined model
had higher accuracy and sensitivity (0.95 (0.90, 0.98), 0.87, 0.91),
but was less specific than the T1WI+C model (0.83 VS 0.92), and
the difference was statistically significant (P = 0.002, 0.05,
DeLong’s test). The results of this study indicate that the
nomogram of multisequence features combined with clinical
factors has a high diagnostic performance in distinguishing
HGSOCs from LGSOCs. Due to the silencing of OCs growth,
the tumor was large when it was discovered, accompanied by
obvious cystic degeneration, necrosis, hemorrhage, and other
manifestations. The tumors performed with obvious
heterogeneity and it was difficult to distinguish subtypes only
by clinical factors and the differentiation of subtypes was closely
related to clinical treatment strategies. Previous studies have
mostly used conventional plain scanning of single T2WI
sequence, which may lead to the loss of some important
features. The combination of non-contrast-enhanced
sequences, T1WI+C, and DWI of functional sequences can
better delineate the entire tumor profile and perform more
detailed imaging analysis of the entire tumor, thus obtaining
higher diagnostic value.

There are several limitations in the present study. First of all,
this study is a retrospective single-center study and the results
may be influenced by sample selection. Therefore, prospective
randomized trials with a larger sample, especially external
validation, are warranted to validate the generalization
capabilities of the prediction model. Secondly, the number of
LGSOCs patients is relatively small, which is mainly related to
the lowmorbidity. Finally, manual sketching of VOI was adopted
in this study and errors were unavoidable. Further studies are
needed to expand the sample size, gradually combine with
automatic sketching technology instead of manual sketching
VOI, and improve the robustness of the study.
CONCLUSION

In summary, we developed and validated a nomogram model
combined with MRI-based multisequence radiomics signatures
and clinical factors for the individualized prediction of type in
SOCs and showed a favorable prediction performance. The
nomogram models provided us a more comprehensive,
effective method to evaluate risk stratification for SOCs, and
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could further help clinicians to specify personalized treatment
strategies to improve patients’ prognosis.
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