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ABSTRACT

Epistasis plays an essential role in the development
of complex diseases. Interaction methods face com-
mon challenge of seeking a balance between per-
sistent power, model complexity, computation effi-
ciency, and validity of identified bio-markers. We in-
troduce a novel W-test to identify pairwise epistasis
effect, which measures the distributional difference
between cases and controls through a combined log
odds ratio. The test is model-free, fast, and inherits a
Chi-squared distribution with data adaptive degrees
of freedom. No permutation is needed to obtain the
P-values. Simulation studies demonstrated that the
W-test is more powerful in low frequency variants
environment than alternative methods, which are the
Chi-squared test, logistic regression and multifactor-
dimensionality reduction (MDR). In two indepen-
dent real bipolar disorder genome-wide associations
(GWAS) datasets, the W-test identified significant
interactions pairs that can be replicated, including
SLIT3-CENPN, SLIT3-TMEM132D, CNTNAP2-NDST4
and CNTCAP2-RTN4R. The genes in the pairs play
central roles in neurotransmission and synapse for-
mation. A majority of the identified loci are undiscov-
erable by main effect and are low frequency variants.
The proposed method offers a powerful alternative
tool for mapping the genetic puzzle underlying com-
plex disorders.

INTRODUCTION

Genetic association studies have identified a repertoire of
susceptible loci that are associated with common diseases.

However, they have collectively explained only a small frac-
tion of disease heritability (1–3). It was widely accepted that
epistasis, or gene-gene interactions, plays an essential role
in the development of complex disorders (4,5). Past epista-
sis studies mainly focused on the genomic region in which
the minor allele frequency (MAF) is >5%, while rare vari-
ant analysis focused on main effect in the exome region
where MAF is <1%. The low frequency variants, in which
MAF is between 1% and 5%, remain largely understud-
ied. Available tools to calculate genome-wide epistasis can
be broadly grouped into three categories: the parametric
methods represented by logistic regression, non-parametric
methods represented by the classic Pearson’s Chi-squared
test and the machine learning method by the multifactor di-
mensionality reduction (MDR) (6). Logistic regression as-
sumes a linear relationship between phenotype and geno-
typic combinations. It has the unique property of providing
an odds ratio interpretation, which allows it to give prospec-
tive inferences from retrospective case–control datasets (7).
The Pearson’s Chi-squared test is fast and non-parametric.
However, it requires some minimum cell counts for the test
statistic to follow a Chi-squared distribution. The MDR is
a very powerful machine learning approach that first pools
the genotype combinations into a low risk and a high risk
group to achieve dimensionality reduction, evaluates the
multi-locus model through cross-validations, and then es-
timates the model P-values through permutations. Despite
the specialties of various methods, the detection of interac-
tion effects faces the common challenges of bringing persis-
tent power in intricate genetic architectures, varying sample
sizes, computing efficiency, and reproducibility of results to-
ward mapping clinically relevant biomarkers.

Bipolar disorder (BD) is a serious mental disorder that
is characterized by episodes of mania and deep depression.
Family studies suggest that the heritability of BD is 80–85%
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(8–10). Overwhelming evidence shows that genetics play a
fundamental role in the onset of BD besides the influence of
environmental factors. However, in past decades, genetic as-
sociation studies had difficulty in identifying suspect genes
relating to BD with large effect sizes, and the explained her-
itability is <5% (11,12). Interplay of multiple genetic mark-
ers is crucial for the etiology of bipolar disorder; therefore,
we hypothesized that we would have interesting findings
when epistasis effects were considered in BD datasets.

In this paper, we introduce a W-test for pairwise epistasis
testing that has robust power covering the genome where
MAF > 1%. The W-statistic tests the null hypothesis that
the joint distribution of a set of single nucleotide polymor-
phisms (SNPs) is different in the cases from that in the con-
trol group. The distributional differences are measured by
a combined log odds ratio from the contingency table, with
two scalars estimated from the null hypothesis. The method
is advantageous in several respects. First, it is model-free,
such that it makes no assumption about genotypic effect
model. Second, it is very fast; it only uses a subset of boot-
strap samples to estimate two distribution parameters and
calculate P-values, and genome-wide screening can be per-
formed efficiently. Third, the W-test incorporates a statis-
tical distribution that is data-adaptive, such that the asso-
ciation measurement is robust for various genetic scenar-
ios. In principle, the W-test takes the form of Chi-squared
distribution, and its degrees of freedom are estimated from
the covariance structure of a contingency table formed by
the interaction set. The data-dependent degrees of freedom
allow the method to cope with low frequency genotypes,
which, for classic tests, will result in low power from im-
perfect statistical distributions. The W-test showed robust
power and reasonable type I error in various genetic en-
vironments; when the variants frequency is low, it outper-
forms all alternative methods.

