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ABSTRACT

Antimicrobial resistance (AMR) is a threat to global
public health and the identification of genetic deter-
minants of AMR is a critical component to epidemi-
ological investigations. High-throughput sequenc-
ing (HTS) provides opportunities for investigation
of AMR across all microbial genomes in a sam-
ple (i.e. the metagenome). Previously, we presented
MEGARes, a hand-curated AMR database and an-
notation structure developed to facilitate the anal-
ysis of AMR within metagenomic samples (i.e. the
resistome). Along with MEGARes, we released Am-
rPlusPlus, a bioinformatics pipeline that interfaces
with MEGARes to identify and quantify AMR gene ac-
cessions contained within a metagenomic sequence
dataset. Here, we present MEGARes 2.0 (https://
megares.meglab.org), which incorporates previously
published resistance sequences for antimicrobial
drugs, while also expanding to include published se-
quences for metal and biocide resistance determi-
nants. In MEGARes 2.0, the nodes of the acyclic hi-
erarchical ontology include four antimicrobial com-
pound types, 57 classes, 220 mechanisms of resis-
tance, and 1,345 gene groups that classify the 7,868
accessions. In addition, we present an updated ver-
sion of AmrPlusPlus (AMR ++ version 2.0), which
improves accuracy of classifications, as well as ex-
panding scalability and usability.

INTRODUCTION

Antimicrobial resistance (AMR) is considered one of the
foremost threats to the health of humans and animals (1–4).
Accordingly, investigating the emergence and dissemination
of AMR genetic determinants has become a priority (5–
7). While antimicrobial drugs (AMDs) are the most studied
and commonly discussed antimicrobial compounds, bacte-
ria can also harbor genes for resistance to biocides that are
important as disinfectants and sanitizing agents (e.g. per-
oxide and acetate) as well as genes that encode resistance
to metals that have antimicrobial activity (e.g. copper and
zinc). Many governments, including the United States and
European Union, as well as public health organizations like
the Food and Agricultural Organization of the United Na-
tions and the World Health Organization have programs
for addressing AMR, all of which identify comprehensive
surveillance as a critical component of control efforts (5,8).
However, a unique challenge for control as well as for
investigation of AMR is that many genetic determinants
can be transferred and spread among different types of
bacteria. Understanding––and eventually predicting––the
emergence and transmission of AMR requires characteriza-
tion of resistance determinants across pathogens and non-
pathogens (9–11). This microbiome-wide characterization
is now possible through use of high-throughput genetic se-
quencing (HTS), which provides access to the genetic deter-
minants for AMR across all microbial genomes in a sample
(i.e. the metagenome). This approach has highlighted the
importance of microbial ecology in AMR emergence and
persistence, including interaction between processes such
as horizontal gene transfer and cross-selection. For exam-
ple, biocide and metal resistances are now known to play
an important role in AMR dynamics under some circum-
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stances, and can promote emergence or dissemination of
AMR genes through either co-localization on linked DNA
or co-occurrence within positively-selected bacterial taxa
(12–14). Hence, there is great potential for advancing our
understanding of AMR through studying entire ecologies
of resistance determinants (i.e. the resistome) (15–19). To
address this need, we previously presented MEGARes, a
comprehensive database of AMR genes (20), and AmrPlus-
Plus (AMR++), which interfaced with MEGARes to iden-
tify and quantify the AMR genes contained in a metage-
nomic dataset.

