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Abstract

Motivation: Skeletal diseases are prevalent in society, but improved molecular understanding is

required to formulate new therapeutic strategies. Large and increasing quantities of available skel-

etal transcriptomics experiments give the potential for mechanistic insight of both fundamental

skeletal biology and skeletal disease. However, no current repository provides access to processed,

readily interpretable analysis of this data. To address this, we have developed SkeletalVis, an ex-

ploration portal for skeletal gene expression experiments.

Results: The SkeletalVis data portal provides an exploration and comparison platform for analysed

skeletal transcriptomics data. It currently hosts 287 analysed experiments with 739 perturbation

responses with comprehensive downstream analysis. We demonstrate its utility in identifying both

known and novel relationships between skeletal expression signatures. SkeletalVis provides users

with a platform to explore the wealth of available expression data, develop consensus signatures

and the ability to compare gene signatures from new experiments to the analysed data to facilitate

meta-analysis.

Availability and implementation: The SkeletalVis data portal is freely accessible at http://phenome.

manchester.ac.uk.

Contact: jamie.soul@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Skeletal disease affects millions of the adult population, causing a

huge burden on healthcare systems (Cross et al., 2014). This

includes common polygenic forms of joint disease such as osteoarth-

ritis (OA) and rheumatoid arthritis (RA) and the rare monogenic

skeletal conditions. Despite years of research there are no disease

modifying drugs for osteoarthritis and other skeletal diseases

(Karsdal et al., 2016). There is a critical need to understand the

underlying molecular mechanisms to find potential therapeutic tar-

gets. Transcriptomics analysis of diseased cells or tissues gives us

insight into altered expression of genes which are potentially causing

an individual disease. There is a large and growing amount of pub-

licly available expression data from microarray and more recently

RNA-Seq for skeletal disease (Steinberg and Zeggini, 2016). These

datasets are analysed to produce lists of differentially expressed

genes and derive broader functional information such as enriched

pathways. For instance, we have previously used transcriptomics

data to understand the altered processes in osteoarthritis cartilage

damage and other researchers have characterized mouse models of

rare skeletal diseases using transcriptomics (Cameron et al., 2011;
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Dunn et al., 2016; Soul et al., 2018). Despite the use of global tran-

scriptomics, papers describing these experiments only focus on a

fraction of the information within these datasets. Extended use of

this existing data would allow exploration and mining for new over-

looked features. With the increased coverage of annotations for

pathways/transcription factors and improved methods of analysis,

re-analysis of these datasets may identify new features (Wadi et al.,

2016). Furthermore, consistent analysis and integration of the data

would allow identification of similarities between new and existing

datasets, allowing for sharing of knowledge between diseases and

experimental models, identification of shared pathogenic mecha-

nisms and giving the potential for re-purposing of therapeutics and

identification of new experimental models.

The differentially expressed genes and downstream analysis (e.g.

enriched pathways) generated from an experiment generally only

exist as Supplementary Tables in the original publication creating a

barrier to the reuse and integration of these datasets. Furthermore,

the inconsistent methods used in analysis of the published transcrip-

tomics data render robust direct comparison of datasets challenging.

An increasing number of researchers are depositing their raw tran-

scriptomic data in public transcriptomics repositories such as

ArrayExpress and GEO that provide the transcriptomics data and

meta-data needed to re-analyse the data (Edgar, 2002; Kolesnikov

et al., 2015).The EBI Expression Atlas has begun to analyse existing

transcriptomics data and offers exploration of selected public data-

sets with differential expression analysis and basic pathway analysis

(Papatheodorou et al., 2018). However, as this database is un-

focused on a particular area of biology it has poor coverage of the

available skeletal disease data and offers no way to compare expres-

sion responses between experiments or generate consensus signa-

tures for further analysis. The CREEDS portal allows comparison of

query gene expression signatures against a large database of GEO-

derived signatures, but does not allow assessment of the quality and

exploration of the underlying datasets (Wang et al., 2016).

