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ABSTRACT
Marburg virus (MARV) has been a major concern since 1967, with two major outbreaks occurring 
in 1998 and 2004. Infection from MARV results in severe hemorrhagic fever, causing organ 
dysfunction and death. Exposure to fruit bats in caves and mines, and human-to-human transmis
sion had major roles in the amplification of MARV outbreaks in African countries. The high fatality 
rate of up to 90% demands the broad study of MARV diseases (MVD) that correspond with MARV 
infection. Since large outbreaks are rare for MARV, clinical investigations are often inadequate for 
providing the substantial data necessary to determine the treatment of MARV disease. Therefore, 
an overall review may contribute to minimizing the limitations associated with future medical 
research and improve the clinical management of MVD. In this review, we sought to analyze and 
amalgamate significant information regarding MARV disease epidemics, pathophysiology, and 
management approaches to provide a better understanding of this deadly virus and the asso
ciated infection.

ARTICLE HISTORY
Received 26 January 2022  
Revised 10 March 2022  
Accepted 13 March 2022  

KEYWORDS
Marburg virus; 
epidemiology; 
pathogenicity; transmission 
dynamics; cellular tropism; 
virulence

Introduction

Marburg virus (MARV) causes deadly outbreaks with 
a high fatality rate. It is responsible for several outbreaks 
since its concurrent discovery and characterization in 
1967 in Marburg, Germany; Frankfurt, Germany; and 
Belgrade, Yugoslavia (now Serbia). The majority of the 
MARV outbreaks occurred in Africa. MARV is into the 
NIAID Category A Priority Pathogen list, and is the 
primary cause of MARV disease (MVD) [1]. MVD is 
deadly and often becomes untreatable in humans and 
non-human primates (NHPs), resulting in hemorrhagic 
fever and organ dysfunctions, such as liver failure, the 
infection of the spleen, brain, and renal tissues, and coa
gulation problems throughout the body [2,3].

This virus belongs to the order Mononegavirales, the 
family Filoviridae, and the genus Marburgvirus. This 
genus only includes one species, named Marburg 

marburgvirus, generally known as Marburg virus [4]. 
Various studies have shown that MARV has five different 
lineages based on the phylogenetic analysis of genomic 
sequence data obtained from samples collected during dif
ferent outbreaks [4,5]. These lineages have been reclassified 
into two separate viruses: the Ravn virus (RAVV) and 
MARV [4]. The human-to-human transmission character
istics of MARV are similar to those of the better character
ized Ebolaviruses, including Ebola virus (EBOV) [6], Sudan 
virus, and Bundibugyo virus [7]. Due to the sporadic nature 
of MARV, distinguishing the natural reservoirs of this virus 
has been difficult. However, vigorous attempts and ongoing 
research have successfully determined the natural sources 
of this virus, which defines the viral transmission mechan
ism. The studies have substantiated that apart from 
Rousettus aegyptiacus bat species as the major natural 
source for MARV, Hipposideros caffer and some other 
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Chiroptera can also serve as natural sources of infection 
[8,9]. Currently available clinical data have suggested that 
MVD has three stages associated with distinct symptoms 
[10]. Laboratory findings have indicated that the primary 
target of the virus is mononuclear phagocytic cells, followed 
by the epithelial cells in various organs [11]. However, 
diverse human exposure to this virus and the unorganized 
nature of currently available information have served as 
impediments to both researchers and policy-makers 
attempting to design appropriate guidelines for combating 
this disease. Though some drugs or vaccines have been 
successfully developed for MVD, its malignancy is still 
a great concern [12].

This review elaborately describes the history of 
MVD outbreaks, summarizes available information 
regarding the viral structure and genome, and describes 
the known sources of MARV and the transmission 
methods of both natural source-to-human and human- 
to-human infection pathways. This review also 
describes the pathophysiology, cellular tropism, 
immune evasion, and sites of major damage within 
the host body to provide a better understanding of 
the pathogenesis of MVD. Currently available clinical 
findings and management approaches are also 
described to help researchers to make appropriate deci
sions in preparation for future MVD outbreaks. No 
methods have been approved for the control of MVD 
outbreaks, and numerous studies remain necessary to 
develop drugs or vaccines. Our review will help future 
researchers comprehend the background of this virus 
and provide a profound understanding of the mechan
ism of infection, which will facilitate the MARV disease 
management and designing of future drugs and 
vaccines.

Methodology

An organized literature search strategy was followed to 
find all the published articles, which reported outbreak 
history, genome sequence, structure, sources, patho
physiology, damaging prospects, cellular tropism, 
immune evasion, clinical findings, symptoms, transmis
sion, and management of Marburg virus. To retrieve 
the information, we thoroughly searched for relevant 
literature through Google Scholar, Scopus, and PubMed 
between 1967 and October 2021. We have developed 
some specific Boolean words based on our objective, as 
shown in Table 1. These words were developed by 
using outcome term, descriptive term, population 
term, and area term. Boolean words “AND”, as well 
as “OR” along with [All fields] and [MeSH terms] 
searching techniques were used for literature searching 
in Scopus and PubMed. Advanced search strategy has 

also been maintained in Google Scholar, and some 
adjustments have been made on the basis of all search 
engine requirements.