To-date, MEGARes 1.0 and AMR++ 1.0 have been used
and cited over 85 different times to analyze sequence data
for a variety of applications, ranging from agricultural stud-
ies (21,22), to public health studies, to ecological surveys
(23–27). Most recently, it was used by the MetaSub Con-
sortium to identify AMR genes in samples collected from
subway systems and urban sites across the world (28). Yet,
detection and characterization of genetic elements that me-
diate AMR continues to be problematic for multiple rea-
sons, many related to challenges with AMR databases, as
noted by Danko et al. (28). First, the evolutionary dynam-
ics of AMR can result in rapidly-accumulating sequence
variation, meaning that AMR databases must be contin-
ually updated to include novel variants (29–32). More-
over, the genetic mechanisms of AMR are varied, mean-
ing AMR gene identification within metagenomic datasets
must consider AMR genes on a mechanism-by-mechanism
basis. For example, databases and corresponding ontolo-
gies must differentiate between point mutations that mod-
ify antibiotic target sites (e.g. site mutations in gyrA and
rpoB genes that mediate resistance to quinolone and ri-
famycin antibiotics, respectively), versus full-length gene
sequences that confer resistance when expressed as func-
tional proteins (e.g. Qnr or Tet[M], which mediate resis-
tance to quinolones and tetracyclines, respectively). These
nuances must be accounted for within the bioinformatic
approach for identifying and counting resistance determi-
nants within metagenomic data––and this often means that
databases must be structured accordingly. In another ex-
ample of such nuance, there are genes that confer resis-
tance to multiple compounds (including biocides, metals
and antibiotic drugs), while other genes confer resistance to
only one compound. The ontology used to classify metage-
nomic sequence reads that align to resistance determinants
must accommodate these scenarios, while also supporting
efficient, accurate bioinformatic analysis and proper down-
stream statistical analyses.

Given the diversity of AMR mechanisms, AMR
databases often aggregate subsets of resistance genes based
on mechanism or class of resistance. For example, the La-
hey Clinic database (33)––which is now maintained by the
National Center for Biotechnology Information (NCBI) as
part of the Bacterial Antimicrobial Resistance Reference
Gene Database (34)––characterizes genes that confer
resistance to betalactam compounds; the Antibacterial
Biocide and Metal Resistance Genes (BacMet) database
targets genes that confer resistance to biocide and metal
compounds (35); and ResFinder focuses on acquired an-
timicrobial resistance genes (36). In some cases, databases
are accompanied by analytical tools to support use of the

database itself. For example, ResFinder includes a web-
based portal and Python script for uploading assembled
genome or contig sequences and identifying AMR genes
(36). The Comprehensive Antibiotic Resistance Database
(CARD) represents one of the most encompassing ongoing
efforts for curation of AMR genes, providing detailed
annotations through the Antibiotic Resistance Ontology
(ARO) (37); this ontology was developed to provide
rich metadata about each accession, and the structure
is correspondingly complex; however, when sketched as
a graph, there are multiple cycles and incomplete levels,
which presents challenges for short-read metagenomic
data (20). Therefore, while each of these active and widely
utilized AMR databases represent an important resource
for AMR research and surveillance, no single resource cur-
rently enables structured, comprehensive and statistically
appropriate analysis of metagenomic data for all types of
antimicrobial compounds, including biocides and metals
(19,38).

To fill this resource gap, we update our previous effort
and present MEGARes 2.0, a database that incorporates
standardized accessions for a comprehensive set of previ-
ously published resistance determinants for antimicrobial
drugs, biocides and metals. By utilizing the same acyclical,
hierarchical ontology as presented in MEGARes 1.0 (20),
we are able to accommodate the unique characteristics of
short-read metagenomic data and comprehensive resistome
analysis, while reflecting the complex and sometimes inter-
connected genetic relationships between resistance mecha-
nisms for antibiotic drug, metal and biocide compounds.
As with MEGARes 1.0, this structure allows for binning of
alignment counts into mutually-exclusive categories, which
can then be aggregated to each of the complete levels of
the hierarchical ontology. As described in the original pub-
lication for MEGARes 1.0, this type of structure prevents
multiple counting of alignments and thus accommodates
downstream statistical analyses. New to MEGARes 2.0, we
also enable secondary bioinformatic analyses for groups of
AMR genes that require special consideration, i.e. confir-
mation of point mutations or prediction of gene overexpres-
sion. Additionally, we present AMR++ 2.0, a bioinformat-
ics pipeline that addresses many of the expanding use sce-
narios of metagenomic data, while also building capacity to
support additional AMR-related analyses.