The remainder of the article is organized as follows. In
the next section, we describe the proposed method, includ-
ing its formulation and distribution. We then will test the
power and type I error of the proposed methods and alter-
native methods under different genetic models and genetic
architectures, using simulated phenotype generated from
real data. The method will then be applied to an American
Caucasian’s bipolar GWAS data and an independent Eu-
ropean Caucasian’s data. We identified a number of genes
that are highly relevant to neuronal function and depres-
sive disorders, which can be replicated by the two datasets.
To our knowledge, this is also the first report of success-
ful replication of the genes with significant epistasis effect
in GWAS. The method proposed also has general applica-
tion values for identifying disease-susceptible interactions
in other types of data.

MATERIALS AND METHODS

The W-test formulation

The basic hypothesis of the W-test is that the statistical dis-
tributions of a set of disease-associated markers are differ-
ent in the case group from that in the control group. Under
a co-dominant model, the genotype data X can be coded by
minor allele count to take values (0, 1, 2). The phenotype

Diagram 1. Decomposition of the W-test. The W-test measures the distri-
butional differences between cases and controls using a combined log odds
ratio. The dependency among the cells is handled by the data-dependent
scalars h and f, estimated from the null hypothesis. The overall test statistic
follows a Chi-squared distribution with f degrees of freedom.

Y is binary for the case and control dataset. To test the as-
sociation of a pair of SNPs (X1, X2), a 2 × 9 contingency
table can be formed. Let k denote the number of columns
of the table. The cell distribution of (X1, X2) in the case and
control group can be written as:

p̂1i = Pr(X|Y = 1) = n1i
N1

,

p̂0i = Pr(X|Y = 0) = n0i
N0

, i = 1, ..., k

where n1i is the number of case subjects in the ith cell, N1 is
the total number of cases, n0i is the number of control sub-
jects in the ith cell, and N0 is the total number of controls.
For pair-wise interactions, k = 9. The method can also ac-
commodate main effect testing. When a single SNP is con-
sidered, k = 3. For both case and control samples, we have:

k∑
i=1

p̂1i = 1, and
k∑

i=1

p̂0i = 1,

To measure the discordance between the two distribu-
tions, we first use the following measure to combine the nor-
malized log odds ratios of the cell probability distributions:

X2 =
k∑

i=1

[
log

p̂1i/(1 − p̂1i )
p̂0i/(1 − p̂0i )

/
SEi

]2

(1)

where

SEi =
√

1
n0i

+ 1
n1i

+ 1
N0 − n0i

+ 1
N1 − n1i

.

Diagram 1 shows the decomposition of X2. Since the con-
tingency table’s margins are fixed, the cell probabilities are
not entirely independent. If they are independent, the X2

would follow a k degrees of freedom Chi-squared distribu-
tion. The mutual dependency among the cells decreases as k
becomes large. The distribution of the X2 can be estimated
by matching its first two moments to the moments of the
following variable R of a known Chi-squared distribution
with f degrees of freedom (13):

R = cχ2
f
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The first two moments of X2 are:

E(X2) = k

σ 2(X2) = ∑
i

∑
j

cov(x2
i , x2

j ) =
k∑

i=1
Var (x2

i ) + 2
∑
i< j

∑
cov(x2

i , x2
j )

= 2k + 2
∑
i< j

∑
cov(x2

i , x2
j ).

xi and xj are the components in the summation sign in
Equation (1), which are the single cell’s normalized log of
odds ratio. And the first two moments of R are:{

E(X2) = c f
σ 2(X2) = 2c2 f

The c and f can be obtained accordingly:

c = σ 2(X2)
2E(X2)

=
2k + 2

∑
i< j

∑
cov(x2

i , x2
j )