Genome and structure of Marburg virus

MARV is a pleomorphic virus which is observed in six, 
circular, U, rod-like and most commonly in filamen
tous shape [13]. Usually, MARV virions are of 80 nm in 
diameter and although their length varies greatly, the 
average length of a MARV virion is 790 nm [14]. The 
surface of the virion is shielded with 5 to 10 nm-long 
spikes placed at interludes of approximately 10 nm 
[13,15].

It is a non-segmented negative-sense virus which 
contains a 19.1 kb long RNA genome that encodes 
seven genes in the following linear order-3'-NP-VP35- 
VP40-GP-VP30-VP24-L-5' [16]. Each of these seven 
genes has a highly conserved transcription start and 
stop signal and also possess unconventionally long 
noncoding nucleotide sequence at the 3' and 5' extre
mities [16]. These noncoding regions containing cis- 
acting element play role in replication, transcription 
and also in DNA packaging [16,17]. All but two genes 
of MARV are segregated by 4–97 nucleotides long 
intergenic regions, the transcription stop signal of 
VP24 and the transcription start signal of VP30 gene 
share a five nucleotide long overlapping sequence 
UAAUU [18] (Figure 1).

All of the seven genes in the MARV genome are 
monocistronic [16] and are responsible for encoding 
the following seven structural proteins- Nucleoprotein 
(NP), Viral protein 35 (VP35), Viral protein (VP40), 
Glycoprotein (GP), Viral protein 30 (VP30), Viral pro
tein 24 (VP24) and Large Protein (L). The genome of 
MARV is encapsulated with a nucleocapsid complex 
made up of four structural proteins- NP, VP35, VP30 
and L [19]. NP is the major nucleocapsid protein which 
forms a tubular helical structure which interacts with 
VP35 and the resulting complex interacts with 
L [19,20]. Here the L protein functions as the RNA 

Table 1. Electronic database search algorithm.
Term Boolean keywords

Outcome Detection OR Identification OR Investigation OR Incident OR 
History OR Characterization OR Occurrence OR Rate OR 
Approaches OR Management OR Case OR Prospects OR 
Findings

Descriptive Outbreak OR Fatality OR Transmission OR Genome OR 
Structure OR Damaging OR Dissemination OR Cellular 
tropism OR Immune evasion OR Pathophysiology OR 
Clinical OR Symptoms OR Sources

Population Marburg Virus OR MARV OR Filovirus OR Filoviridae
Area Africa OR DRC OR Congo OR Angola OR South Africa OR 

Zimbabwe OR Kenya OR Uganda OR Europe OR Russia OR 
Germany OR Netherlands OR America OR USA
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dependent RNA polymerase and VP35 works as the 
polymerase cofactor [21]. All four nucleocapsid com
plex proteins play essential role in viral genome repli
cation and transcription. MARV contains a host 
derived membrane layer, which is spiked in regular 
intervals. These spikes, made up of heavily glycosylated 
protein (GP), are necessary for attachment to suscepti
ble host cells [15]. The inner matrix of the virion is 
formed by VP40 and is responsible for budding and 
association with matrix and nucleocapsid [22,23]. VP24 
shows interaction with both NP and other cellular 
membranes and is associated with the release of pro
geny virions from the cell [24]. Table 2 illustrates the 
functions and characteristics of the proteins in MARV.

Historical outbreaks and disease epidemiology

The first outbreak of MARV was documented in 
Marburg, Germany, in 1967, where scientists and 
laboratory technicians were doing experiments with 
tissue derived from African green monkeys 
(Chlorocebus aethiops), collected from Uganda in an 
attempt to produce vaccines for polio [43,44]. 
Concurrently, additional outbreaks erupted in 
Yugoslavia and Frankfurt. Electron microscopy was 
performed to identify and characterize the virus on 
plasma from infected guinea pigs, and it was named 
the “Marburg virus” [44].

The next documented MARV outbreak occurred in 
South Africa in 1975, which infected three people. The 
first individual became infected while traveling to 
Zimbabwe, and his companion and a nurse became 
infected through human-to-human transmission 
[45,46]. In 1980, a third outbreak of MARV was iden
tified in Kenya, where a male became infected following 
a visit to Kitum cave, and a doctor became infected 
while treating this individual [47]. Another small out
break occurred in Kenya in 1987, which resulted in the 
detection of a new strain of MARV. However, the only 
infected individual was a 15-years-old Danish boy who 
became infected 7 days after a visit to Kitum cave [48].

In 1988, 1990, 1991, and 1995, laboratory accidents 
resulted in occurrences of MARV infection in Russia 
(Table 3). The subsequent MARV outbreak took place 
between 1998 and 2000, in the DRC (Democratic 
Republic of the Congo), which was associated with 
154 total infections. Initially, young gold miners 
became infected during their mining work in the village 
of Durba, and the outbreak later spread to the nearby 
village of Watsa. At least nine genetically diverse 
MARV lineages were identified during this outbreak 
[8,49]. Another severe MARV outbreak took place in 
Angola’s Uige region, which was first identified in 
October 2004, and continued through July 2005. The 
outbreak was initially identified as due to the death of 
a hospital employee in Uige, and continued to spread 

Figure 1. Virion structure and genome organization of Marburg virus. Top, the Marburg virus structure along with depicting the 
structural proteins. Bottom, an illustration of the genome organization of the Marburg virus. This seven-gene strain of Marburg virus 
has been drawn roughly to scale. The light blue boxes indicate noncoding areas, as well as the colored box code regions for genes. 
The red arrows demonstrate the position of the transcriptional start signals, whilst the pale brown bars highlight conserved 
transcriptional stop signals. The genes are segregated by intergenic regions, indicated using black arrows, with the exception of the 
overlapping sequence (black triangle) between VP24 and VP30. At the extreme ends, the 3' and 5' trailer sequence is shown.
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through other provinces. The largest numbers of infec
tions and deaths associated with a single outbreak to 
date occurred during this outbreak, which resulted in 
252 infection cases and 227 deaths, representing 
a fatality rate of 90%. Clinical investigations revealed 
similarities between the genetic sequences of previously 
identified MARV isolates and those associated with the 
2004–2005 Angolan MARV outbreak [50].