Furthermore, this search engine relies on automatic identification of

the perturbation and the control samples, which although very scal-

able, is less accurate than human curation. As with Expression Atlas

there is poor coverage of skeletal disease-related datasets.

With the growing repository of skeletal disease transcriptomic

data available there is now the opportunity to systematically analyse

and integrate this data. Specialized repositories exist for diseases

such as cancer, but none currently exist for skeletal disease to make

use of this data (Bowman et al., 2017). We have therefore developed

a web-application to allow exploration and comparisons of publicly

available skeletal disease transcriptomics data in order to analyse

the pathology and predict the active mechanisms driving skeletal dis-

ease. The SkeletalVis data-portal avoids the requirement for bench

scientists to download raw data and re-analyse every dataset needed

in a comparison. We highlight its utility in exploring this data, iden-

tifying the similarities between skeletal disease models and skeletal

genetic perturbations and elucidation of potential therapeutic targets

for groups of similar expression responses. The SkeletalVis data por-

tal is freely available at phenome.manchester.ac.uk.

2 Materials and methods

2.1 Identification and annotation of skeletal

transcriptomic datasets
The ArrayExpress and GEO databases and the linked European nu-

cleotide archive (ENA) and sequence read archive (SRA) data reposi-

tories were searched for keywords relating to skeletal cell types and

skeletal disease (Supplementary Table S1) (Leinonen et al.,

2011a,b). These results were filtered to keep only those experiments

using whole genome mRNA transcriptomics with raw data available

for the commonly studied species of Cow, Human, Mouse, Pig and

Rat. Experiments were annotated by the experimental platform, the

tissue under study, the type of experimental perturbation and with a

concise description of the experiment. Comparisons (contrasts) to

perform within each experiment were identified manually through

the provided meta-data and corresponding publication (if available)

for each experiment.

2.2 Transcriptomics analysis pipeline
A Galaxy pipeline was used to analyse the identified experiments in

a high-throughput manner. Where available existing tools were used

from Galaxy tool-shed, otherwise RGalaxy (v1.22.0) was used to

create bespoke tools (Afgan et al., 2016). These modules were linked

together to create a flexible pipeline for the analysis of microarray

or RNA-seq data. For RNA-seq the raw data and meta-data were

downloaded from ENA/SRA. Pseudo-alignment and qualification of

reads was performed with Kallisto (v0.43.0) using the Ensembl tran-

scriptome reference (release 79) for the appropriate species (Bray

et al., 2016). MultiQC (v1.4) was used to generate summary reports

of the FastQC (v0.11.5) read statistics and Kallisto mapping logs for

quality control (Ewels et al., 2016). Tximport (v1.6.0) was used to

summarize the mapped transcript level counts to gene level (Soneson

et al., 2016). For microarray experiments, the unnormalized data

and meta-data were downloaded from GEO or ArrayExpress.

Normalization was performed using the robust mean average for

Affymetrix arrays and quantile normalization for Illumina and

Agilent arrays. Probesets were collapsed to the median value to pro-

vide a representative level of expression. Poor quality samples that

are either mentioned in the corresponding publication or based on

quality control data were removed to ensure robust gene expression

signatures.

Batch effect has previous been established as a confounding fac-

tor in differential expression analysis. For both RNA-seq and micro-

array data, unless experimental batches were explicitly stated in the

experimental meta-data they were inferred using sva (v3.26.0) with

automatic identification of the number of surrogate variables (Leek

et al., 2012). For visualization of the experimental samples by prin-

cipal component analysis (PCA) the surrogate variables were

regressed from the expression matrix before PCA. Limma (v3.34.9)

and DESeq2 (v1.18.1) were used to calculate fold-changes and

P-values between the comparisons in each experiment for micro-

array and RNA-Seq experiments, respectively (Love et al., 2014;

Ritchie et al., 2015). Where insufficient replicates (<3) were avail-

able in an experiment only the fold-changes were calculated. The

surrogate variables were incorporated as co-variants in the limma or

DESeq2 statistical models to correct for the identified batch effects.

