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Abstract
One of the most abundant, yet least explored, classes of RNA is the small nucleolar RNAs

(snoRNAs), which are well known for their involvement in post-transcriptional modifications

of other RNAs. Although snoRNAs were only considered to perform housekeeping func-

tions for a long time, recent studies have highlighted their importanceas regulators of gene

expression and as diagnostic/prognostic markers. However, the prognostic potential of

these RNAs has not been interrogated for breast cancer (BC). The objective of the current

study was to identify snoRNAs as prognosticmarkers for BC. Small RNA sequencing (Illu-

mina GenomeAnalyzer IIx) was performed for 104 BC cases and 11 normal breast tissues.

Partek Genomics Suite was used for analyzing the sequencing files. Two independent and

proven approaches were used to identify prognosticmarkers: case-control (CC) and case-

only (CO). For both approaches, snoRNAs significant in the permutation test, following uni-

variate Cox proportionalhazards regressionmodel were used for constructing risk scores.

Risk scores were subsequently adjusted for potential confounders in a multivariate Cox

model. For both approaches, thirteensnoRNAs were associated with overall survival and/or

recurrence free survival. Patients belonging to the high-risk group were associated with

poor outcomes, and the risk score was significant after adjusting for confounders. Validation

of representative snoRNAs (SNORD46 and SNORD89) using qRT-PCR confirmed the

observations from sequencing experiments. We also observed 64 snoRNAs harboring piwi-

interacting RNAs and/or microRNAs that were predicted to target genes (mRNAs) involved

in tumorigenesis.Our results demonstrate the potential of snoRNAs to serve (i) as novel

prognosticmarkers for BC and (ii) as indirect regulators of gene expression.
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Introduction
Breast cancer (BC) is a complex polygenic disease [1] characterized by molecular and histological
heterogeneity [2]. Although the diagnostic and prognostic factors related to BC outcomes are
being increasingly refined, there remains a need to improve on the specificity and sensitivity of
prognostic markers which may impact the quality of life for BC patients. Optimal management
of BC is challenging due to the varied treatment response patterns exhibited by patients undergo-
ing similar treatment regimens [3,4]. However, the available treatment modalities might be better
applied if we could stratify treatment responders from non-responders, which may eventually
help in improving survival and quality of life. Although estrogen, progesterone and human epi-
dermal growth factor receptors are routinely used as prognostic markers, in addition to tumor
and patient related factors, these indices remain as imperfect estimators for risk of recurrence
and/or death [5]. Therefore, there is an ongoing search for better prognostic markers for BC.

With the discovery of new classes of small non-coding RNAs, their functions are ever
expanding. Among the many small non-coding RNAs identified so far, microRNAs (miRNAs)
are well established as global regulators of gene expression [6–10] that have also been studied
comprehensively as biomarkers for various cancer types [11–16]. On the contrary, one of the
lesser-studied classes of small non-coding RNAs is the group of small nucleolar RNAs (snoR-
NAs), which are approximately 60–300 nt in length [17]. snoRNAs often originate within the
nucleolus of a cell and are mostly encoded within the intronic regions of protein-coding or
non-protein coding genes such as long non-coding RNAs, or are independently transcribed
from the intergenic regions [18]. snoRNAs are broadly classified into two groups: SNORAs,
containing H/ACA box; and SNORDs, containing C/D box [19]. scaRNAs, or small Cajal body
RNAs, can also be classified as snoRNAs [20]. snoRNAs are involved in ribosomal RNA
(rRNA) maturation and biogenesis and also in modifications of other RNAs such as rRNAs,
transfer RNAs (tRNAs) and small nuclear RNAs (snRNAs). Specifically, SNORAs are involved
in pseudouridylation through their association with dyskerin protein and SNORDs, along with
fibrillarin proteins, are involved in methylation. Nevertheless, not all snoRNAs have defined
functions and are called “orphan snoRNAs” [20].

While the snoRNAs are largely recognized for performing housekeeping functions, emerg-
ing evidence suggests that dysregulation of snoRNAs occurs in various diseases. The first indi-
cation of the pathological importance of snoRNAs arose from the observation that a genetic
locus containing snoRNAs was deleted in Prader Willi syndrome, a neurodevelopmental
genetic disorder [21]. snoRNA deregulation has been observed in metabolic stress disorder
[22] and in several cancer types including chronic lymphocytic leukemia [23], hepatocellular
carcinoma [24], colorectal cancer [25] and endometrial cancer [26]. Their roles as diagnostic
and prognostic biomarkers have been studied in colorectal cancer [25] and lung cancer [27,28].
Although reports by Dong et al [29] and Su et al [30] have implicated the importance of snoR-
NAs in breast carcinogenesis, a comprehensive understanding of snoRNAs as prognostic
markers for BC is still lacking. snoRNAs are also beginning to be understood as indirect regula-
tors of gene expression. snoRNAs may get processed to other smaller regulatory RNAs such as
miRNAs and piwi-interacting RNAs (piRNAs), which are well known as post-transcriptional
gene regulators [17,31,32].