To date, no other severe outbreaks have occurred 
following the 2004–2005 Angolan outbreak, apart from 
certain sporadic cases in various zones of the world. 
Four miners were infected in the gold and lead mines 
of Uganda’s Kamansanga district during mining 
operations in 2007 [51]. This outbreak occurrence of 
Uganda related to the two following MARV cases, the 
first one was found in the USA and the next one was 
found in the Netherlands (Figure 2). However, the US 
patient survived this MARV infection, but the Dutch 
patient died afterward (Table 3). Interestingly, these 

two individuals became MARV infected while travel
ing Uganda’s Maramagambo forest python cave 
[52,53]. Moreover, Uganda was the site of the next 
three epidemics (Figure 2). The first one occurred in 
the Kabale region of Uganda in 2012, lasting for three 
weeks, during which fifteen individuals became MARV 
infected, four of whom died later on. The genomic 
sequence of 2012 Uganda’s outbreak strain was similar 
to the formerly identified strain’s genomic sequences 
[54]. The following MARV outbreak also took place in 
Uganda in 2014, in the city of Kampala, when 
a healthcare worker became infected and passed away 
after a few days. This MARV strain also had simila
rities in genome sequences with the formerly deter
mined MARV strain’s genome sequences from 
Egyptian fruit bats [55]. Another recent epidemic 
occurrence of MARV took place in Uganda’s Kween 
region in 2017. In this outbreak, 4 people in the same 
family were infected with MARV and only one person 

Table 2. Marburg virus genes, proteins and their characteristics and functions.
Gene 
(sequence)

Gene/ORF 
length (nt)

Protein 
(abbreviation)

Amino 
acid Attributes Functions Ref.

NP (1) 2796/2088 Nucleoprotein 
(NP)

695 Component of RNP complex; 
phosphorylated; binds to VP35, VP40, 
VP30, and VP24;creates helical polymer 
by homo-oligomerization; second most 
found protein virions.

Formation of NC and cellular inclusion 
body; Encapsidation of RNA genome as 
well as antigenome; Replication and 
transcription; Budding

[25–27]

VP35 (2) 1557/990 Viral protein 
35 (VP35)

329 Components of RNP complex; 
homo-oligomerizes; weakly 
phosphorylated; binds to dsRNA, NP, 
and L.

Formation of NC; RdRp cofactor; Replicase 
transcriptase cofactor; IFN antagonist;

[25,28–30]

VP40 (3) 1405/912 Viral Protein 
40 (VP40)

303 Consists of two distinct functional 
modules; contains a late budding 
motif; homo-oligomerizes to form 
dimers, circular hexamers, octamers; 
binds ssRNA, VP35; hydrophobic; 
membrane-associated; most common 
proteins in virions and infected cells

Matrix component: Negative regulator of 
transcription and replication; Budding 
and host adaption; regulation of the 
morphogenesis of the virion and 
egress; hinders JAK-STAT pathway.

[25,31–33]

GP (4) 2846/2046 Glycoprotein  
(GP1,2)

681 Creates heterodimers using GP1 and GP2 

subunits; mature protein is found as 
a trimer of GP1,2 heterodimers; ability 
to insert into membranes; Acylated, 
prominently N- and O-glycosylated, 
phosphorylated; GP1,2 turns into 
soluble GP1,2Δ by ADAM17; Class 
I fusion and type I transmembrane 
protein

Attachment of virions to susceptible cells 
using cellular attachment factor: 
determination of cell and tissue 
tropism; Receptor binding; induction of 
virus-cell membrane; Tetherin 
antagonist; Function of GP1,2Δ is yet to 
be known.

[25,34]

VP30 (5) 1249/846 Viral protein 
30 activator 
(VP30)

281 Components of RNP complex; Highly 
phosphorylated; Contains a Zinc 
binding domain, and binds to ssRNA, 
NP and L

Formation of NC; Initiation, reinitiation 
and antitermination and enhancement 
of transcription.

[35,36]

VP24 (6) 1287/762 Viral protein 
24 (VP24)

253 Components of RNP complex; 
Membrane-associated;Homo- 
tetramerizes;Hydrophobic

Formation and maturation of NC; 
Negative regulation of transcription; 
regulation of replication; 
virion morphogenesis regulatory 
function; regulation of viral egress; 
Activation of cytoprotective responses.

[25,37–40]

L (7) 7745/6996 Large protein 
(L)

2331 Components of RNP complex; 
Homodimerizes; Binds to VP35, VP30, 
genomic and antigenomic RNA; mRNA 
capping enzymes.