2k

f = 2[E(X2)]
2

σ 2(X2)
= 2k2

2k + 2
∑
i< j

∑
cov(x2

i , x2
j )

Let h = 1/c, we define the W-test, with a scalar h before the
X2, as:

W = h
k∑

i=1

[
log

p̂1i/(1 − p̂1i )
p̂0i/(1 − p̂0i )

/
SEi

]2

∼ χ2
f (2)

Thus the W-test follows a Chi-squared distribution with
f degrees of freedom. The approximation is shown to give
accurate probability by numerical studies (14). Theoretical
justification for the validity of the approximation is given
by Chuang and Shih (15). In real data analysis, it might
be difficult to obtain the covariance matrix for X2. Large
sample theory can be used to estimate the covariance from
smaller bootstrap samples under the null hypothesis. Each
bootstrap sample consists of the real genotype data and per-
mutated Y. Suppose total number of subjects is N, and to-
tal number of pairs is P. Converging estimates for h and f
can be achieved by setting bootstrap times B > 200, sub-
jects number NB = min (1000, N), and number of pairs PB=
min (1000, P) (Supplementary Information S1). Empirical
studies give h ≈ (k − 1)/k and f ≈ k − 1. A table of esti-
mated h and f in real data is provided in the Supplemen-
tary Information S2. Frequently, the degrees of freedom
f are non-integer. Then the Chi-squared distribution is in
fact a Gamma (f /2, 2) distribution. The covariance of X2

is dataset dependent, so for every set of new genotypes, h
and f need to be estimated. When there is an empty cell, a
continuity correction is applied by adding 0.5 to all cells.

The W-test is a combined log of odds ratio test based on
maximum likelihood probabilities conditioned on disease
status. It is equivalent to testing the following null hypoth-
esis:

H0 : P(X1, X2|Y = 1) = P(X1, X2|Y = 0),
such that ORi = 1, for i = 1, . . . , k

The test is model-free, and does not assume the form of
interactions. Because of its odds ratio form, it is suitable to
be applied to retrospective case-control datasets, which is

how data are collected in most of the genome studies. If a W-
value is large and the null hypothesis is rejected, we would
conclude that the joint probability distribution has a signif-
icant difference between cases and controls, which indicates
the interactive set (X1, X2) has association effect. The classic
odds ratio test is a special case of W-test for a single marker
with two levels. The W-test can be extended to higher or-
der interactions mapping. In this paper, we mainly focus on
pair-wise interactions tests in simulation studies. Simulation
study of main effect is provided in Supplementary Materials
S3.

Application on simulated datasets

Simulated datasets are composed of genotypes from real
GWAS datasets and simulated phenotypes. Different ge-
netic architectures considered include minor allele fre-
quency (MAF) in the common range (MAF > 5%) and in
the low frequency range (1% < MAF < 5%); linkage dis-
equilibrium (LD) in the high range (r2 > 80%), medium
range (20% < r2 < 80%), and low range (r2 < 20%) (16,17).
In each of the six genetic architecture combinations, 50
SNPs and 1000 subjects are randomly drawn from real
GWAS datasets. The original phenotype label is removed,
and binary response variables are simulated using two types
of model, specified as follows.

Model 1. A linear regression model with interaction effect.
A linear model can be prescribed by the following logistic
regression (18):

LOG IT[P(Y = 1)] =

⎧⎪⎨
⎪⎩

β0 + β1 X1 + β2 X2 + β3 X1 X2 p = 0.3
β4 + β5 X3 + β6 X4 + β7 X3 X4 p = 0.3

β8 p = 0.4

The logit has 30% probability to be equal to the first equa-
tion, 30% probability to take the second equation, and 40%
chance of equaling β8, which is a random real number. The
coefficients are chosen such that the case and control ratio is
balanced. This model contains both the main and the inter-
action effect terms, and the coefficients of the cross-product
β3 and β7 terms are tested for interaction effects. The geno-
type takes values of 0, 1 or 2, under a co-dominant genetic
model assumption.

Model 2. A non-linear interaction model. The Y has a non-
linear association to (X1, X2) and (X3, X4) (19,20):

Y =
{ X1 + X2(mod2) p = 0.3

X3 + X4(mod2) p = 0.3
0, 1 p = 0.4

,

where the Ys are (X1 + X2) mod 2 or (X3 + X4) mod 2 with
30% probability, and are randomly assigned to be 0 or 1
with 40% probability. Only pure interaction effect is present
in this model. The null hypothesis is that none of the X pre-
dictor is associated with Y.