We hypothesized that deregulation of snoRNAs contributes to inter-individual differences
in BC trajectory and eventual outcomes. In this study, we investigated the potential of snoR-
NAs as prognostic markers for BC, focusing on overall survival (OS) and recurrence free sur-
vival (RFS). We have also explored the possible regulatory functions of snoRNAs. To the best
of our knowledge, this is the first study to identify snoRNAs as potential independent prognos-
tic markers for BC.
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Materials andMethods

Ethics statement
Written informed consent was obtained from all the individuals who participated in this study.
Local institutional research ethics committee (Health Research Ethics Board of Alberta: Cancer
Committee) approved the study protocol.

Breast tissue samples for the study
Breast tissue samples (control samples) were collected from 11 apparently healthy normal indi-
viduals who underwent reduction mammoplasty surgery and were flash frozen (FF) under 30
minutes of post-devitalization. The normal breast tissue specimens were obtained from Alberta
Cancer Research Biobank (http://www.acrb.ca/). Samples from 104 pathologically confirmed
invasive ductal carcinoma breast tumor tissues (cases) were obtained as formalin fixed paraffin
embedded (FFPE) specimens from the same biobank. Detailed clinical characteristics of the
study samples (collected between 1996 and 2008) have been documented in a previously
described study [13]. Follow-up of the patients (median follow up = 8.02 years) indicated 61
recurrences and 46 deaths. All tumor tissue specimens had a tumor cellularity of at least 70%.
We required at least eight samples in each group to identify snoRNAs with at least a two-fold
difference, with a power of 80% and with α = 0.05 [13,33,34]. Earlier studies have demonstrated
similar composition of snoRNAs from both FF and FFPE tissue specimens, suggesting that
snoRNA expression may be comparable between FF and FFPE tissues [35].

snoRNA profiling using small RNA sequencing
Details on RNA isolation and sequencing protocols are elaborated in our previous study
[13,36]. The RNA isolation protocol involved DNAse I digestion step to remove potential
genomic DNA contamination. Next generation sequencing (NGS) was performed at PlantBio-
sis Ltd (Lethbridge, Alberta, Canada; http://www.plantbiosis.com/). The data generated for the
study was deposited in gene expression omnibus and the accession ID is GEO68085. Briefly,
total RNA was isolated from cases and controls using TRIzol/Qiagen RNeasy kit and Recover-
All Total Nucleic Acid Isolation kit (Life Technologies), respectively. Small RNA libraries were
generated using TruSeq small RNA library construction protocol with no modifications. The
protocol aims to select and amplify small RNAs, between 15–40 nt in length. The libraries were
subjected to small RNA sequencing using Illumina Genome Analyzer IIx with 36 cycles single
end protocol. One tumor sample could not be processed further due to quality reasons, leaving
103 tumor samples and 11 normal samples for further analysis. Base calling and demultiplexing
was performed using CASAVA 1.8.2, followed by adapter trimming using CutAdapt software
(https://cutadapt.readthedocs.org/). Bowtie [37] was used for aligning the trimmed reads to
hg19 genomic assembly (downloaded from Illumina iGenome repository). The generated.sam
files were converted to.bam files, which were used for subsequent analysis using Partek Geno-
mics Suite 6.6 (PGS, Partek Genomics Suite software, version 6.6 beta, Partek Inc., St. Louis,
MO, USA). snoRNAs were annotated using Ensembl database [38].

Statistical analysis to identify potential prognosticmarkers
Two independent and proven approaches in a biomarker study are the Case-control (CC) and
the Case-only (CO) approaches. While it is common to see either of the two approaches in lit-
erature [16,39–42], we have adopted both methods in our study to identify the most suitable
approach to conduct a biomarker study. The two approaches were employed to select the list of
snoRNAs for survival analysis. In the CC approach, both normal (controls) and tumor (cases)
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samples were analyzed, whereas in the CO approach, only the tumor samples were analyzed.
For both methods, the datasets were normalized using reads per kilobase per million method
(RPKM) [43] and were adjusted for batch effects using one-way ANOVA model. Profiled
snoRNAs with at least one read count in any one of the samples were considered. The datasets
were further filtered for read counts: only snoRNAs with at least 10 read counts in 90% of the
samples (normal and tumor inclusive for CC and tumor for CO) were retained for downstream
analysis. In the CC approach, only differentially expressed (DE) snoRNAs with a stringent
threshold of a fold change (FC)> 2.0 and a false discovery rate (FDR)� 0.05 were considered
for survival analysis. However, in the CO approach, all the snoRNAs retained after filtering
were considered for survival analysis, as described earlier [13]. We performed Univariate Cox
proportional hazards regression analysis for overall survival (OS) and for recurrence free sur-
vival (RFS), followed by permutation test (n = 10,000), considering the snoRNAs (DE snoR-
NAs from CC and the filtered snoRNAs from the CO approaches) as continuous variables.
snoRNAs with permutation p-values� 0.1 were used for constructing risk scores for all sam-
ples. Risk scores were constructed using the formula:

Risk Scorei ¼
P12

j¼1
bj � snoRNAij; where snoRNAij is the individual risk score for snoRNA j

on sample i, and βj is the parameter estimate obtained from the univariate analysis for snoRNA j
[16]. Further, the risk-scores obtained were dichotomized into low-risk and high-risk groups
based on the optimal cut-off point estimated using receiver operating characteristics curve (ROC).
The constructed risk scores were considered as dichotomous variables and a multivariate Cox pro-
portional hazards regression analysis was performed along with other potential confounders: age
at diagnosis (continuous variable), tumor stage (I, II vs. III, IV), tumor grade (high vs. low) and
triple negative breast cancer status (TNBC vs. Luminal). The final multivariate model included
the variables which were significant at p<0.05 and it was the same for OS and RFS outcome.
Kaplan-Meier plots along with log-rank test were used for assessing the median survival function
and for comparing the survival distributions between low-risk and high-risk groups, respectively.
All the analyses except survival analysis were conducted using Partek Genomics Suite v 6.6. Sur-
vival analysis tests were performed in SAS (SAS institute Inc., Cary, NC) version 9.3, and statistical
significance was defined as p< 0.05. Permutation test was performed in R statistical program
using the “glmperm” package and p�0.1 was considered statistically significant.

Technical validation of snoRNA expression using qRT-PCR
The expression of two representative snoRNAs showing prognostic significance (SNORD46
and SNORD89) were validated with total RNA isolated from a subset of samples used for
sequencing. Amongst the prognostically significant snoRNAs, SNORD46 and SNORD 89
showed the highest fold changes and were therefore considered for cross platform validation.
Real time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was per-
formed using an iScript Select cDNA Synthesis Kit (Bio-Rad) and a SsoFast EvaGreen Super-
mix (Bio-Rad) according to manufacturers’ instructions. Reverse transcription of total RNA
was performed using random primers. Primers for PCR amplification of SNORD46 and
SNORD89, designed using Primer3 software, were as follows: SNORD46-F: 5’-AAT CCT
TAG GCG TGG TTG TG-3’, SNORD46-R: 5’-ATG ACA AGT CCT TGC ATT GG-3’; and
SNORD89-F: 5’-GAC AAG AAA AGG CCG AAT TG-3’, SNORD89-R: 5’-CAT GGA GAG
CAA ACT GCT GA-3’. RNU6-2 served as loading control and the primer sequences were
RNU6-2-F: 5’-CGC TTC GGC AGC ACA TAT AC-3’, RNU6-2-R: 5’-AGG GGC CAT GCT
AAT CTT CT-3’. All assays were done in triplicates, data was analyzed using the 2-ΔΔCt method
[44], and results are shown as fold induction of snoRNAs.

snoRNAs and Breast Cancer Prognosis

PLOSONE | DOI:10.1371/journal.pone.0162622 September 15, 2016 4 / 17



Gene (mRNA) expression analysis
We downloaded the breast tissue gene (mRNA) expression dataset (GEO accession ID:
GSE22820) which was originally generated in-house; briefly 141 breast tumor samples and 10
normal breast tissues obtained from reduction mammoplasty [13,45] were profiled using Agi-
lent platform. Partek Genomics Suite v6.6 served as a tool for gene expression analysis. The
raw intensity files were quantile normalized and log2 transformed. Differentially expressed
(DE) genes were identified as those exhibiting FC> 2.0 and FDR� 0.05 using one-way
ANOVA.

Targets for piRNAs embedded within snoRNAs were identified using miRanda algorithm v
3.3a. Fasta sequences of the 3’ untranslated region (UTR) of all the DE genes identified from
the in-house BC gene expression dataset were downloaded from Ensembl database (GRCh37)
[38] and fasta sequences of the 11 piRNAs were downloaded from piRNA Bank (hg 19) [46].
Since piRNAs and mRNAs are known to exhibit reciprocal relationships (i.e., if a piRNA is up-
regulated, the gene target is down-regulated and vice-versa) [36,47], targets for down-regulated
piRNAs (obtained from our previous study) [36] were interrogated from the list of up-regu-
lated genes using miRanda. Likewise, targets for up-regulated piRNAs were interrogated from
the list of down-regulated genes. Only genes from piRNA-mRNA pairs with alignment
score� 170 and energy threshold� -20 kcal/mol [36,47] were considered for gene ontology
classification.

Results

40 snoRNAs are differentially expressed in BC
As described in our previous study [13], 10,016,964 and 164,237,348 reads were obtained from
normal and tumor tissues, respectively. Of these, 5,060,588 and 97,204,377 reads were retained
after adapter trimming in normal and tumor tissues, respectively. Among the reads that aligned
to the human genome (4,255,616 in normal and 84,240,355 in tumor), 1,610,928 reads
(163,459 in normal and 1,447,469 in tumor) belonged to snoRNAs, and annotated to 768
snoRNAs. Since full length snoRNAs are > 60nt in length, it is unlikely that the sequencing
protocol used in this study would have captured these snoRNAs. Therefore the snoRNAs that
we have profiled are likely to be the fragments, whose reads mapped to the 5’ or 3’ ends of full
length snoRNAs. Read distribution of representative snoRNAs (from the 13 prognostically sig-
nificant snoRNAs identified in this study) are illustrated in S1 Fig. The read distributions con-
firm that the identified snoRNA fragments are not unique to FFPE tissues, as the FF normal
reduction mammoplasty tissues also exhibited these characteristics, negating the view that stor-
age of the samples under different conditions would have generated the fragments. However,
the reason for the generation of endogenous snoRNA fragments is not clear. Four samples
were classified as outliers in principal component analysis, leaving data from 99 tumor samples
for downstream analysis.