Independent filtering based on mean gene-wise microarray intensity

or RNA-seq read count was used to minimize false-positive differen-

tially expressed genes, as implemented in the genefilter package (the

default procedure in DESeq2), with automatic selection of the ex-

pression filtering threshold based on the number of differentially

expressed genes (Bourgon et al., 2010). Benjamini-Hochberg correc-

tion was performed on the resulting P-values to account for multiple

testing. As an alternative method for identifying differentially

expressed genes, the characteristic direction method as implemented

in GeoDE (v1.0) was used with the batch effect corrected count/in-

tensity matrix using a threshold of the top 500 influential genes as

previously used (Clark et al., 2014). As a quality control check,
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where published, the transcriptomics results were checked to ensure

they were broadly similar to the re-analysed data with differentially

expressed genes mentioned in the corresponding publication dysre-

gulated in our analysis.

Differentially expressed genes from RNA-seq and microarray

experiments were further analysed in a common downstream pipe-

line. For enrichment-based methods, differentially expressed genes

were defined with combinations of absolute fold-change (none, 1.5

or 2) and an adjusted P-value (none, 0.05) thresholds. Pathway

(PathwayCommons) and gene ontology biological process (GOBP)

enrichment was performed using goseq (v1.30.0) (Ashburner et al.,

2000; Cerami et al., 2011; Young et al., 2010. Significant pathways

and GOBP terms were defined with an adjusted P-value�0.05

threshold. Redundancy of the pathways was reduced with the set

cover algorithm (Stoney et al., 2018). Redundancy reduction of the

GOBP terms was performed using the Revigo algorithm with the

Resnick semantic similarity threshold set to 0.4 (Supek et al., 2011).

Significantly enriched transcription factors based on motif occur-

rence in the differentially expressed genes were identified by

RcisTarget (v0.99.0) for mouse and human experiments (Aibar

et al., 2017).

For network analysis the human STRINGDB (v10.5) and the

BioGrid (v3.4.162) protein-protein interaction networks were used

with Ensembl ortholog mapping for other species. The STRINGDB

network was filtered using an edge confidence threshold of>400 to

remove low quality interactions and text-mining derived edges were

removed. The largest connected components were retained for both

networks (von Mering et al., 2003). Active sub-networks (de novo

pathways) were identified using the ranked list of differential expres-

sion data and the GIGA algorithm with a maximum sub-network

size of 10 (Breitling et al., 2004). GO enrichment of the genes in the

sub-network was used to identify the function of the sub-network.

To identify potential drugs that could reverse or mimic the

observed differential expression the LINCS L1000 perturbation

database, accessed with the L1000CDS2 API, was used to find over-

lap between the gene expression signatures (Duan et al., 2016). To

annotate molecular targets of the enriched drugs the PubChem

BioAssay Database was queried to find proteins which each drug

has activity against (Wang et al., 2012).

Code for the pipeline and post-processing of the data can be

found at www.github.com/soulj/SkeletalVis-Pipeline

2.3 Expression similarity
To allow comparison of the gene expression across species, all genes

symbols were mapped to human gene symbols using Ensembl ortho-

logs. Genes not measured in an experiment were regarded as NA.

Four measures of gene expression similarity were calculated to allow

comparison which considers the direction of the fold-change.

The signed Jaccard index for two signatures Si and Sj is

defined as:

SJðSi; SjÞ ¼
JðSup

i ; S
up
j Þ þ JðSdown

i ; Sdown
j Þ � JðSup

i ; S
down
j Þ � JðSdown

i ; Sup
j Þ

2

where Sup and Sdown refer to the up- and down-regulated genes

respectively.