Power and type I error rate calculation using simulated
datasets. For power calculation, simulated dataset using
Model 1 or Model 2 for each genetic architecture block is
generated 1,000 times. Pairwise interactions are calculated
exhaustively by the W-test and alternative methods. For 50
SNPs, 1,225 pairs are evaluated. An interaction set is sig-
nificant if its P-value is smaller than 4.1 × 10−5, which is
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the Bonferroni corrected P-value at a family-wise error rate
(FWER) of 0.05. Methods that result significant P-values of
all interaction effect variables are said to have successfully
identified the causal markers. Power is the averaged true
positive proportion in 1000 simulated datasets. For type I
error estimation, Y is permutated 106 times, and type I er-
ror rate is the average false positive proportion in one mil-
lion permutated datasets.

Application to real GWAS datasets

Datasets. The W-test is then applied to two real bipo-
lar GWAS datasets. The first dataset is from the Well-
come Trust Case Control Consortium (WTCCC), com-
prising 2000 bipolar cases and 3000 controls of European
Caucasians (21). The dataset includes 500 568 SNPs geno-
typed with GeneChip 500K Mapping Array Set (Affymetrix
Chip). The second dataset is from the Genetic Associa-
tion Information Network (GAIN) project (22). The GAIN
data is composed of an American ancestry population
with a bipolar phenotype, which contains 653 cases and
1767 controls. The data includes 906 600 SNPs genotyped
with Affymetrix 6.0 platform. Quality control is performed:
SNPs with high missing rates (>5%), MAF < 1%, and
which depart from the Hardy–Weinberg equilibrium are ex-
cluded (23). After the quality control, the WTCCC dataset
includes 414 682 SNPs and the GAIN data contains 729 304
SNPs.

Pair-wise interaction search. A three-step procedure is
used to search for pair-wise interaction, described as fol-
lows.

Step 1. Main effect search The main effects are evaluated
exhaustively on the whole genome by the W-test. The SNPs
with P-value that is <0.01 are passed to the next step SNP–
SNP interaction test. The P-value < 0.01 compared to the
genome-wide significance 10−8 is trivial (24). Thus this fil-
tering can include the weak effect markers that are poten-
tially influential in an interaction setting, while downsizing
the candidate sets.

Step 2. Two-way interaction search The epistasis test is
performed on the candidate markers. A pair of SNPs will
be selected if its P-value passes the Bonferroni corrected al-
pha at FWER 5%. The P-value of the pair should be more
significant than component SNPs’ P-value.

Step 3. Map SNP-SNP to gene-gene interaction pair The
SNP-pairs are matched to corresponding genes using web-
based databases (25,26); interaction networks are created by
linking significant pairs (27,28). Steps 1–3 are performed on
the WTCCC and the GAIN data sets respectively, and inter-
actions that are replicated by the two data sets are reported.

RESULTS

Simulation study statistical power and type I error rate

Linear interaction model with main effect. The W-test is
compared to the logistic regression, Chi-squared test, and
MDR under different genetic architectures (Table 1). Un-
der the common variant (MAF > 5%) and high LD en-
vironment, the power for logistic regression is 83.3%, Chi-
squared test is 74.5%, MDR is 96.5% and W-test is 86.7%.

However, the nominal type I error of the MDR is >1; while
W-test’s nominal type I error is 5.5% (Table 1). When MAF
is low (1% <MAF< 5%), the W-test has the highest power
for all LD scenarios. Specifically, in the mid LD range, the
power of W is 79.5%, compared to the MDR’s 67.1%, Chi-
square’s 65.2% and logistic regression’s 62.5%. The nomi-
nal type I errors of the MDR and the W-test are 5.8% and
5.1%, respectively. Interestingly, the model-free W-test out-
performs the logistic regression even when the underlying
model is linear. In general, the power of all methods im-
proves when the variables are in high LD, and drop as their
mutual correlation diminish (Figure 1A). This is likely due
to the presence of main effect terms in the linear model, such
that a causal marker can pair with another one due to high
LD, which makes it easier to be identified.