There were 88 snoRNAs retained after filtering for read counts in the CC approach. The
dataset was RPKM normalized and corrected for batch effects (S2 Fig). The raw counts of the
768 snoRNAs and the batch adjusted normalized counts of all snoRNAs and filtered snoRNAs
are provided in S1A–S1C Table. Among the 88 filtered snoRNAs, 40 snoRNAs were DE
(FC> 2.0, FDR� 0.05, S2 Table); 77.5% (n = 31) of which were down-regulated in tumor
(Fig 1).

Further, to investigate if snoRNAs are stable in FFPE tissues over years, we chose samples
that were collected in 1996 and 2008 (the oldest and the most recently collected samples) and
ran a Pearson’s correlation test on the raw and normalized counts of filtered snoRNAs
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(n = 88). We obtained strong correlations for both raw and normalized data, with correspond-
ing Pearson correlation coefficients of r = 0.801 and r = 0.913, respectively, indicating the sta-
bility of the snoRNAs from FFPE tissues profiled in this study (S3 Fig). This observation from
our dataset is supported by findings from Hall et al., who have identified snoRNAs as one of
the stable molecules from FFPE tissue samples [48].

ThirteensnoRNAs identifiedwith prognostic relevance for breast cancer
For the CC approach, 40 DE snoRNAs were subjected to survival analysis, whereas, for the CO
approach, 95 snoRNAs, which were retained after filtering for read counts (from a total of 763

Fig 1. Hierarchical clusteringof differentially expressed snoRNAs.The 40 differentially expressed snoRNAswere subjected to unsupervised
hierarchical clusteringwith average linkage and Euclidean as distancemeasure. The tumor samples (orange horizontal bars) were clearly
separated from the normal samples (red horizontal bars).

doi:10.1371/journal.pone.0162622.g001
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snoRNAs), were subjected to survival analysis. The raw counts of all 763 snoRNAs and the batch
adjusted normalized counts of 763 and 95 filtered snoRNAs, obtained from the CO approach are
provided in S1D–S1F Table. The 40 DE snoRNAs and the 95 snoRNAs from the CO approach
were first analyzed as continuous variables and were tested for their association with OS and
RFS, followed by permutation test for univariate cox model. For OS, 12 snoRNAs were found to
have permutation p-values� 0.1 in the CO approach, which also included the five significant
snoRNAs identified from the CC approach (S3 Table). Similarly, for RFS, 10 snoRNAs were
identified from the CO approach that included four snoRNAs from the CC approach (S3 Table).
Overall, we identified 13 non-redundant snoRNAs associated with prognosis.

For both OS and RFS, risk scores were computed individually for the CC and CO
approaches for every sample. For the CC approach, -3.93 and -2.75 were estimated to be the
optimal cut-off points for OS and RFS, respectively, separating BC patients into low-risk and
high-risk groups. Likewise, for the CO approach, -9.59 and -7.74 were estimated as optimal
cut-off points for OS and RFS, respectively for patient dichotomization into risk groups. Risk
scores were considered as dichotomous variables and were entered into univariate and multi-
variate Cox proportional hazards regression models. In both CC (Table 1A, Fig 2A and Fig 2B)
and CO (Table 1B, Fig 2C and Fig 2D) approaches, patients belonging to the high-risk groups
were associated with shorter OS and RFS and risk scores emerged significant after adjusting for
potential confounders.

Concordance of findings between NGS and qRT-PCR
In NGS analysis, SNORD46 and SNORD89 were found to be down-regulated in tumors, rela-
tive to normal samples, with fold changes of -7.38 and -4.07, respectively. When analyzed

Table 1. Univariate andmultivariate results.

A. Case–control approach

Parameter Overall Survival Recurrence Free Survival

Univariate Multivariate Univariate Multivariate

HR(95%CI) P–value HR (95%CI) P–value HR(95%CI) P–value HR(95%CI) P–value

Risk score 3.59(1.51–8.54) 0.004 3.24(1.35–7.77) 0.008 2.38(1.37–4.14) 0.002 2.17(1.22–3.84) 0.008

Tumor stage 0.39(0.2–0.78) 0.007 0.42(0.22–0.78) 0.007

Tumor grade 2.15(1.06–4.39) 0.035 2.19(1.07–4.52) 0.033 1.61(0.91–2.86) 0.1

Age at diagnosis 1.06(1.02–1.09) 0.001 1.05(1.02–1.09) 0.003 1.02(0.99–1.05) 0.2

TNBC status 0.93(0.46–1.89) 0.83 0.76(0.4–1.45) 0.41

B. Case–only approach

Parameter Overall Survival Recurrence Free Survival

Univariate Multivariate Univariate Multivariate

HR(95%CI) P–value HR(95%CI) P–value HR(95%CI) P–value HR(95%CI) P–value

Risk score 2.95(1.48–5.88) 0.002 2.75(1.37–5.52) 0.005 2.44(1.35–4.43) 0.003 2.42(1.33–4.42) 0.004