This measure was calculated with the gene expression signatures

defined with (i) a 1.5-fold change threshold, (ii) a 1.5-fold change

threshold and an adjusted P-value�0.05 threshold and (iii) the

characteristic direction genes.

The cosine similarity measure (the cosine of the angle between

two expression vectors) was also calculated using the fold-changes

of each perturbation response as an alternative to the set overlap-

based measures.

2.4 t-Distributed stochastic neighbour embedding

visualization of signature similarity
t-Distributed stochastic neighbour embedding (t-SNE) implemented

in Rtsne (v0.13) was run 1000 times with a perplexity of 10 and the

clustering solution with the lowest KL divergence was selected

(Maaten and Hinton, 2008). dbscan (v1.1.1) clustering with the size

of the epsilon neighbourhood set to 2.5 was used to colour groups

of density in the plot (Ester et al., 1996). The groups were labelled

based on representative descriptions of the perturbations within the

groups.

2.5 Identification of perturbation group consensus

signatures and enriched drugs
Consensus signatures were generated for each of the t-SNE perturb-

ation groups by applying the RankProd (v3.4) rank product method

to perturbation gene log ratios in each group (Del Carratore et al.,

2017). Genes with a percentage of false-positive predictions�0.05

were used to identify enriched mimic and reverse drugs signatures

using the LINCS L1000 drug signatures as described earlier.

2.6 Web interface
SkeletalVis is an interactive web-based tool which can run on any

common browser such as Chrome, Firefox and Safari. The web ap-

plication is implemented using the R Shiny framework designed to

display the output of the Galaxy pipeline as well as the processed ex-

pression similarity data. The application makes use of datatables

(v0.2) for responsive tables to allowing fluid data exploration and

enrichR (v1.0) to identify enriched pathways from user generated

consensus signatures. Interactive visualization of graphs and net-

works was implemented with plotly (v4.7.1) and visNetworks

(2.0.1). Single, global loading of the data ensures a responsive appli-

cation. Code for the web interface can be found at www.github.

com/soulj/SkeletalVis-Shiny

3 Results

3.1 Re-analysis of skeletal transcriptomics data
Our overall approach was to use a high-throughput, transcriptomics

pipeline to analyse existing skeletal disease transcriptomics data.

Searching for relevant datasets in ArrayExpress and GEO identified

287 experiments (Supplementary Table S2). Analysis of the raw

data through the transcriptomics pipeline generated 739 expression

response profiles with quality control and PCA plots, differential ex-

pression and comprehensive downstream analysis comprising of

pathway, active sub-network, GO Term, drug, transcription factor

enrichment (Supplementary Fig. S1). Annotation of these datasets

revealed a variety of platforms, species and experimental design

types (Fig. 1). The majority of datasets was from human and mouse

reflecting the focus on use of both human tissue and mouse models

for the study of skeletal disease and showing need for cross-species

analysis. Affymetrix was the most common array type and there is a

growing number of RNA-Seq (Illumina)-based datasets.

3.2 Recovery of prior knowledge and assessment of

bias
Expression similarity is a useful tool to find related biological

responses to perturbations thereby identifying diseases that
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potentially share similar mechanisms. A recurrent barrier to this

type of analysis is the heterogeneous experimental platforms used to

measure the gene expression (Leek et al., 2012). To investigate

wherever there is strong bias in expression similarity of the analysed

comparisons due to the experimental platform, we compared the

similarity rank of experiments within the same platform compared

with different platforms (Supplementary Fig. S2A). No strong global

bias was observed in the similarity of perturbations within plat-

forms. Likewise, no strong global similarity between perturbations

within the tissue under study was observed, but a stronger bias was

seen between species, possibly due to the nature of the experiments

performed in the different species (Supplementary Fig. S2B and C).