Non-linear interaction model without main effect. In the
common MAF environment, though the average power
of MDR is 90.2%, higher than W-test’s average power of
84.7%, the nominal type I error of the MDR is around 1,
while for the W-test the type I error is around 5% (Table 1,
Figure 1B). In the low frequency variant environment (1%
< MAF < 5%), the average power of W-test is 87.6%, 14.4%
greater than the MDR’s. The average nominal type I error
of W-test is 5.3%, and the average type I error for the MDR
is 5.4%. Specifically, when LD is medium, the power of W
is 83.3%, compared to the MDR 70.8%, Chi-squared 43.9%
and the logistic regression 31.8%. The nominal type I errors
for the W-test and MDR are 5.1% and 5.8%, respectively.
The results show that the W-test has robust power and rea-
sonable type I errors in both the common and low frequency
variant environment and various LD scenarios. When nec-
essary, the type I error of the W-test can be refined using
permutation method for selected markers. Now we briefly
describe how LD pattern affects performance for the non-
linear two-locus model. Model 2 does not contain any main
effect terms, so a high LD environment will not form many
strong signal-noise combinations as by Model 1. When the
LD is low, the signal-signal pairs could be easier to be distin-
guished against a low noise background, thus all methods
showed higher power in this scenario.

Power and type I error as sample size changes. We reduce
the sample size from 1000 to 300 subjects, and compare
the different methods’ power and type I error performances
under the non-linear model and low frequency variants
scenario. When the sample size decreases, the W-test still
demonstrates the highest and most robust power (Figure
2, Table 2). At N = 800, the performance of W is 82.2%,
which drops 2% compared to the power at N = 1000; while
the MDR’s power goes down to 63.3%, dropped 13% com-
pared to N = 1000. The Chi-squared test and the logistic
regression’s power drop to 37.8% and 17.7%, respectively
(Table 2). A sample size ranging from 300 to 500 is common
for small scale biomedical studies. At N = 400, the W-test’s
power is 28.8%, while the alternative methods’ power falls
<7%. Furthermore, the type I errors of the W are very sta-
ble, averaging 4.6 × 10−5 with standard deviation of 4.5 ×
10−6 (Table 2), while the alternative methods display strin-
gent type I errors that could have affected their power. When
N is smaller than 700, the Chi-squared test and MDR have
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Figure 1. Power of alternative methods in low frequency variant environment. In the low frequency variant environment (1% < MAF < 5%),the W-test
outperforms alternative methods for both linear and non-linear models.

Table 1. Power and type I error rates of alternative methods on pairwise epistasis effect

MAF > 5% 1%< MAF <5%

Model Methods LD LD

Low Medium High Low Medium High

Power (linear model) Logistic 68.5% 76.9% 83.3% 47.1% 62.5% 71.1%
Chi-squared 60.0% 67.2% 74.5% 42.2% 65.2% 74.0%
MDR 88.5% 90.0% 96.5% 42.6% 67.1% 71.6%
W 71.1% 81.0% 86.7% 49.8% 79.5% 83.8%

Power (nonlinear model) Logistic 5.9% 1.7% 0.6% 61.7% 31.8% 43.7%
Chi-squared 72.6% 69.4% 62.8% 67.4% 43.9% 49.1%
MDR 95.5% 91.5% 83.5% 88.6% 70.8% 70.3%
W 88.0% 86.6% 79.4% 95.6% 83.3% 83.9%

Type I Error Ratea Logistic 3.2E−05 4.8E−05 3.2E−05 3.7E−05 4.3E−05 4.6E−05
Chi-squared 2.3E−05 1.4E−05 2.5E−05 3.0E−06 2.0E−06 2.0E−06
MDR 7.2E−04 8.6E−04 9.3E−04 3.6E−05 4.7E−05 4.9E−05
W 4.4E−05 4.9E−05 4.5E−05 3.3E−05 4.2E−05 5.5E−05

aNominal type I error rate = type I error rate × 1225 pairs.

type I errors below 3.0 × 10−5, which are conservative com-
pared to the multiple testing error rate at 4.1 × 10−5.