Tumor stage 0.39(0.2–0.78) 0.007 0.42(0.22–0.78) 0.007

Tumor grade 2.15(1.06–4.39) 0.035 2.15(1.04–4.42) 0.038 1.61(0.91–2.86) 0.1

Age at diagnosis 1.06(1.02–1.09) 0.001 1.06(1.02–1.09) 0.002 1.02(0.99–1.05) 0.2

TNBC status 0.93(0.46–1.89) 0.83 0.76(0.4–1.45) 0.41

HR = Hazard ratio; CI = Confidence interval; TNBC = Triple negative breast cancer. (A) The risk scores computed for the CC (one for OS and one for RFS)

and (B) the risk scores computed for CO (one for OS and one for RFS) approaches were significant in the multivariate analysis (p < 0.05) after adjusting for

potential confounders. In both approaches, patients with risk scores more than the estimated optimal cut–off points were associated with poor prognosis

(HR > 1).

doi:10.1371/journal.pone.0162622.t001

snoRNAs and Breast Cancer Prognosis

PLOSONE | DOI:10.1371/journal.pone.0162622 September 15, 2016 7 / 17



using qRT-PCR, these two snoRNAs showed the same direction of expression—i.e., both
RNAs were down-regulated in tumor tissues, relative to normal samples (p< 0.05), confirming
the findings from NGS (Fig 3). SNORD 46 and SNORD89 were found to be embedded within
the intronic regions of RPS8 and RNF149 genes, respectively. Since we have used random
primers (and not oligo-dT primers) for reverse transcription, the primary source of the tran-
script needed to be ascertained. Therefore to ensure that the PCR products are not from the
host transcripts (pre-mRNA), we interrogated the expression of RPS8 and RNF149 in the
breast tissue gene (mRNA) expression dataset. We found that RPS8 was up-regulated in tumor
tissues (FC = 1.4). This is in contrast with the expression of SNORD46, which was found to be
down-regulated. On the other hand, we did not observe any expression changes in the RNF149

Fig 2. Kaplan–Meier plots for case–control approach. Kaplan-Meier plots for risk scores were constructed to determinesurvival differences between
low–risk and high–risk groups. Significant survival differences existed between the two risk groups, as indicated by the log–rank p–values. (A) OS for CC
approach. (B) RFS for CC approach. (C) OS for CO approach and (D) RFS for CO approach. In all these approaches, patients belonging to high–risk group
showed poor OS and RFS.

doi:10.1371/journal.pone.0162622.g002

snoRNAs and Breast Cancer Prognosis

PLOSONE | DOI:10.1371/journal.pone.0162622 September 15, 2016 8 / 17



gene (when SNORD89 showed down-regulation in tumor tissues relative to normal tissues).
The discordant expression patterns rule out the possibility that random primers may have con-
tributed to the cDNA representing the host (pre-mRNA) transcript.

Insights into the regulatory functions of snoRNAs
Previous studies have reported that snoRNA genes are often found within the intronic regions
of protein-coding and non-protein coding genes, (snoRNA host genes) [18]. We also observed
that out of 768 snoRNAs that were profiled in breast tissues (including normal and tumor tis-
sues), 449 (i.e.,> 50%) snoRNAs mapped to the intronic regions of protein coding genes (S4A
Table). It has also been demonstrated that snoRNAs can act as a source for other regulatory
small non-coding RNAs, such as miRNAs [17,31,32] and piRNAs [49], implying a novel func-
tion and/or biological relevance for snoRNAs in gene regulation. In this study, we overlapped
the genomic coordinates of all 768 snoRNAs with those of mature miRNAs obtained from
miRBase v 20. We observed that six snoRNAs harbored eight mature miRNAs. Further, we
compared the direction of fold change between these miRNA-snoRNA pairs [13] and observed
that five were expressed in the same direction in tumor tissues, relative to normal tissues (S4B
Table), hinting at the possibility that these miRNA-snoRNA pairs may be co–regulated. We
also extended this comparison to piRNAs and observed that 58 snoRNAs harbored piRNAs
(S4C Table). Of these, 35 piRNA-snoRNA pairs were expressed in the same direction in
tumors, relative to normal tissues—i.e. if the piRNA was up-regulated in tumor tissues, its cor-
responding host snoRNA was also up-regulated in tumor tissues (S4C Table). Additionally,
from among the 35 pairs, 11 piRNAs were DE with FC> 2.0 and FDR� 0.05 (Table 2) [36], of

Fig 3. qRT-PCR confirmation of snoRNAexpression.SNORD46 and SNORD89 were confirmed to be down–
regulated in tumor, relative to normal samples using qRT-PCR platform.The Ct values obtained for snoRNAs
were normalized to Ct values obtained for RNU6. * indicates statistical significance p<0.05.

doi:10.1371/journal.pone.0162622.g003
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which six were down-regulated and five were up-regulated in tumor tissues, relative to normal
tissues. We identified gene targets regulated by these piRNAs. Analysis of the breast tissue gene
expression dataset (refer to methods) yielded 628 up-regulated genes and 2241 down-regulated
genes. Targets for the six down-regulated and five up-regulated piRNAs were interrogated
using the 628 up-regulated and 2241 down-regulated genes, respectively. piRNA-mRNA tar-
gets with the specified criteria of alignment score and energy threshold score are summarized
in Table 2. Gene ontology classifications of the genes identified as targets for piRNAs are sum-
marized in S5 Table. We did not identify the gene targets for miRNAs because only one
miRNA had a fold change of> 2.0 (predefined cut-off).