To validate the expression similarity analysis, sets of experiments

examining well-defined, related experimental perturbations that

would be expected to have a shared expression response were

selected i.e. same gene perturbation, exogenous treatment or disease

(Supplementary Table S3). For each set of experiments the rank

based on the four genes expression similarity measures (see meth-

ods) of the annotated experiments was calculated (Supplementary

Fig. S3). Despite differences in the experimental set-up of the related

experiments, the annotated datasets were among the most similar in

the database, suggesting we can recover prior biological knowledge.

The characteristic direction measure showed the best performance

with these datasets consistent with a previous assessment against

limma-based differential expression analysis (Wang et al., 2016).

These findings suggest that the strength of the biological signal from

the perturbations is sufficient to identify related experiments with

shared biological mechanisms.

3.3 Identifying signature associations in skeletal biology
Associations between single gene perturbations and other transcrip-

tomic responses can imply upstream regulation or shared signalling

cascades. Transcriptomic signatures from gene perturbation experi-

ments were examined to find the top pairwise similar expression

responses to highlight examples of association identification enabled

by this re-analysis of the transcriptomic datasets (Supplementary

Table S4). Several examples which demonstrate cross-species

in vitro and in vivo response similarity are shown (Table 1). The

perturbation signature from mouse Eed knockout in rib cartilage

shows similarity to mouse Ezh2 knockout growth plate zones, both

components are part of the Polycomb repressive Complex 2 which

methylates target genes (Mirzamohammadi et al., 2016; Lui et al.,

2016). The Eed knockout signature also shows similarity to the

in vitro human chondrocyte de-differentiation expression responses.

The androgen receptor knockout mice signature is similar to the oes-

trogen receptor knockout (Kondoh et al., 2014; Russell et al.,

2012). Interestingly, two skeletal disease mouse models also show

similarity to the androgen receptor knockout; the Phex-deficient

Hyp mouse model of X-linked hypophosphatemia and the AHSG

knockout model of model of slipped capital femoral epiphysis

(SCFE) (Brylka et al., 2017). Likewise, inhibition of the DOTL1

methyltransferase shows similarity to several inflammatory datasets

(Monteagudo et al., 2017). These results suggest that by examining

the similarities between cross-species skeletal transcriptomic

responses from gene perturbations we can both recover known rela-

tionships and identify novel associations for future experimental

validation.

To further explore the gene expression signatures we applied the

t-SNE algorithm to visualize the characteristic direction derived sig-

natures distance matrix, enabling a global overview of the skeletal

disease transcriptional landscape and exploration of groups of

related experimental perturbations. The resulting plot shows the

heterogeneous perturbations broadly separate into groups of related

perturbations with similar expression responses (Fig. 2). Several of

the groups demonstrate the ability of this analysis to highlight-

related experiments (Supplementary Table S5). For instance, several

rheumatoid arthritis datasets are clustered together (Group 8).

Similarly many short-term cytokine stimulated tissue perturbations

form a group (Group 6).This analysis also highlights the ability to

identify cross-species groups of profiles. For example, the model OA

group (Group 35) includes a diverse collection of cross-species

osteoarthritis animal model perturbations such as the mouse surgical

destabilization of the medial meniscus post-traumatic model of OA

and the rat metabolic model of OA with monoiodoacetate treatment

(Burleigh et al., 2012; Korostynski et al., 2018; Loeser et al.,

2013).These results suggest similarity in the expression response and

Fig. 1. Summary of analysed expression perturbations

Table 1. The top pairwise similar characteristic direction expres-

sion responses for selected gene perturbations. Unless stated per-

turbations are relative to wild type/control conditions

Perturbation Accession Species Signed

Jaccard

Eed knockout GSE66862 Mouse

Ezh knockout GSE84198 Mouse 0.0574

Superficial versus deep

zone cartilage

E-GEOD-54216 Rat 0.0563

Dedifferentiating

chondrocytes

GSE42235 Human 0.0447

mOL-AR knockout E-MTAB-1123 Mouse

AhsgHET versus Ahsg WT GSE105139 Mouse 0.0579

Hyp females versus Wildtype

females

GSE5657 Mouse 0.0574

Estrogen Receptor alpha

knock-out

GSE41997 Mouse 0.0495

DOT1L inhibition GSE77916 Human

Galectin 1 treatment E-GEOD-68760 Human 0.0400

Galectin3 treatment GSE85254 Human 0.0315

IL-1 and glucosamine

treatment

E-GEOD-6119 Rat 0.0311
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shared mechanisms of action in these different models of induced

osteoarthritis leading to the degradation of cartilage.