Computing time

On a laptop computer with 2.4 GHz CPU and 8GB mem-
ory, for the W-test, the time elapsed for computing one sim-
ulation study of 1225 SNP-pairs and 1,000 subjects is 7.4 s;
the Chi-squared took 7.7 s; the logistic regression took 45.7
s and the MDR took 77.7 s. The W-test is approximately
10 times faster than the original version of the MDR. For
real data analysis, the W-test takes 3.4 h for genome-wide
main effect evaluation, and takes about the same time for
the stage-wise interaction effects.

Real datasets applications

SNP–SNP interaction has identified a number of replicated
genes from the two independent GWAS datasets (Table 3).

The Q–Q plot of pair-wise interactions shows no inflation
of spurious association (Figure 3). Interestingly, a major-
ity of these replicated genes are marginally insignificant,
which means that they are undiscoverable through main ef-
fect screening. Furthermore, these markers show a highly
relevant biological function to autism spectrum disorder.
The replicated and significant gene-gene interactions can be
summarized in two networks (Figure 4 and Supplementary
Information S6). The first network (Figure 4A) consists of
eight genes, in which only one gene, RTN4R, has significant
main effect. It encodes a Nogo receptor that mediates ax-
onal growth inhibition and may play a role in regulating ax-
onal regeneration and plasticity in the central nervous sys-
tem. Studies reported that the deletion of the gene would
cause microstructural anomalies in brain white matters
(29); human and mouse genetic studies suggested the gene
to be a candidate marker for schizophrenia (30). The gene
SLIT3 is coupled with CENPN and TMEM132D, form-
ing two significant interaction pairs. Experiments showed
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Table 2. Power and type I error rates of alternative methods at different sample sizes

Sample size 300 400 500 600 700 800 900 1000

Power Logistic 2.5% 4.0% 8.6% 12.4% 14.0% 17.7% 21.5% 29.1%
Chi-squared 1.7% 2.2% 5.7% 18.9% 25.0% 37.8% 42.1% 44.7%
MDR 2.1% 6.3% 14.5% 36.0% 47.1% 63.3% 67.9% 71.8%
W 16.0% 28.8% 38.5% 67.8% 72.8% 82.2% 83.2% 83.8%

Type I Error Rate Logistic 4.1E−05 4.9E−05 3.9E−05 5.0E−05 4.4E−05 4.3E−05 4.6E−05 4.7E−05
Chi-squared 2.0E−06 2.0E−06 1.0E−06 0 3.0E−06 4.0E−06 0 2.0E−06
MDR 0 7.0E−06 1.4E−05 2.0E−05 2.8E−05 3.4E−05 6.5E−05 6.1E−05
W 5.5E−05 4.9E−05 4.6E−05 4.6E−05 4.1E−05 4.4E−05 4.3E−05 4.2E−05

The simulation study is performed using a non-linear genetic model, 1%< MAF < 5%, and medium LD genetic architectures. As the sample size decreases,
the W-test showed persistent better power and reasonable type I error rates.

Figure 2. Power comparison of alternative methods at different sample
sizes. As the sample size reduces, the W-test shows a robust power com-
pared to alternative methods. The power is calculated under the genetic
environment of 1% < MAF < 5% and LD 20% < r2< 80%, using a non-
linear model.

Figure 3. Q–Q Plot of W-test on real genome-wide data. The W-test is
computed on real genome-wide data with permuted phenotype for SNP–
SNP interactions. No inflation of spurious association is observed.

that the gene SLIT3 (5q35) decreases neurogenesis and may
play a role in regulating neuron-vessel interactions (31). The
gene DPP10 is marginally insignificant but is replicated by
significant interactions in both datasets. DPP10 facilitates
neuronal excitability and its aberrant distribution is associ-
ated with Alzheimer’s disease as revealed by immunohisto-
chemistry (32). Other genes in the network are also highly
related to autism and neurodegenerative disorders. For ex-
ample, NRXN3 encodes a protein that functions as a synap-
tic adhesion protein; TMEM132D is a transmembrane pro-
tein expressed in white matter in the spinal cord and op-
tic nerve (33); PTPRT is a receptor-type protein tyrosine
phosphatase for signal transduction and neurite extension,
which promotes synapse formation and is reported to be
highly expressed in the central nervous system (34). Chro-
mosome position, MAF and P-value of the replicated genes
are reported in Table 3.