UPDATES TO MEGARES AND AMR++

Incorporating the antibacterial biocide and metal resistance
genes (BacMet) into MEGARes 2.0

BacMet aggregates protein sequences that have been exper-
imentally confirmed to confer resistance to biocides and
metals (35). BacMet compiled metadata for genetic deter-
minants from publicly available resources such as UniPro-
tKB and NCBI’s GenBank to identify gene accessions that
had been experimentally shown to confer phenotypic resis-
tance to biocides and metal compounds through removal,
mutation, insertion or overexpression of those genetic de-
terminants. BacMet’s content and accession criteria are
unique, making it an important resource for investigations
of resistance. However, the native annotation structure con-
strains BacMet’s use for metagenomic analyses. Specifically,
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BacMet separately classified protein sequences with respect
to each of 111 different compounds; this multi-classification
scheme could lead to false inflation of sequence classifica-
tions in the context of a metagenomic dataset (39).

Method for determining nucleotide sequences from amino
acid sequences contained in BacMet. The 753 acces-
sions for resistance proteins contained in version 2.0 of
the database ‘BacMet Experimentally Confirmed Resis-
tance Genes’ were downloaded on 6 December 2018,
from the hosting website: http://bacmet.biomedicine.gu.se/
download/BacMet2 EXP database.fasta. The protein ac-
cession ID for each of the 753 accessions were used to con-
duct a manual search on the UniProtKB website: https:
//www.uniprot.org/. Then, links in the ‘Cross-references’
section were followed and all corresponding nucleotide se-
quences were downloaded from the European Bioinformat-
ics Institute. In total, 1,642 nucleotide sequences were iden-
tified and collated. Sequences were clustered by homology
and redundant accessions were removed using CD-HIT-
EST with the following parameters: -G 0 -c 1.0 –AS 0 –AL
0 –AI 1.0 –aS 1.0. A single representative sequence for each
cluster (n = 959) was saved and aggregated for all gene ac-
cessions in a single fasta file.

Annotation of BacMet genes. BacMet’s original classifica-
tion scheme for each accession included the protein family,
the bacterial species in which it was originally described,
the gene coordinates within the source genome, the com-
pounds to which it can confer resistance, a short text de-
scription, and a PubMed reference. For comparison, the hi-
erarchical classification ontology developed for MEGARes
1.0 included (from highest to lowest levels) the ‘Class’ of an-
timicrobial compounds to which a gene confers resistance
(e.g. betalactams), the ‘Mechanism’ by which this resistance
is conferred (e.g. betalactamases), the ‘Group’ name of the
genes (e.g. Group A betalactamases), and the ID for each
individual gene accession. In order to classify BacMet ac-
cessions for inclusion in the MEGARes 2.0 ontology, we
used the metadata information provided by BacMet: acces-
sions associated with resistance to a single compound were
placed in an antimicrobial class specific to that compound
(e.g. Copper resistance), whereas genes associated with re-
sistance to multiple compounds were placed in a more gen-
eral classification taxon (e.g. Multi-metal resistance). This
resulted in the addition of a fifth, highest hierarchical level
within the MEGARes 2.0 ontology; we termed this level
the ‘Type’ of compound to which the accession confers re-
sistance (e.g. drug, biocide, metal, multi-compound). For
example, the yfeABCD accessions are associated with re-
sistance to both iron and manganese, and thus would be
categorized as Type: ‘Metals’. Resistance determinants as-
sociated with multiple compound types (e.g. antimicrobial
drugs, metals, and biocides) were classified as Type: ‘Multi-
compound’; this is exemplified by cmeABC genes, which
confer resistance to a variety of drugs, metals and biocides.
For the final set of accessions added from BacMet, a total
of 959 accessions were binned into three types, 32 classes,
85 mechanisms and 595 gene Groups. As part of our cura-
tion, we also added published references for each nucleotide
sequence, when available.