To identify compounds potentially capable of mimicking or

reversing the observed differential expression in the identified per-

turbation groups, we generated rank-product consensus signatures

and performed drug enrichment analysis (Supplementary Tables S6–

S8). A group of in vitro histone deacetylase (HDAC) inhibitor per-

turbations corresponded with several HDAC inhibitor drug signa-

tures (Table 2). An activator of PKC, part of the cytokine signalling

cascade, was predicted to mimic the cytokine stimulation responses.

Several drugs were found to have an opposite transcriptomic re-

sponse in skeletal disease-related groups. For instance, in the model

osteoarthritis group MEK1/2 and PI3K inhibitors were identified

among the top reverse drug signatures. These results suggest we can

generate robust consensus signatures from groups of transcriptomic

signatures to both recover known signalling pathways and predict

potential therapeutic targets.

3.4 SkeletalVis web portal
3.4.1 Exploration module

To enable future exploration and comparison of these data we con-

structed an interactive data-portal, SkeletalVis. SkeletalVis is com-

posed of exploration and comparison modules as well as a detailed

help section (Supplementary Fig. S4a). The exploration section of

the data portal allows visualization of the detailed analysis

(Supplementary Fig. S4b). To illustrate the utility of the exploration

module we selected a well-characterized experiment investigating

the expression profile of a Col10a1 knock-in mutation mouse,

which is a model of the Metaphyseal chondrodysplasia type Schmid

(MCDS) form of dwarfism (GSE30628) (Cameron et al., 2011). An

experimental table shows the available experiments with the ability

to sort, search and filter the table to find an experiment of interest

(Supplementary Fig. S4c). From a chosen experiment the user can

view and then select a comparison associated with that experiment

to load the data in the other tabs (Supplementary Fig. S4d).

Once an experiment and comparison are loaded, quality control

summaries including heatmaps allow the user to quickly assess the

quality of the data (Fig. 3a). The data portal allows searching of the

differential expression table with fold-changes and adjusted P-values

(Fig. 3b). This table can be searched to find particular genes and can

be filtered with a user defined thresholds to identify differentially

regulated genes. All tables in the data portal can be copied or

exported as text files for use with external tools. SkeletalVis pro-

vides detailed downstream analysis with enriched pathways, drugs,

transcription factors, which can be viewed in interactive tables to

identify the key dysregulated biological processes. As GO enrich-

ment is often difficult to interpret, we use interactive multi-

dimensional scaling plots based on the semantic similarity of the

ontology terms to group-related terms together allowing a quick

overview of the perturbed processes (Fig. 3c). Active sub-networks

can be viewed as interactive networks coloured by fold change

which often give more sensitive analysis compared with standard

pathway enrichment analysis (Fig. 3d). For the MCDS experiment

pathways, transcription factors and active sub-networks relating to

endoplasmic reticulum stress and the Atf4 transcription factor are

consistent with the findings reported in the corresponding

publication.