In the second network (Figure 4B), the well-known
autism spectrum disorder-associated loci PARK2
(rs2849605, 6q5.2) has been identified. The pair ELMO1-
A2BP1 has significant epistasis effect (P-value = 3.9E−18),
while the component SNPs are non-significant with
P-values of 3.0 × 10−6 and 4.0 × 10−3, respectively (Sup-
plementary Information S6). Both SNPs are replicated in
the GAIN dataset through significant interactions with
RTN4R. ELMO1 encodes a protein that interacts with
DOCK180 to promote phagocytosis and cell migration.
The A2BP1, other name RBFOX1, is an RNA-binding
protein that regulates alternative splicing in neurons and
plays a key role in the development of human neurons
reported in RNA-sequencing, cytogenetic, and molecular
characterization studies (35,36). The gene CNTNPA2
has weak main effects in both datasets, yet the gene is
replicated through its significant interactions with NDST4
and RTN4R. The product of this gene functions in the
vertebrate nervous system as cell adhesion molecules and
receptor.

DISCUSSION

We propose the W-test as a general measure for epistasis
testing. It is fast, model-free, and powerful. We have demon-
strated that the W-test has robust power for linear and non-
linear genetic models over a range of genetic environments.
The method is especially advantageous for low frequency
variants and has persistent power when the sample size is
small. The advantages of the W-test are explained through
the following characteristics.
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Figure 4. Gene-gene Interaction Networks. The solid lines represent significant epistasis effect. Blue color indicates pairs found in the GAIN dataset and
red color indicates that they are identified in the WTCCC dataset. Purple circles represent genes replicated by the two independent data; all of which play
important roles in brain and neuronal function.
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Table 3. Replicated bipolar disorder susceptible genes from two datasets

SNP Gene Position MAFa P-value of paira

rs6741692 DPP10 2q14 0.303 5.8E−38
rs2407594 CSMD1 8p23 0.029 9.8E−36
rs1864952 SLIT3 5q35 0.046 1.9E−35
rs2849605 PARK2 6q5.2 0.021 3.3E−29
rs3867492 TMEM132D 12q24.33 0.030 1.0E−27
rs11222695 HNT 11q25 0.012 2.7E−25
rs1494451 CNTNAP2 7q35 0.025 1.3E−21
rs2785061 ACCN1 17q12 0.028 9.8E−19
rs17135053 A2BP1 16p13.3 0.025 3.9E−18
rs17170832 ELMO1 7p14.1 0.017 3.9E−18
rs9559408 MYO16 13q33.3 0.035 4.8E−17

aMAF and P-value are presented using the WTCCC data. Detailed pair information can be found in Supplementary Information S6.

The proposed method aims to test the distributional
differences between cases and controls, using the sum of
squared log odds ratio over the complete cell distribution
in a contingency table. The cell distribution that is formed
by a pair of markers has the overall probability to be one,
in the control group and the case group, respectively. This
constraint keeps the cell proportions to reflect distributional
differences, which are tested cell by cell using the odds ra-
tio. The W-test is different from the Chi-squared test in three
aspects: first, the W tests the case–control distributional dif-
ferences, while the Chi-squared tests the observed distribu-
tion against the joint distribution under an independence
assumption. Second, the W-test does not depend on the to-
tal sample size, but is a function of the cell proportions; the
Pearson Chi-squared test is a function of both the cell pro-
portions and total sample size, such that it can measure the
association significance but not the association magnitude
(37,38). Third, the Pearson’s Chi-squared test has a more
stringent requirement on cell sample size. It is well known
that the minimum expected cell counts should be no <5 for
good approximation to a Chi-squared distribution. For the
W-test, at extreme cell count, the distribution approxima-
tion is corrected through the implementation of h and f that
are estimated from the sample covariance.

The odds ratio has a unique property for drawing
prospective inference from a retrospective data set. The
GWAS case-and-control dataset has a retrospective nature,
so the W-test with an odds ratio interpretation is especially
advantageous. The logistic regression also has an odds ra-
tio interpretation. However, it assumes that the logit has a
linear relationship with the interaction term x1x2. Under
a co-dominant genetic model, the heterozygous Aa geno-
type may correspond to an over-expression of the pheno-
type, while the homozygous aa and AA genotype may as-
sociate with suppressed phenotypes. This non-linear rela-
tionship will be missed by logistic regression unless indica-
tor variables for genotypes are specified. On the other hand,
the W-test takes a sum of squared form, such that the geno-
typic combinations can have opposite effect directions; and
no genetic model is assumed. In the simulation studies, all
the non-parametric tests performed better than the logistic
regression when the underlying model is non-linear.