Catalytic domain of RdRp; Replication of 
genome; Transcription of mRNA

[41,42]

Gene length and ORF length are collected from GenBank accession numbers NC_001608 (MARV). (RNP- Ribonucleoprotein; NC- nucleocapsid; dsRNA- double 
stranded RNA; RdRp- RNA-dependent RNA polymerase; IFN- interferon; ssRNA- single stranded RNA; JAK-STAT- Janus kinase-signal transducer and activator 
of transcription; ADAM17- ADAM Metallopeptidase Domain 17). 
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survived later. This strain’s genome sequences also had 
similarities with the previously identified strain [56]; 
however, the clinical findings associated with this out
break remain inadequate, and intense research is cur
rently ongoing.

Lastly, the most recent outbreak has been declared in 
Guinea in August 2021 and ended in September 2021, 
where one male got infected and died; but there are no 
data available regarding the strain [57,58].

The disease epidemiology of MARV, along with its 
case fatality rate is shown in Table 3, which were 
collected from all outbreak data associated with 
MARV infection.

Source and transmission of Marburg virus

Historically, numerous MARV strains have been iso
lated from both animals and humans. Animals, speci
fically bats are the natural reservoirs of MARV [9]. 
MARV strains were isolated from reservoir hosts in 

different courses of time to comprehend their genomic 
variations and disease pathogenesis. Moreover, the pre
sence of MARV in reservoir hosts have been substan
tiated through some laboratory tests, most specifically 
through PCR-positive tests. The number of isolated 
strains responsible for disease spread within the reser
voir host species at different year and country is shown 
in Figure 3 (Supplementary Table S1). Rousettus aegyp
tiacus species of bat most frequently acts as a reservoir 
of MARV, along with Hipposideros caffer and some 
unclassified Chiroptera as the minor sources. It is 
because the majority of the MARV strains were col
lected from Rousettus aegyptiacus species, which 
included 3 from Gabon in 2005 [68]; 1 from Kenya 
[69] and 10 from Uganda in 2007 [8]; 5 from Uganda 
in 2008 [8,70]; 1 from Gabon [71] and 16 from Uganda 
in 2009 [70]; 30 from Uganda in 2012 [72]; 1 from 
South Africa in 2013; 5 from Sierra Leone [73] and 1 
from South Africa in 2017 [74]; and 6 from Sierra 
Leone [73], and 2 from Zambia in 2018 [75]. 

Figure 2. Outbreak history of Marburg virus. The red color on the map demonstrates the occurrences of outbreaks associated with 
new strains of the Marburg virus. Primarily, MARV outbreaks have been identified in four countries in Africa: The Democratic Republic 
of Congo, Angola, Kenya, and Uganda. However, an outbreak in Zimbabwe was also associated with a novel strain of the Marburg 
virus, which caused an outbreak in South Africa. The yellow color on the map shows infections in which the source is known to have 
originated from another country. This type of outbreak occurred in Germany, the Netherlands, the USA, and South Africa. The green 
color shows the outbreaks associated with unintentional laboratory exposures. This sort of epidemic took place only in Russia.
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Figure 3. Number of MARV strains identified from reservoir bat species, which were responsible for the disease spread in different 
years and countries.

Figure 4. Transmission and spread of Marburg virus. Reservoirs of the Marburg virus, such as African fruit bats, can spread the virus 
among themselves by direct contamination, through sexual transmission, or due to biting. Direct contact with reservoir hosts or 
viral-contaminated fruit consumption may spread the virus to humans and non-human primates (NHPs). Transmission between 
humans and NHPs may occur through direct contact, and NHP-to-human transmission occurs due to bushmeat consumption and 
through direct contact. Direct contact and aerosols can facilitate both human-to-human and NHP-to-NHP transmission.
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Furthermore, 12 MARV strains were collected from 
unclassified Chiroptera in DRC in 1999 [9], and 1 
MARV strain was collected from Hipposideros caffer 
in Uganda in 2007 [8]. 

The bat-to-bat transmission of MARV strains may 
occur in several ways. A recent study that detected the 
shedding of MARV in rectal, oral, and urine samples 
from MARV-inoculated bats, also found that MARV is 
present in oral and blood samples of in-contact bats. 
This study proved the horizontal transmission of 
MARV from infected bats to the in-contact bats 
(Figure 4) [76]. The previous study found the presence 
of MARV in the lung, intestine, kidneys, bladder, sali
vary gland, and females’ reproductive tract tissues of 
inoculated bats, which helped to presume that MARV 
transmission may occur vertically or horizontally 
within the reservoirs [77]. It is also hypothesized that 
bat-to-bat transmission may occur through biting [7], 
sexual interactions [7,70], or by hematophagous arthro
pods [76].

Intermediate hosts, such as non-human primates 
(NHPs) and animals hunted for bushmeat, in addition 
to natural reservoirs, for example saliva, urine, and 
excrement of bat, are the primary vectors of MARV 
transmission. The transmitting paths from reservoir 
hosts to humans remain unknown [78,79]. However, 
it is possible that bat’s saliva, urine, and feces, as well as 
MARV-contaminated fruits, are the probable causes of 
transmission in humans as well as NHPs (Figure 4) 
[76,80]. Table 4 provides all of the known primary 
and secondary sources of MARV transmission, along 
with their infection pathways.