Discussion
In this study, we identified 13 snoRNAs as potential novel prognostic markers for BC. Twelve
snoRNAs were found to be associated with OS and ten snoRNAs were found to be associated
with RFS, among which nine were common between OS and RFS for BC. We also explored
their potential roles in gene regulation. snoRNAs are well known to be involved in post-tran-
scriptional modification of other regulatory non-coding RNAs. Alternative roles of snoRNAs
such as their association with various clinical factors or their involvement in gene regulation
are also emerging [23–26,31,32,49].

Our study design included two approaches (CC and CO) to identify the appropriate method
for discovering prognostic markers. While the CC approach tests only the DE snoRNAs for
association with outcomes [12,39], the CO approach is unbiased and interrogates all the

Table 2. snoRNA-piRNA pairs with same directionof expression, fold change > 2.0 and FDR� 0.05.

Host gene snoRNA ID(Fold
change)

Target RNA for
snoRNA

piRNA embeddedwithin
snoRNA (Fold change)

mRNA targets for the embedded piRNAs

NOP56 SNORD110-201
(-24.22)

18S rRNAU1288 hsa_piR_019676(-8.01) DGKH,CLEC5A,ADAMDEC1,HOXC13,
LRRC15,IQCH,WDR62

SNHG24 SNORD114-23-
201(-4.39)

unknown hsa_piR_019102(-6.43) BPNT1,CASC5,KIF26B,PRAME,TLL2,
ZC3H12D

SNX5 SNORD17-201
(-2.12)

28S rRNAU3797 hsa_piR_017033(-2.17) MAGEA4,PLGLB2,TNFSF4,FAM83D,CGA,
FOSL1,GAS2L3,BRIP1,NCAPG,PLGLB2

HSPA9 SNORD63-201
(-3.80)

28S rRNA A4541 hsa_piR_000586(-3.83) None

AP1G1 SNORD71-201
(-2.09)

5.8S rRNAU14 hsa_piR_002158(-2.78) TPM3,DQX1

DDX39B,
ATP6V1G2-DDX39B

SNORD84-201
(-2.24)

unknown hsa_piR_001078(-4.79) GRM4,CENPI,CHRNA1,GPR26

TPT1 SNORA31-001
(1.58)

18S rRNAU218 and
28S rRNAU3713

hsa_piR_017184(9.17) TMEM47,TRPM3,ZNF462

PRRC2A SNORA38-201
(14.44)

unknown hsa_piR_004531(54.1) SLC34A1,SLC6A2,SEC31B,TFAP2C,TTC23,
TXNIP,XPNPEP3,CNTN2

MRPL3 SNORA58-001
(8.65)

28S rRNAU3823 hsa_piR_020466(4.06) SLC27A1

SNHG16 SNORD1B-201
(5.08)

28S rRNAG4362 hsa_piR_018780(18.45) SMAD2,TNRC6B,TRIM9,UTRN,USP6,
ANGPTL1,ARHGAP6,ALB,BCHE,CNTNAP3

CCAR1 SNORD98-201
(2.79)

18S rRNAG867 hsa_piR_000045(4.85) SFRP1,RSPO3,SPARCL1,WSCD1,ADRA2A,
AVPR1A,ASPH,BCL6,CCDC25

The host genes indicate the genes within which the snoRNAs are embedded. Since snoRNAs are involved in the modification of other RNAs, we have also

indicated the target RNAs of the 11 snoRNAs. Of the 35 piRNAs found to be harboredwithin snoRNAs, 11 piRNAs were observed to be DE with a fold

change > 2.0 and FDR� 0.05. Since piRNAs are involved in gene regulation, the target mRNAs are listed corresponding to its piRNA.

doi:10.1371/journal.pone.0162622.t002
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snoRNAs retained after filtering, and is independent of the control tissues used [14,16]. Com-
posite risk scores were calculated for the following reasons: (i) individual markers are not ade-
quate to capture the complex interactions involved in conferring phenotypes and (ii) inclusion
of all snoRNAs significant in the univariate analysis may contribute to data overfitting. The
constructed risk scores were identified as potential independent prognostic factors for BC.
Overall, in the CC approach, we identified a total of six non-redundant snoRNAs associated
with disease outcomes (OS and RFS included). As expected, we identified a higher number of
snoRNA markers (n = 13) from the CO approach, which also included signatures identified
from the CC approach. The same pattern of identifying higher number of markers in the CO
approach (including those identified from the CC approach) was observed when we interro-
gated this dataset for miRNAs and piRNAs as prognostic markers [13,36]. Our results highlight
the importance of considering the CO approach for a biomarker study.