Updating MEGARes resistance determinants for AMDs
from publicly available databases

The first version of MEGARes included resistance deter-
minants for AMDs obtained from ResFinder (downloaded
November 2015), ARG-ANNOT (downloaded November
2015), the Comprehensive Antibiotic Resistance Database
(downloaded December 2015), and the National Cen-
ter for Biotechnology Information (NCBI) Lahey Clinic
beta-lactamase archive (downloaded December 2015). For
MEGARes 2.0, these same sources were interrogated for the
addition of new sequences since the release of MEGARes
1.0. The ARG-ANNOT database had not been updated and
the website was no longer supported, and therefore no ad-
ditional accessions from ARG-ANNOT were included in
the update. The Lahey Clinic beta-lactamase archive had
been consolidated into NCBI’s Bacterial Antimicrobial Re-
sistance Reference Gene Database and new sequences were
obtained from that source. ResFinder, a repository for ac-
quired AMR determinants, has been updated frequently
and was considered for inclusion in our update. Currently,
CARD provides monthly updates driven by manual litera-
ture curation, computational text mining, and genome anal-
ysis. Importantly, CARD amends AMR gene annotations
to reflect the latest published data available regarding their
resistance phenotype. Therefore, we evaluated all accessions
in the databases above and hand-curated these new AMR
genes to incorporate them into the MEGARes 2.0 database
using our updated hierarchical acyclic classification scheme.

Method for incorporating new sequences into MEGARes.
Additions to be included in MEGARes 2.0 were ob-
tained by downloading and incorporating new se-
quences from the latest available versions of CARD,
the Bacterial Antimicrobial Resistance Reference
Gene Database, and ResFinder, respectively. Specifi-
cally, CARD version 3.0.3 (21 August 2019 update)
was downloaded in a single compressed document
(https://card.mcmaster.ca/download/card-data.tar.bz2±)
that contained AMR accessions in nucleotide and amino
acid format. Each accession was categorized into one
of five models: protein homolog (n = 2,404), knockout
(n = 17), over-expression (n = 14), variant (n = 152) or
rRNA gene variant (n = 80). Due to the sparse sequencing
coverage that characterizes many metagenomic datasets
(and the resulting inability to rule out false-negative
classification), the knockout models were not included in
MEGARes 2.0. CARD’s updates also included correc-
tions for sequences that had been previously included in
MEGARes 1.0, as well as modified header formats for
each accession. Thus, to maintain harmony with CARD,
we removed 2,275 CARD sequences that had been previ-
ously included in MEGARes 1.0, leaving 1,549 accessions
obtained from other sources. Then, the 2,866 accessions
contained in CARD version 3.0.3 were concatenated with
remaining MEGARes 1.0 accessions in a single fasta
file. CD-HIT was then used to remove sequences with
100% homology, resulting in a file with 4,172 unique
sequences. Next, we integrated updates from NCBI’s Bac-
terial Antimicrobial Resistance Reference Gene Database,
which contained 5,782 sequences (downloaded from: ftp:

http://bacmet.biomedicine.gu.se/download/BacMet2_EXP_database.fasta
https://www.uniprot.org/
https://card.mcmaster.ca/download/card-data.tar.bz2
ftp://ftp.ncbi.nlm.nih.gov/pathogen/Antimicrobial_resistance/AMRFinderPlus/data/2019-07-10.1/


D564 Nucleic Acids Research, 2020, Vol. 48, Database issue

//ftp.ncbi.nlm.nih.gov/pathogen/Antimicrobial resistance/
AMRFinderPlus/data/2019-07-10.1/). Since MEGARes
2.0 focuses on resistance mechanisms for antibacterial
compounds (i.e. drugs, metals and biocides), we removed
sequences in the Bacterial Antimicrobial Resistance Refer-
ence Gene Database associated with ‘Heat’ and ‘Virulence’
(n = 573 accessions). The nine fasta files associated with
ResFinder version 3.2 (each corresponding to accessions
that confer resistance to different drug classes) were
downloaded on 19 June 2019 and concatenated, providing
an additional 3,095 accessions. The combined accessions
from MEGARes 1.0, CARD, ResFinder, and the Bacterial
Antimicrobial Resistance Reference Gene Database were
again clustered by sequence homology using CD-HIT
and 100% redundant sequences were removed using the
parameters listed above. The final resulting MEGARes
2.0 database contained 7,868 unique AMR resistance
sequences.