In the early stages, MARV may spread to humans 
by infected intermediate animals. Besides, MARV 
may transmit due to sexual intercourse within 
humans, since the presence of virus antigens in the 
semen of infected males has already been 

substantiated [78]. The studies on EBOV also sug
gested the persistence of EBOV RNA as well as infec
tious EBOV in semen after the patients’ recoveries 
from Ebola virus disease, which shares a similar 
human-to-human transmission dynamic as MVD 
[87–89]. Furthermore, the virus can transmit from 
one human to another due to direct contact with 
blood, as well as other body fluids, for example 
feces, saliva, urine, teardrops, mucous, and breast 
milk (Figure 4). Managing and providing healthcare 
service to the MARV infected patient, and inap
propriate handling of human corpses also leads to 
increased chances of MARV transmission [90]. 
Transmission has also been hypothesized to occur 
through the air during an outbreak, as the virus may 
survive aerosols [91], hence mucosal membranes are 
highly susceptible to viral transmission through the 
air (Figure 4). Apart from aerosol survival, an impor
tant study suggested that Lake Victoria MARV can 
also survive on liquids for longer periods, and on 
solids surfaces (plastics and glasses) for more than 3  
weeks at low temperature [92]. Therefore, fomite 
transmission of MARV can play an important role 
in virus spreading, especially during an outbreak. 
Other forms of MARV transmission include the 
breakdown of skin cells, and the parenteral or enteral 
introduction of drugs and foods [93].

Clinical findings and symptoms

Most available clinical data were obtained from a few 
large outbreaks, especially the 1967 outbreak of 
Germany and Belgrade of Yugoslavia, the 1998 to 
2000 outbreak of DRC, and the 2004 to 2005 outbreak 
of Angola [44,60,94]. The clinical characteristics of 
a MARV-infected patient may vary depending upon 
various factors, including strain virulence, physical sta
tus, host susceptibility, and medical maintenance. To 
date, the reported incubation period has ranged 
between 2–21 days, and the average duration is 5 to 9  
days, in humans [60,95].

MHF can be divided into 3 distinct phases; initial 
generalization phase, that is followed by early organ 
phase, and then the late organ phase or convalescence 
phase, according to disease progression [96] (Table 5).

Phase 1 (generalization phase)

The initial generalization phase lasts for five days after 
disease onset. The early symptoms that are present 
during this phase include generic flu-like characteris
tics, accompanied by high fever (39–40 °C). In addition, 
debilitating symptoms, including fatigue, loss of 

Table 4. Sources and infection types of Marburg virus.
Primary infection Secondary infection

Primary Host/ 
Natural Reservoir

Infection 
Medium

Secondary 
Host Infection medium

Egyptian Fruit Bat 
(Rousettus 
aegyptiacus) 
[7,70,73]

Blood [77] Non- 
Human 
Primates 
[81,82]

Blood [82,83]
Urine 

[73,76]
Tissue [82,83]

Stool [76] Body fluids (e.g. semen) 
[84]

Saliva 
[7,73,76]

Human 
[56,61]

Blood [85,86]

Body 
tissue 
[73]

Tissue [85]

Other 
body 
Fluids 
[76]

Dead-body [47,85,86]
Body Fluids (e.g. saliva, 

stool, tears, urine, 
semen, breast-milk) 
[47,86]
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appetite, abdominal pain, severe weight loss, severe 
nausea, vomiting, watery diarrhea, and anorexia, have 
been reported by many patients. Severe headaches, 
myalgia, chills, and malaise are also common signs 
[46,83,93]. The end of this initial phase is frequently 

characterized by conjunctivitis, dysphasia, enanthem, 
and pharyngitis. A characteristic maculopapular rash 
may develop on different body parts (prominently on 
the neck, back, and stomach), which represents 
a distinctive characteristic of filovirus infection. Other 
symptoms include lymphadenopathy, leukopenia, and 
thrombocytopenia [97–101].

Phase 2 (early organ phase)

A sustained high fever and other general symptoms 
accompany the early organ phase, which lasts from 
five to thirteen days after the onset of symptoms. 
Patients may manifest conjunctival infection, prostra
tion, shortness of breath (dyspnea), viral exanthema, 
irregular vascular permeability, and edema [93]. 
Neurological symptoms, such as confusion, encephali
tis, irritability, delirium, and aggression, have also been 
reported in patients [46,83,102]. Approximately 75% of 
patients are present with hemorrhagic manifestations, 
including mucosal bleeding, melena, petechiae, bloody 
diarrhea, visceral hemorrhagic effusions, uncontrolled 
leakage from venipuncture sites, hematemesis, and 
ecchymoses. Bleeding from the nose, gums, and vagina 
has also been reported. Because hemorrhagic symptoms 
are present in some patients, the MARV infection is 
typically denoted MHF in these cases, although this is 
still not favorable to all cases. Multiple organs, includ
ing the kidney, liver, and pancreas, are affected during 
this phase of infection. Elevated serum activity was also 
noticed in most infected individuals [98–101].

Phase 3 (late organ phase/convalescent phase)

The late stage of MARV infection results in two distinct 
outcomes: infection either becomes fatal or patients 
enter a prolonged phase of restoration. Fatality gener
ally occurs between eight and sixteen days after the 
onset of symptoms. Typically, shock and multi-organ 
failure are the primary drivers of death [83,102]. The 
late organ phase (in non-fatal cases) starts on day thir
teen and lasts until day twenty and beyond during the 
course of the disease. Severe metabolic disturbances, 
including convulsions and severe dehydration, result 
in severe negative effects on overall patient health, 
resulting in multi-organ dysfunction and anuria. 
Orchitis has been reported in some cases during this 
phase. Neurological symptoms persist during this stage. 
An additional complication includes spontaneous abor
tion in pregnant women [66,102]. Myalgia, exhaustion, 
partial amnesia, sweating, peeling skin in rash-affected 
areas, and secondary infections are noticeable signs 
during this prolonged phase. Arthralgia, hepatitis, 

Table 5. MVD symptoms, according to the phase of infection.