To the best of our knowledge, this is the first study to report snoRNAs as prognostic mark-
ers for BC. In fact, none of the prognostic snoRNAs identified in this study have been reported in
any of the other cancer types analysed thus far. These potentially novel biomarkers need to be
validated in independent studies to ascertain their role in BC prognostication. However, at this
time, it is not certain if the 13 prognostic snoRNAs are specific to BC or if they share prognostic
relevance in other cancer types. It is possible that with more genome-wide studies focusing on
understanding the clinical relevance of snoRNAs, we may be able to identify these snoRNAs in
other cancer types. It would also be interesting to see if the identified snoRNAs show any subtype
or tumor stage or grade specificity. In this pilot study conducted using 104 tumors; 62 samples
belonged to Luminal A subtype (26 deaths and 37 recurrences) and 30 belonged to TNBC sub-
type (11 deaths and 13 recurrences). Given the current sample size and the number of events, it
was not feasible to conduct further finer analysis based on stratified subtypes of BC.

We understand that a complex interplay exists between different classes of RNAs for normal
developmental processes and for maintaining homeostasis. For instance, snoRNAs are known
to be embedded within the intronic regions of protein-coding or non-protein coding genes.
The well-studied function of snoRNAs includes participation in post-transcriptional modifica-
tions of other RNAs such as ribosomal RNAs (involved in protein translation), small nuclear
RNAs (involved in splicing mechanisms) and transfer RNAs (involved in protein translation).
However, understanding of snoRNAs is slowly expanding towards gene regulation. snoRNAs
have not been found to interact directly with mRNAs causing translational repression or
mRNA degradation, similar to miRNAs. An alternative mechanism has been suggested,
wherein the snoRNAs may get processed to form other regulatory RNAs such as miRNAs and
piRNAs, well established regulators of gene expression. Fig 4 and Table 2 illustrate the complex
interplay of these RNAs. In our dataset, we found 450 snoRNAs to be embedded within the
intronic regions of protein-coding genes (S4A Table), and 8 miRNAs (S4B Table) and 58 piR-
NAs (S4C Table) to be present within the genomic boundaries of snoRNAs. We also observed
that the 11 snoRNA-piRNA pairs reported (Table 2) showed the same direction of alteration in
tumor tissues–i.e., if the snoRNA was down-regulated in the tumor tissues, its corresponding
piRNA was also down-regulated. It could be speculated that some of the snoRNAs and piRNAs
may be co-regulated and may share a common promoter. However, the processing of these
piRNAs/miRNAs from the snoRNAs needs to be ascertained, and further experiments are
needed to understand their co-regulation, if any.

Since these piRNAs originated from within the snoRNAs, the snoRNAs also shared certain
degree of complementarity with the mRNAs (data not shown). It is not known if this degree of
complementarity implies a direct interaction between snoRNAs and mRNAs and thus contrib-
utes to direct gene regulation. snoRNAs are larger in size (60–300 nt) than other regulatory
small RNAs (miRNAs and piRNAs, 18–30nt). Therefore, the immediate challenge is to
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determine if canonical seed sequence motifs exist for snoRNAs to mediate gene silencing
effects. However, at this point of time, we know that ectopic expressions of snoRNAs in a cell
line or animal model could contribute to various cancer characteristics such as cell prolifera-
tion, invasion and migration [25,50,51]. Interestingly, high expression of ACA11 was also
found to contribute to increased resistance to chemotherapy in multiple myeloma [50], sug-
gesting that snoRNAs may be important players for tumorigenesis. The targets identified for
the 11 piRNAs (identified in our study) showed relevance in important tumorigenic pathways
such as cell proliferation, cell adhesion and apoptosis (S5 Table). Functional validation studies
are thus warranted to confirm if these piRNAs interact directly with their corresponding tar-
gets to promote gene silencing.

Fig 4. Complex interplay of snoRNAswith other RNAs. snoRNAs are involved in diverse biological functions. They arise from the intronic
regions of protein coding / non-protein coding genes (host genes). EX represents exons. Black lines indicate intronic regions and purple lines
within intronic regions indicate the coding regions for snoRNAs. The canonical function of snoRNAs is its role in post-transcriptionalmodifications
of snRNAs and rRNAs, which are involved in splicingmechanism and protein translation, respectively (a). One of the emerging roles of snoRNAs
is its involvement in gene regulation. snoRNAsmay act as a source for other small RNAs such as miRNAs (b, indicated in deep blue) and piRNAs
(c, indicated in green).miRNAs and piRNAs are considered as master regulators of gene expression that may bind to the untranslated regions (3’
UTR or 5’ UTR), exons or introns andmay promote eithermRNA degradation or translation inhibition; implying the indirect role of snoRNAs in gene
regulation. (d). The other unknown function of snoRNAs is its direct interaction with mRNAs through complementary base pairing. To-date, the
direct interaction of snoRNAs withmRNAs has not been studied; however, this interaction might be a possibility based on the demonstrated
subsets of snoRNAs embedding piRNAs andmiRNAs, and their interactions withmRNAs through base pair complementarities; further research
into this field may enhance our understanding on the direct role of snoRNAs in gene regulation.