Another important aspect of the updated MEGARes 2.0
database is the specific annotation of genes that require the
presence of single nucleotide polymorphisms (SNPs) at spe-
cific loci in order to confer resistance. To annotate and allow
these genes to be identified for further analysis, we modi-
fied their sequence headers to include the label ‘RequiresS-
NPConfirmation’. This header is used to flag these acces-
sions for input into a new secondary analysis component of
the AMR++ 2.0 bioinformatic pipeline. This new compo-
nent integrates the Resistance Gene Identifier (RGI) to con-
firm the presence of amino acid residues required to confer
resistance (37). By pairing the MEGARes 2.0 header format
with RGI and wrapping this into the AMR++ 2.0 pipeline,
we thus enable automated processing of these sequences
for confirmatory in silico testing to confirm the presence
of resistance-conferring SNPs. This removes the burden of
manual SNP analysis for these genes, while improving the
accuracy of AMR gene identification from metagenomic
data.

Updates to the MEGARes classification and annotation
scheme

Following the addition of biocide and metal resistance ac-
cessions to MEGARes 2.0, all sequences were analyzed for
homology using CD-HIT with a clustering threshold of
80% sequence homology using the following parameters: -c
0.8 -g 1. Each cluster of sequences was inspected and com-
pared to published reference sequences using BLAST to
confirm MEGARes 2.0 classifications and annotations. No
discrepancies were identified between annotations from dif-
ferent source databases for AMR determinants associated
with resistance to a single compound class. However, anal-
ysis of sequence homology in our comprehensive compila-
tion of resistance determinants to different types of com-
pounds (i.e. drugs, biocides and metals) allowed us to iden-
tify genetic sequences that had not previously been identi-
fied as causing resistance to multiple types of compounds.
For example, we identified accessions that were classified in
the BacMet database as causing resistance to biocides but
that contained the same sequence as accessions previously
identified in MEGARes 1.0 and other AMD resistance
databases as encoding for multi-drug efflux pumps. The

presence of these multi-compound cross-resistance mecha-
nisms necessitated the expansion of the MEGARes classi-
fication scheme and the partitioning of annotation files. As
noted previously, a new highest hierarchical level for com-
pound ‘ type’ was created in the MEGARes ontology to dis-
tinguish between accessions that confer resistance to com-
pounds of the following types: drugs, metals, biocides or
genes that act on multiple types of compounds (Figure 1). In
MEGARes 2.0, the nodes of the acyclic hierarchical ontol-
ogy include four antimicrobial compound types, 57 classes,
220 mechanisms of resistance and 1,345 gene groups that
classify the 7,868 accessions. In addition, we partitioned
the annotations into two different annotation files in or-
der to support varying resistome analysis scenarios: the file
‘megares annotations v2.0.csv’ contains annotations for
resistance determinants related to all types of antimicrobial
compounds (i.e. drugs, biocides and metals), while the an-
notation file ‘megares drug annotations v2.0.csv’ contains
only annotations for accessions that confer resistance to
AMDs. Both annotation files contain a new metadata col-
umn (labeled ‘Notes’), which provides details about anno-
tation decisions, thus increasing the transparency regarding
especially the more complicated resistance classifications.
As with any classification schema, the MEGARes ontol-
ogy attempts to strike a balance between useful aggregation
of accessions into meaningful (and interpretable) categories
while avoiding potential oversimplification of important bi-
ological details of microbial genetic dynamics.

Future updates

MEGARes 2.0 pulls accessions from multiple source
databases, each with their own update schedule. To main-
tain congruity with these resources, MEGARes 2.0 will
be updated at least yearly. In cases where new accessions
are found to have 100% nucleotide sequence homology to
an accession already in MEGARes, we will maintain the
MEGARes accession as the single representative of that
gene, with links to the original database from which the
accession was sourced. To annotate new, non-homologous
sequences, we will cluster all such sequences with existing
MEGARes sequences using CD-HIT as described above
(i.e. at 80% homology). Sequences that cluster with exist-
ing MEGARes accessions will be automatically assigned
the same annotation. Sequences that do not cluster with any
existing MEGARes accessions will be manually handled in
the following manner: first, the annotations from the orig-
inal databases will be identified; second, primary literature
describing the accessions will be identified; third, the clus-
ter with the highest homology to each new accession will be
identified, and the annotation of this ‘nearest cluster’ will
be compared to the annotation from the original database
and the primary literature. In cases where annotations from
the original database, the ‘nearest cluster’ and the primary
literature disagree, we will initiate a discussion with the cu-
rators of the originating database to resolve these discrepan-
cies. If a new annotation label must be created at any level of
the annotation hierarchy, it will be integrated into the exist-
ing MEGARes ontology such that its acyclic, hierarchical
and full-level classification scheme is maintained. Finally,
the annotation decision process will be summarized in the