Phase of Infection Types of Symptoms
Diagnostic 
Symptoms

Generalization Phase 
(day 1–5)

General Symptoms High fever (39-40° C)
Severe headache
Myalgia
Chills
Malaise
Conjunctivitis
Dysphasia
Enanthem
Pharyngitis
Maculopapular rash
Lymphadenopathy
Leukopenia
Thrombocytopenia

Debilitating Symptoms Fatigue
Loss of appetite
Abdominal pain
Severe weight loss
Severe nausea
Vomiting
Watery diarrhea
Anorexia

Early Organ Phase (day 
5–13)

General Symptoms Conjunctival 
infection

Prostration
Dyspnea
Exanthema
Edema
Abnormal vascular 

permeability
Neurological Symptoms Confusion

Encephalitis
Irritability
Delirium
Aggression

Hemorrhagic Symptoms Mucosal bleeding
Melena
Petechiae
Bloody diarrhea
Visceral hemorrhagic 

effusions
Uncontrolled 

leakage from 
venipuncture sites

Hematemesis
Ecchymoses

Late Organ Phase/ 
Convalescent Phase 
(day 13-20+)

General Symptoms Severe metabolic 
disturbances

Convulsions
Severe dehydration
Multiorgan 

disfunction
Anuria
Orchitis
Myalgia
Exhaustion
Partial amnesia
Sweating
Peeled skin from 

rash areas
Secondary infection

Common complications 
during convalescent 
phase

Arthralgia
Hepatitis
Asthenia
Ocular disease
Psychosis
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asthenia, ocular disease, and psychosis are common 
complications during the convalescent phase of the 
infection [98–101].

Viral dissemination and cellular tropism of 
Marburg virus

Viral entry and budding

The dissemination and replication of MARV in hosts 
facilitates the penetration and navigation of viral particles 
into several cells [103]. MARV gains entry to the host 
through mucosal surfaces, breakage and scratches of the 
skin, or by inoculation, and the virus gains access to 
tissues remote from their infection site by damaging sub
cellular mechanisms. The entry of MARV into the host 
cell includes three different phases: i) cellular attachment, 
ii) endocytosis, and iii) fusion. Several potential cell entry 
mechanisms have been proposed, which include clathrin- 
mediated endocytosis, macropinocytosis, and glycopro
tein-facilitated receptor binding. However, these mechan
isms are not mutually exclusive and apply to different 
parts of the entry pathway [104]. Various attachment 
factors, such as tyrosine kinase receptors and C-like lec
tins; as well as cellular receptors, such as NPC1 have been 
identified as possible mediators of viral entry [105]. In 
case of budding, the intracellular localizing of recombi
nant VP40 and its release in the VLP (virus-like particle) 
form are greatly affected by over-expression or inhibition 
of myosin-10 and Cdc42 proteins, which are also crucial 
in filopodium formation and function. Moreover, MARV 
VP40 can interact with the viral nucleocapsid, and pro
vide an interface of MARV subviral particles as well as 
filopodia. Filopodia are closely contacted with the adja
cent cells, thus usurping these structures can facilitate 
spreading of MARV to the neighboring cells [106]. This 
is why high viral titers in the blood are seen in both 
animals and humans infected with MARV. When viruses 
are released from basolateral membranes, they provide 
access to the underlying tissue and vasculature, leading to 
severe infections. Furthermore, the basolateral portion of 
hepatocytes as well as biliary epithelial cells were found to 
be responsible for MARV budding. This activity is asso
ciated with VP40 protein, which is vital for releasing 
infectious particles within the infected host to promote 
disease progression (Figure 5) [107,108].

Cellular damage and viral tropism

MARVs are among the most devastating and virulent 
pathogens that affect humans. Autopsies of MARV- 
infected patients have revealed swelling of the heart, 
brain, spleen, kidneys, and lymph nodes. Also in NHPs, 

hemorrhages were identified in mucous membranes 
and soft tissues; the most severe necrotic lesions were 
observed in the lymph nodes, liver, spleen, testes, ovar
ies, gastrointestinal tract, and endocardium [67]. These 
organs contain a high number of reticuloendothelial 
cells that can migrate and spread to several organs, 
causing abnormal vascular permeability and the activa
tion of clotting cascade. During the later stage of the 
disease, hemorrhages are seen in the gastrointestinal 
tract, in the pericardial, pleural, and peritoneal cavities, 
and in the renal tubule, associated with the fibrin 
deposition [59].