The shared response tool shows pre-calculated expression simi-

larities to every other comparison in the data portal using the four

above described measures. This module is of use for both quality

Fig. 2. t-SNE visualization of skeletal expression signatures using the charac-

teristic direction signature distance matrix. Groups of perturbations are

labelled and coloured by regions of density identified using dbscan

Table 2. Top mimic or reverse drugs for selected perturbation groups. Enriched drugs with nominal targets and overlap scores were found

using the LINCSL1000 CDS database for the t-SNE perturbation group consensus signatures. The enriched drugs act as inhibitors of the

indicated targets unless otherwise stated

In vitro group Broad annotation Top mimic drugs Target Score

6 Cytokine Ingenol 3, 20-dibenzoate PKC activator 0.0534

33 HDAC inhibition Vorinostat HDACs 0.0933

Disease Group Top reverse drugs Nominal target Score

8 RA Curcubitacin I JAK/STAT3 0.0389

15d-PGJ2 PPARG activator 0.0354

Bortezomib Proteasome 0.0349

11 Osteoarthritis Narciclasine Apoptosis 0.0659

Manumycin A Ras 0.0579

Salermide SIRT1/2 0.0568

35 Animal models Osteoarthritis Selumetinib MEK1/2 0.0574

TG101348 PI3K 0.0549

BMS-536924 IGF1R 0.0544
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assurance in ensuring the expression response is similar to a related

experiment, and for discovery of novel associations between disease

and genetic/exogenous perturbations. The genes overlapping with

each expression measure are shown and histograms show the distri-

bution of the similarity scores. In the MCDS comparison data,

among the top hits is an independent profile from mice with the

same causative mutation knock-in and a profile from an alternative

transgenic mouse model in the same causative Col10a1 gene, allow-

ing consensus signatures to be developed (Fig. 3e).

3.4.2 Comparison module

The comparisons module allows for comparison of newly generated

data to the experiments analysed in SkeletalVis. Gene signatures

(up- and down-regulated genes) identified from an experiment out-

side the data portal can be compared with the differential expression

and characteristic direction signatures within the portal. Overlap of

the genes between the signatures is shown to allow focus on shared

genes, allowing identification of novel associations between data-

sets. To illustrate the utility of this module the gene expression sig-

nature reported in the recent paper examining bone lesions in

osteoarthritis was queried against the signatures in the data portal

(Supplementary Fig. S5) (Kuttapitiya et al., 2017). Among the most

similar experiments is a study on subchondral bone in an osteoarth-

ritis surgical mouse model suggesting that cross-species similarities

in the signatures can be observed. The module highlights the over-

lapping genes including THBS4 known to be involved in pain sensi-

tization which is highlighted in the corresponding publication. The

comparison module can also be used identify experiments where a

particular gene is dysregulated, to identify exogenous perturbations

that modulate the expression of that gene or finding other diseases

where that gene is dysregulated. For example, searching for THBS4

reveals human osteoarthritis datasets where THBS4 is also up-

regulated illustrating how SkeletalVis allows rapid cross-species

comparison of newly available gene expression responses against

this existing repository of knowledge.

4 Discussion

With the expanding expression data available for the study of skel-

etal disease, SkeletalVis collates 287 cross-species skeletal transcrip-

tomic experiments and is an intuitive data-portal to allow

exploration and meta-analysis. This consolidation of complex data

to an accessible format is crucial to gaining meaningful information

from the large numbers of datasets. Through our analysis of gene

perturbation response associations we have highlighted several

examples of links between cross-species in vitro and in vivo experi-

ments. For instance, our findings suggest that modulation of the pol-

ycomb repressive Complex 2 role could be targeted to modulate the

chondrocyte de-differentiation gene expression signature that occurs

with culturing chondrocytes for future cell therapy to treat cartilage

degeneration (Ma et al., 2013). The comparisons of expression pro-

files from the SCFE model, Hyp and hormone signalling perturba-

tions have not been previously reported but AHSG is a known

transcriptional target of ERa and these findings are consistent with

suggestions it is a hormonal balance driven skeletal disorder (Qiu

et al., 2014; Witbreuk et al., 2013).