ftp://ftp.ncbi.nlm.nih.gov/pathogen/Antimicrobial_resistance/AMRFinderPlus/data/2019-07-10.1/
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Figure 1. Diagram representing nodes in the five levels of the acyclic hierarchical ontology for MEGARes 2.0 (compound type, classes, mechanisms of
resistance and gene groups that classify accessions).

‘Notes’ column of the annotation file (see above) and the
new accession will be assigned a header that conforms to
the MEGARes style (see below).

Standardized headers and database table relationships

MEGARes is structured as a relational database in which
the fasta header of each accession is the primary key to
attributes stored in additional tables that are formatted as
comma-delimited files. In MEGARes 1.0, we used headers
exactly as they appeared in the original source databases;
however, this resulted in inconsistent header formats and
content across different accessions. For MEGARes 2.0, we
improved accession headers by establishing a standardized
format to include a unique accession ID, compound type,
resistance class, resistance mechanism, resistance group,
source database, and an optional label to signify that the
accession requires further analysis to confirm presence of
resistance-conferring SNPs. These standardized headers are
machine-readable and easily parse-able aiding the ability to
perform analysis on various subsets of classified sequenc-
ing reads. Importantly, MEGARes accession headers can
still be linked to the originating source (i.e. BacMet, CARD,
Resfinder, ARG-ANNOT or Lahey/NCBI) through our re-
lational database. For extended browsing of the MEGARes
annotation and sequences, we offer a web interface (http:
//megares.meglab.org). The content of MEGARes is sum-
marized on the home page as a D3 interactive graphic (40)
and users can ‘Browse’ database features or ‘Search’ for spe-
cific genes. All database files are available in the ‘Download’
section, and users can restrict downloads to include only the
results of their search term.

AMR++ 2.0: bioinformatic pipeline update

The AMR++ bioinformatic pipeline was designed to ana-
lyze paired-end, short-read sequencing data (with support

for multiple samples), interfacing with MEGARes to pro-
duce a count matrix of alignments to AMR gene accessions
contained in each sample. AMR++ 1.0 was implemented
via nextflow scripting language (41) and made publicly
available via Galaxy (42), an easy-to-use web-based plat-
form. Although the Galaxy-centered approach offers rela-
tively high usability, this platform is unreasonably slow for
large-scale projects. Therefore, with the release of AMR++
2.0, we provide support for both proprietary and non-
proprietary computing clusters, facilitating large-scale re-
sistome data analysis. Access to the necessary bioinformatic
tools is also facilitated through the use of Singularity con-
tainers (43), which eliminates the need for ‘sudo’ access
in computing clusters. Extended descriptions of each step
of the pipeline have been previously reported (20) and up-
dated documentation is available on the MEGARes website
(http://megares.meglab.org). Here, we provide an overview
of AMR++ 2.0 and its new features.

Quality trimming and host filtering. AMR++ processes
raw sequencing reads from metagenomic samples through
a series of steps to characterize the resistome and micro-
biome (Figure 2). Briefly, reads are trimmed for quality
and adapter contamination using Trimmomatic (44), after
which reads are aligned to the presumptive host genome us-
ing Burrows-Wheeler-Aligner (BWA) (45); reads identified
as host are removed using BEDTools (46). Trimming and
filtering statistics for these processes are automatically sum-
marized in tab-delimited text files using customized python
scripts.