doi:10.1371/journal.pone.0162622.g004
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Overall, we profiled 768 snoRNAs from breast tissues and identified 40 snoRNAs as differ-
entially expressed. However, the DE results should be interpreted with caution as we used nor-
mal samples preserved as FF tissues and tumor samples preserved as FFPE tissues. Therefore it
is possible that the observed differences in snoRNA expression may have also arisen because of
different tissue preservation techniques, as indicated by Martens-Uzunova et al [52]. Given the
sequencing protocol adopted in this study (36 cycles single end protocol) with read lengths
ranging between 17 and 27 nucleotides, it is highly likely that the 768 snoRNAs may not repre-
sent the entire snoRNAome. We performed size fractionation to include RNAs with a size
range of 20-30nt and since full-length snoRNAs have a minimum length of 60 nucleotides, the
identified snoRNAs may actually be fragments of snoRNAs. However, at this point of time, it is
not clear if these fragments are products of snoRNA processing or if these are representative of
full length snoRNAs and therefore we referred to these identified sequences as merely snoR-
NAs. Reading longer transcripts with higher number of sequencing cycles may help identify
additional snoRNAs and to ascertain the origins of the profiled fragments. Despite these chal-
lenges, we have attempted a genome-wide profiling of snoRNAs and have demonstrated their
potential as novel players for BC prognostication.

Conclusions
In this study, we determined two aspects of snoRNAs: (i) their importance as prognostic mark-
ers for BC and (ii) their possible roles in gene regulation. We report 13 (non-redundant) novel
promising prognostic markers for BC: 12 for OS and 10 for RFS. The contribution of snoRNAs
to tumorigenesis is manifested through (i) their primary action in post-transcriptional modifi-
cations of other RNAs, and (ii) their processing to generate small RNAs that are directly
involved in gene regulation. While the first contribution of snoRNAs is well established, their
role in gene regulation is only just emerging. Insights into these aspects could open up new ave-
nues for the development of snoRNAs for diagnostic and therapeutic purposes.

Supporting Information
S1 Fig. Read distribution of prognostically significant snoRNAs. snoRNAs captured in this
study potentially reflect multiple fragments that map to 3’or 5’ends of snoRNAs, as shown
from the read distribution of representative snoRNAs. Data represented are from the 13 prog-
nostically significant snoRNAs, from both FFPE tissues and FF normal breast tissues from
reduction mammoplasty.
(TIFF)

S2 Fig. Detection of batch effects.The raw counts of all 768 snoRNAs were RPKM normal-
ized and corrected for batch effects. S2A Fig represents the data before batch effects correction
(Mean F ratio of batch = 19.73) and S2B Fig represents the data after batch effects correction
(Mean F ratio of batch = 0). The factor ‘tissue’ represents biological variation arising from nor-
mal and tumor tissues; hence was not appropriate to correct for.
(TIF)

S3 Fig. Stability of snoRNAs in FFPE samples. Scatter plots of 88 snoRNAs detected from a
16 year old sample (collected in 1996) and a 4 year old sample (collected in 2008). Correlation
coefficients� 0.8 from raw counts (a) and> 0.9 from batch adjusted normalized counts (b)
indicate that the snoRNAs are stable in FFPE samples.
(TIF)

S1 Table. Raw and normalized counts of snoRNAs. The sequenced and aligned data files (.
bam files) were analyzed using PGS. The raw files were normalized using RPKM method
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which was adjusted for batch effects using ANOVA model. snoRNAs were further filtered for
read counts: only snoRNAs with� 10 read counts in at least 90% of the samples were retained
for further analysis. Raw and normalized counts (for all the snoRNAs and for the filtered snoR-
NAs) obtained from the CC approach are summarized in S1A–S1C Tables and those obtained
from the CO approach are summarized in S1D–S1F Tables.
(XLSX)

S2 Table. List of 40 differentially expressed snoRNAs. snoRNAs filtered for read counts in
the CC approach were subjected to one-way ANOVA test to identify differentially expressed
snoRNAs with fold change> 2.0 and FDR cut off� 0.05. Forty snoRNAs were differentially
expressed; 9 showed up-regulation and 31 showed down-regulation in tumors, relative to nor-
mal tissues.
(PDF)

S3 Table. List of snoRNAs with prognostic relevance for breast cancer. In the CO approach,
twelve and ten snoRNAs were identified for OS and RFS, respectively with permutation p-
value� 0.1. The snoRNAs identified in the CO approach encompassed all the snoRNAs identi-
fied in the CC approach for both OS (n = 5) and RFS (n = 4) and are highlighted in red.
(PDF)

S4 Table. List of snoRNAs embeddedwithin protein-coding genes and snoRNAs harboring
miRNAs and piRNAs. snoRNAs are known to arise from the intronic regions of protein-cod-
ing and non-protein-coding genes. In this study, we observed that of the 768 snoRNAs profiled
from breast tissues, 449 snoRNAs (i.e.,> 50%) mapped to the intronic regions of protein-cod-
ing genes (S4A Table). S4B and S4C Table represent snoRNAs harboring miRNAs and piR-
NAs, respectively.
(XLSX)

S5 Table. Gene ontology terms associatedwith genes targeted by piRNAs embeddedwithin
snoRNAs.
(PDF)
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