We identified groups of similar signatures and identified

enriched drug responses in consensus signatures to demonstrate the

ability of this analysis to find regulators of core differentially

expressed genes in groups of transcriptomic responses. Although the

drug response signatures are derived from treated cancer cell lines

rather than skeletal cell types, several of the highlighted top drug

predictions are support by previous studies. In the RA group, the

predicted reverse drug targets JAK/STAT3 and the proteosome are

known inflammatory mediators (Elliott et al., 2003; Schwartz et al.,

2017). PPARc has previously been suggested as a potential thera-

peutic target in RA (Ormseth et al., 2013). In the model OA group,

pharmacological MEK and PI3K inhibition protected against cartil-

age damage in rabbit and mouse OA models respectively (Lin et al.,

2018; Pelletier et al., 2003). In the OA cartilage group, the enriched

drug narciclasine reduced joint destruction in a rat model of arthritis

(Lubahn et al., 2012). Interestingly, Salermide a Sirt1/2 inhibitor is

an enriched reverse drug in the OA cartilage group consensus signa-

ture and in several individual studies examining human intact OA

versus non-OA cartilage within that group. Evidence from in vivo

mouse studies suggests that that Sirt1/2 activity is protective in OA

(Matsuzaki et al., 2014). This expression overlap may therefore rep-

resent activation of the protective Sirt1/2 pathway in the intact OA

cartilage. These data therefore allow development of many hypothe-

ses to be followed up with new data and functional studies.

The aim of SkeletalVis is not to replace existing tools such as

ExpressionAtlas, but to provide a more specialized repository for

skeletal disease researchers with extended downstream data ana-

lysis. For example, searching for the common skeletal disease osteo-

arthritis in ExpressionAtlas returns only 3 experiments compared

with 30 in SkeletalVis. Several existing cancer expression specific

databases such as GlioVis focus on integration of survival and som-

atic mutation data with expression data which is not generally ap-

plicable for skeletal diseases (Bowman et al., 2017). Instead,

SkeletalVis offers added value in coverage of skeletal datasets and

considerably more in-depth down-stream analysis with network

analysis and integration with databases such as LINCS L1000 and

also includes the ability to compare expression profiles. This data

portal is of wide use to skeletal biology/disease researchers as it can

be used to rapidly screen for evidence of target gene dysregulation in

skeletal development and disease, and also to identify perturbations

that can be modulated to altered expression activity of these targets

in a skeletal cellular context. The portal will be useful for priori-

tization of identified differentially expressed genes for experimental

Fig. 3. Analysis of MCDS mouse model with SkeletalVis. SkeletalVis provides

quality control (a), differential expression analysis (b) with detailed down-

stream analysis including GO term enrichment (c) and network analysis (d).

The shared gene expression responses can be readily examined (e)
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validation and for initial functional characterization of novel dis-

ease-associated genes identified through genome-wide association

studies, allowing understanding of potential functions of the genes

in context of skeletal tissues. Not all included studies have sufficient

replicates to calculate the statistical significance of the altered ex-

pression. Although these studies can be readily filtered from the

tables, these studies often describe unique perturbations in the data-

base and may be useful for researchers interested in finding shared

perturbations for further experimental validation. Curation efforts

to make a context-specific database are likely to produce more im-

mediately relevant results for users than generic databases. Although

gene expression responses can be shared with non-skeletal tissues,

the specialized nature of the skeletal tissues makes investigating per-

turbations within the same biological system more useful. The ap-

proach herein is likely to be of interest to many investigators

building context-specific omics databases. The developed pipeline

and app can be deployed in other areas of biological interest and

this collection of data with known perturbations will be useful for

development and validation of methods for analysing skeletal tran-

scriptomics data.

As new expression data becomes available in public repositories

this data can readily be analysed and integrated into the web plat-

form. Similarly, as new methods of analysis are developed these can

be performed on these collection of datasets. Future updates could

include integration of further omics data such as non-coding tran-

scription, proteomics and epigenetic data so to investigate the inter-

play of multiple regulatory layers.
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