Resistome analysis. High-quality, non-host reads are then
aligned to the MEGARes database using BWA to pro-
duce a SAM file that is used as input for (a) resistome
characterization, and (b) rarefaction analysis. For resis-
tome analysis, the SAM file is parsed using ResistomeAna-
lyzer, a custom C++ program that minimizes the potential

http://megares.meglab.org
http://megares.meglab.org
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Figure 2. Overview of AMR++ 2.0 pipeline. Input fastq files are trimmed
and aligned to host genome(s) before being analyzed for resistome and mi-
crobiome content using MEGARes and Kraken2 databases, respectively.
Relevant resistome output can be piped into the Resistance Gene Identifier
for secondary confirmation of specific resistance-conferring SNPs. Output
content is indicated by red boxes.

for false-positive classification by removing accessions with
sparse alignments (source code available at https://github.
com/cdeanj/resistomeanalyzer). The filtering criterion can
be user-defined and is based on a threshold rule for the ‘gene
fraction,’ defined as the minimum proportion of nucleotides
in a given reference sequence that must be aligned by at least
one read in order to be considered as ‘present’ in the original
metagenomic sample. These filtered data are then used to
produce a count of aligned reads for each accession in each
sample, using the header annotations as the basis for hierar-
chical classifications, starting at the gene accession ID, and
then aggregating upward to the group, mechanism, class,
and resistance type levels. To facilitate statistical analysis of
resistome results, accession-level counts for all samples are
combined into a single count matrix, and then counts are
aggregated up the ontological hierarchy to produce separate
count matrices for each level in the MEGARes ontology (i.e.
group, mechanism, class, and type).

AMR++ 2.0 also integrates Samtools (47) functional-
ity to allow filtering of reads with identical sequence align-
ments, thus providing a method for controlling for poten-
tial PCR duplication; this step can be omitted from the
pipeline based on user preference. In this update, we have
also incorporated the Resistance Gene Identifier (RGI) tool
to confirm that relevant alignments contain the specific

SNPs required to confer resistance (37). This secondary
analysis is crucial for mechanisms of resistance that in-
volve single nucleotide changes in genes that otherwise per-
form non-resistance-associated functions within bacteria,
e.g. rpoB or gyrA. Likewise, multi-drug efflux pumps can
require the presence of mutations that promote overexpres-
sion to confer resistance to AMDs, e.g. acrAB or mexAB.
The biological relevance of these SNPs and the expression
of efflux pumps can be context-dependent, i.e. can be con-
tingent upon the bacterial species carrying the mutation,
and interpretation of relevance is incumbent upon users.
These important complexities are well characterized but
difficult to confirm within short-read metagenomic data,
therefore, MEGARes users must use their discretion to ap-
propriately interpret results in the context in which they are
applying this resource. To enable inclusion of these types
of resistance mechanisms within resistome analysis while
also guarding against false positive AMR gene identifi-
cation, AMR++ integrates the ‘Perfect’ algorithm imple-
mented in RGI. This integration is enabled through the
standardized MEGARes 2.0 headers, which contain the
label ‘RequiresSNPConfirmation’ for accessions requiring
this additional analysis. The AMR++ 2.0 pipeline will ex-
tract relevant alignments from the SAM file into a sin-
gle fasta file for analysis with RGI. Using Prodigal (48),
RGI translates sequences in all six reading frames to pre-
dict open reading frames, and then detects homologs to
proteins in CARD’s database using DIAMOND (49). Re-
sults are then filtered with significance thresholds based
on bitscore cut-offs with three different algorithms: Per-
fect, Strict, and Loose. AMR++ 2.0 utilizes RGI’s ‘Per-
fect’ detection algorithm, which requires that the relevant
reads match the reference sequence with 100% homology,
and therefore contain the resistance-conferring SNP(s). The
AMR++ pipeline then combines the RGI-confirmed read
counts with the alignment counts for accessions that did
not require SNP confirmation, to produce a comprehensive
count matrix with the final results for all samples. Lastly, the
RarefactionAnalyzer program provides an assessment of se-
quencing depth through rarefaction analysis of the align-
ment SAM files at the group, mechanism, and class lev-
els. Further details about use of RarefactionAnalyzer, in-
cluding various user-defined parameters, are available at
https://github.com/cdeanj/rarefactionanalyzer).