Liver
The severity of MARV’s hepatic damages is apparently 
greater than EBOV [59]. In MARV infections, the liver 
features distinctive histopathology characteristics. 
Studies on fatal humans and NHPs have shown that 
the liver represents a critical replicating organ for 
MARV [109]. Hepatocyte necrosis ranges from focal 
to widespread, with slight inflammation, which causes 
swelling, the degradation of liver cells and the reticu
loendothelial system, mild to moderate steatosis, and 
upper cell hyperplasia. The elevation of liver enzymes, 
such as alanine amino-transferase, aspartate amino- 
transferase, serum glutamic pyruvic transaminase, and 
serum glutamic oxaloacetic transaminase, are hallmarks 
of MARV infection [86]. Hepatocytes may show baso
philic inclusions of the cytoplasm near necrotic eosino
philic regions, consisting of viral nucleocapsid 
aggregates [110,111]. The asialoglycoprotein receptor 
has been recognized as a liver specific receptor, likely 
to mediate MARV infections [112]. Because the synth
esis of several clotting factors occur in liver, pathologi
cally changes in liver can potentiate abnormalities in 
coagulation, including DIC (disseminated intravascular 
coagulation), which are associated with MARV infec
tion and increase the risk of multi-organ failure. 
Furthermore, hypotension and hypovolemia are conse
quences of adrenal gland infections, associated with the 
retardation of steroid-synthesizing enzymes, causing 
shock [113].

Spleen and lymph nodes
MARV infection in humans causes damage to lympha
tic tissues, for example necrosis of the follicles and the 
medulla of lymph nodes, and red pulp of the spleen, in 
addition to lymphocyte depletion. Interestingly, lym
phocytes are not infected by the virus, although bystan
der apoptosis occurrence results in lymphocyte 
depletion [114,115]. In NHPs, both the red and white 
pulp of the spleen display moderate necrosis, and lym
phoid depletion in the white pulp was apparent, 
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whereas the red pulp accumulated fibrin and cellular 
debris. The sinuses were covered with a small quantity 
of cell debris and granular material [67]. In humans, 
viral antigen was found in the marginal region of the 
red pulp and macrophages but were not detected in 
germinal centers, despite severe necrosis. Marburg-like 
inclusions were often observed in macrophages but 
were never detected in lymphatic cells. Fibrin and fibri
nocellular debris were deposited throughout the red 
pulp. Sometimes virions have been observed in combi
nation with the deposit [110,116,117].

Lungs
The lung alveoli often showed diffuse congestion, 
hemorrhage, suppurative pneumonia, and bacterial co- 
infection [110,116]. Small necrotic foci/micronecrosis, 
and fibrin were identified in alveolar macrophages, and 
the endothelia of alveolar capillaries were often dis
turbed in MARV-infected patients [110].

Gastrointestinal tract and small intestine
A large volume of plasma cells and monocytes exist in 
lymphatic organs and the mucous membranes of the 
stomach and intestines of NHPs [67]. In humans, the 
submucosa showed severe edema, including the inva
sion of degenerated inflammatory cells (such as neu
trophils) and multiple hemorrhage foci. Autolysis of the 
intestine impeded cellular identification. The gastroin
testinal tract showed mild focal mononuclear penetra
tion in the lamina propria of the gastric, small intestinal 
and colonic mucosa. Macrophages exhibited Marburg- 
like inclusions, and virions were present in reticular 
fibrils and debris from necrotic cells. These results 
explain the human-to-human transmissions that can 
occur due to exposure to bloody stools [110].

Kidneys
The kidneys were swollen, pale, and hemorrhagic; tub
ular necrosis and parenchymal damage cause tubular 

Figure 5. MARV entry, viral dissemination, and cellular tropism. The yellow color in the figure shows viral entry mechanisms, 
whereas the red color shows viral dissemination pathways. MARV enters the host and spreads throughout the lymphatic and 
vascular systems. The light brown color indicates the damaged cellular organelles. MARV causes necrosis in many organs, including 
the liver, spleen, kidneys, gastrointestinal tract, and endocardium.
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dysfunction, which leads to proteinuria in MARV 
patients [109]. Multiple suppurative embolic foci asso
ciated with gram-negative bacteria were observed. Viral 
antigen was observed multifocally in glomerulus, prox
imal tubular epithelial cells, as well as in interstitial 
connective tissues near capillaries. Marburg virus-like 
inclusions occur in intertubular tissues macrophage 
and fibroblast-like cells, and some virions were 
observed in the glomerular capillaries, but no viral 
antigen was observed in the medulla [110]. Proximal 
tubular cells (PTCs) and mitoribosomes (mitochondrial 
ribosomes) were infected by MARV and induce signif
icant changes in gene expression, leading to acute kid
ney injury in MARV infection via disruption of the 
PTC’s energy supply [118].

Skin
Skin and mucous membranes typically show hemor
rhagic abnormalities in MHF, which is associated with 
skin lesions. Limited histopathological changes occur to 
skin tissues, including endothelial cell swelling, focal 
hemorrhage, necrosis, and dermal edema. Cutaneous 
effects appear regularly between the 2nd and 7th days 
after symptoms onset, and can occur during the recov
ery period as well [119]. Epidermal DCs, endothelial 
cells, connective tissue fibroblasts, and even the epithe
lium of sebaceous glands and sweat contain viral anti
gens [59].

Testis
A study showed that following the onset of symp
toms, MARV can persist in the semen for up to 7  
weeks [120]. The inclusion of viral antigens in semi
niferous tubules supports the potential for sexual 
transmission of MARV [121]. Scrotal pain is often 
identified, with a few orchitis cases, and necrosis has 
been described in the testicles and ovaries of MHF 
patients [86]. Persistent testicular MARV infections 
among NHP survivors can lead to severe testicular 
injuries, including sperm cell loss and inflammatory 
invasion. MARV persists primarily in Sertoli cells, 
resulting in the breakdown of the blood–testis barrier 
[84]. MARV infection also induces focal orchitis, 
germ cell destruction, and the abundant deposition 
of IgG antibodies [122].