The W-test inherits a statistical distribution that is adap-
tive to the data. A direct benefit is having a built-in distri-
bution that saves the computational cost for permutations

to calculate P-values, although a small proportion of time
is needed for estimating the h and f from bootstrapped sam-
ples. The original purpose of employing the parameters is to
handle correlation among the odds ratios in W, and the im-
plementation has several bonuses. First, deviation from an
ideal distribution caused by sparse data can be corrected by
h and f. The accurately approximated distribution leads the
W-test to have persistent power at small sample size. The
second bonus is that the adjustment has the spirit and ef-
fect of performing the genomic control (39). The covariance
used to calculate the parameters is estimated from boot-
strapped subjects and permuted Y, under the hypothesis
of no disease association and sample independence, which
is similar to the genomic control procedure. Consequently,
the h and f absorb the extra variance caused by population
stratification. The effect of this correction is evident from
the Q–Q plots of W-test on the real GWAS dataset (Fig-
ure 3), which showed perfect null distributions. This prop-
erty can make the W-test robust against false positives aris-
ing from population structure, and can assist the replica-
tion of genetic markers using other independent datasets.
The W-test takes a statistical approach to test for associa-
tion, which is different from the machine learning approach
of the MDR. The MDR incorporates an internal 10- fold
cross-validation (CV) to select a model that has the best CV
accuracy and consistency; it then uses permutations to cal-
culate model significance. In low frequency variable envi-
ronment, the subjects with minor alleles may be unevenly
distributed in the CV splits, and the CV consistency may be
lower than that in the common variant environment. Since
the MDR’s P-value is calculated using the averaged cross-
validation consistency from the observed data comparing
to null hypothesis from permutations (6), lower consistency
may cause less significant P-values, which might affect its
power in the low frequency variables scenario.

Therefore, the proposed method showed better power in
the low frequency variables environment. In fact, in the two
real datasets applications, 76.4% of the identified significant
main effect SNPs have MAF <5%, which explains the large
number of SNPs passing the genome-wide significant level
compared to previous GWAS studies of Bipolar Disorder
(21–22,40). In the two significant interaction networks, 10
out of the 11 replicated genes are identified by SNPs with
MAF in the 1% to 5% range (Table 3). Another interesting
observation from the real data analysis is that we have iden-
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tified a number of genes that are highly relevant to neuron
disorder but have not been found by previous GWAS stud-
ies, even when the SNPs are common variants. The standing
example is SNP A-84299018 of gene RTN4R in the GAIN
dataset. The SNP has a large MAF 12.2%, and P-value is
5.9E−18. The RTN4R acts as a hub gene connecting to all
important genes in the GAIN dataset (Figure 4B). Further-
more, there are converging evidences of this Nogo recep-
tor gene’s association with schizophrenia through brain cell,
animal and candidate gene studies (41–43). Nevertheless, so
far we have not seen a GWAS study to report its signifi-
cant association with autism related diseases. Similar to the
RTN4R, SLIT3 (SNP A-2229791, MAF = 0.22, P-value =
3.7E−03) has been identified from copy-number variations
analysis by whole genome sequencing (44) and mRNA ex-
pression studies (31). TMEM132D (SNP A-8630842, MAF
= 0.14, P-value = 5.9E−03) is found to associate with anx-
iety co-morbidity in depression and panic disorder by brain
mRNA analysis (45); the NRXN3 (rs17108944, MAF =
0.03, P-value = 5.1E−3) has been reported to have a strong
association with schizophrenia via studies of gene expres-
sion (46), DNA-pooling (47), and candidate genes.

To conclude, we proposed the W-test as a model-free and
dataset adaptive method for detecting epistasis in genotype
dataset. It is fast, robust, and possesses statistical distribu-
tions. Real data analysis replicated important genes with
epistasis effect, which were undiscoverable through main
effect evaluations. These results showed that the W-test is
a very powerful and practical tool for detecting functional
variants thereby helping to solve the genetic puzzle under-
lying complex diseases.
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