Microbiome characterization. AMR++ 2.0 also provides
the ability to analyze the microbial composition of metage-
nomic samples using Kraken2 (50), a metagenomic classi-
fier based on exact k-length subsequence (k-mer) matches.
By comparing all k-mers found in a set of sequence reads
to those from a set of reference genomes, Kraken2 achieves
accurate classification and a flexible scoring system that can
be used to refine the specificity of classification at lower
taxonomic levels. AMR++ 2.0 provides both the standard
Kraken2 output as well as the results obtained from set-
ting the ‘–confidence’ flag with the highest possible value
(i.e. ‘1’), which generates the most conservative scoring. Re-
sults for each metagenomic sample are then parsed using
a custom python script included within the AMR++ 2.0
pipeline; counts for strain-level classification are aggregated
to the species level and the entire taxonomic lineage of each

https://github.com/cdeanj/resistomeanalyzer
https://github.com/cdeanj/rarefactionanalyzer
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feature is output into a matrix that contains counts for each
feature within each sample. While short-read metagenomic
data is not always well-suited to co-localization analyses
(51), users who wish to perform microbiome-resistome co-
occurrence analysis can then use these count matrices as in-
put into separate statistical analyses [see, e.g. (52)].

Pipeline portability. AMR++ 2.0 comes pre-installed
and fully integrated with all necessary bioinformatic
tools and dependencies within a publicly accessi-
ble Amazon Machine Image (AMI) named Micro-
bial Ecology Group AMR AMI, allowing users to easily
employ the AMR++ 2.0 pipeline within the Amazon
Web Services (AWS) ecosystem. With this approach, users
pay for the cost of a suitable AWS EC2 instance without
the challenge of accessing large computing clusters and
individually installing each piece of software necessary to
run the pipeline (including all dependencies). Integration
within AWS also allows users to scale the computing
resources to fit the needs of any project size.

In addition, we improved the usability of AMR++
2.0 on non-AWS computing clusters by providing the
configuration file templates that nextflow uses to inter-
face with SLURM Workload Manager, a common job
scheduler. Easy access to required bioinformatic tools is
made available through the use of a Singularity con-
tainer (https://singularity-hub.org/collections/3418), mini-
mizing challenges of installation on computational servers
(53).

DISCUSSION

Here we present MEGARes 2.0, a database resource de-
veloped specifically for high-throughput sequencing anal-
ysis of previously published AMR genes within metage-
nomic data. Our goal is to provide a single, comprehen-
sive database that incorporates all published reference se-
quences for genetic determinants of resistance to antimicro-
bial drugs, metals, and biocides. Additionally, MEGARes
2.0 uses an acyclic hierarchical annotation structure that
facilitates high-throughput classification and subsequent
statistical analyses. MEGARes does not replace source
databases such as CARD and ResFinder, which provide de-
tailed descriptions of accessions, but rather offers a simpler,
hierarchical ontological structure that is specially adapted
for the unique characteristics of high-throughput analysis
of metagenomic resistome data. In addition, MEGARes fo-
cuses on previously published sequences, rather than novel
variant discovery. Metagenomic data are an important re-
source for novel AMR gene discovery, which requires spe-
cialized tools (e.g. fARGene (54), Meta-MARC (39) and
PCM (55) and databases (e.g. Mustard (56)). In contrast,
MEGARes 2.0 attempts to facilitate reproducible, system-
atic and statistically-appropriate bioinformatic identifica-
tion of previously published sequences associated with re-
sistance to AMDs, metals and biocides. In MEGARes 2.0,
we have approximately doubled the number of accessions
in comparison to the previous version. These accessions
expand coverage to include genes associated with resis-
tance to biocides and metals by incorporating accessions
from BacMet (35). Similarly, we integrate a large num-

ber of additional AMD resistance genes and advance the
ability to identify and confirm the presence of SNPs in
genes that require specific gene variants to confer resistance
by integration with CARD’s RGI tool. Confirmation of
these requisite SNPs is an especially challenging task with
metagenomic data, and the seamless integration of RGI
into a pre-packaged resistome pipeline will greatly ease re-
sistome analyses of these genes. Additionally, with the re-
lease of AMR++ 2.0, we increase accessibility by providing
a publicly accessible Amazon Machine Image. We believe
that MEGARes 2.0 integrated within AMR++ 2.0 will aid
AMR research and public health epidemiology by promot-
ing the adoption of HTS and metagenomic analysis.
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