Bone marrow
Morphological changes to the bone marrow in MHF 
remain imprecisely defined. MARV antigen infects nor
mocellular bone marrow, causing focal necrosis. 
However, thrombocytopenia can be observed without 

a concomitant reduction in platelet production in 
MARV cases, similar to EBOV cases [122].

Heart and central nervous system
Morphological myocardial injuries observed in MARV 
autopsy cases have not been uniform. Multiple suppura
tive embolic foci and lesions containing gram-negative 
bacteria (such as Pseudomonas) have been observed in the 
myocardium, but no viral antigen has been associated 
with these lesions [110]. A few MARV cases have demon
strated panencephalitis, with glial nodules and mild peri
vascular lymphocytic infiltration in the brain [86].

Endothelial cell dysfunction
Endothelial cells are one of the target cells for MARV 
replication because replication in endothelial cells main
tains and strengthens the viremic phase. This hypothesis 
is supported by the observance of viral budding from the 
apical plasma membrane. However, basolateral budding 
would enable viruses to spread into the tissues even early 
during the infection process. Endothelial cells are respon
sible for the maintenance of barriers between blood and 
the surrounding tissue; therefore, viral replication may 
cause the loss of barrier function, allowing viral spread 
into the tissues. Endothelial cell activation and the asso
ciated secretion of inflammatory mediators can also 
increase vascular permeability. DIC occurs due to the 
increased consumption of coagulation factors, resulting 
in shock syndrome and hemorrhage [123,124].

Immune evasion of MARV

The mechanisms that mediate MARV pathogenesis 
remain poorly established at the molecular level 
in vivo [125]. MARV VP40 plays a role in the virion 
as a matrix protein and has recently been shown to be 
involved in host innate immune antagonism through 
various mechanisms [126,127]. In early-stage MARV 
infection, no differences in B cell expression were 
observed in the NHP model, and changes in B cell 
levels did not appear until late in the infection [128]. 
MARV infection causes changes to the host gene 
expression profile within 24–48 hours after infection, 
and most of these changes affect genes associated with 
immunoregulations, coagulations, and apoptotic path
ways. Moreover, the gene expression change is linked 
with interferon-stimulated gene (ISG) production in 
hepatocytes, which can act as severe antiviral suppres
sion mediators. These findings suggest that MARV 
can successfully abolish interferon (IFN) reactions, 
including type 1 and type 2 IFN signaling, provoke 
an inflammatory cytokine response, and demonstrate 
rapid replication kinetics [129,130].
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Hematological modifications have also been observed, 
such as early leukopenia, neutrophilia, and monocytosis, 
with moderate eosinophilia [86]. These changes cause 
immuno-suppression in MVD patients, leading to the sec
ondary infection by bacteria [85]. Moreover, elevated levels 
of soluble nitric oxide and proinflammatory cytokine in the 
blood induce intravascular apoptosis [2]. The activity of 
EBOV VP35 has been shown to obstruct the development 
of IFN by inhibiting IFN-regulatory factor 3 (IRF3) activa
tion [131,132]; but this response has not yet explicitly 
established for MARV. Moreover, EBOV VP24 inhibits 
type 1 IFN signaling by restricting the nuclear importing 
of phosphorylated STAT1 [133]; however, MARV VP24 
did not demonstrate this phenomenon. Rather, MARV 
VP40 did inhibit the JAK-STAT pathway by restricting 
the phosphorylation of both STAT1 and STAT2 [127]. 
However, no available data exists to describe the acquired 
immune responses following MHF recovery. Both IgM and 
IgG antibodies were observed during the DRC outbreak 
after symptom onset among MARV survivors, indicating 
the development of MARV-specific antibodies [134].

Pathophysiology of Marburg virus

MARV usually penetrates the body through cracked skin, 
causing damage to multiple cell types and organs, resulting 
in Marburg hemorrhagic fever (MHF) [135]. The most 
severe clinical features of MVD include inappropriate 
fluid distribution, coagulation complications, shock, and 
multi-organ failures. MARV mainly infects macrophages, 
monocytes, Kupffer cells, and DCs, according to evidence 
from MARV-infected monkeys [115]. MARV targets 
mononuclear phagocytic cells, for instance monocytes 
and macrophages, triggering the cellular activation and 
permitting damage to secondary targets, such as endothelial 
cells [10,11,67]. Moreover, the activation of macrophages 
and monocytes releases cytokines and pro-inflammatory 
mediators, resulting in the progression of shock, which is 
a primary cause of death in MVD [10,136].

MARV pathophysiology in humans

Limited comprehensive clinical studies exist for MARV 
due to the rural conditions as well as severe occurrences 
of most of the MARV outbreaks in Africa, and the 
compilation of laboratory and pathological evidence 
from patients has traditionally been inadequate. 
Clinical findings to date emerge from information 
linked to the first epidemic in Germany, with the 
South African outbreak, and smaller outbreaks in 
other areas of Africa [137]. Experiments on cultured 
cells of the MARV patient indicated substantial 

adaptive reactions against MARV by increasing 
immune cells, in beginning. In addition, immunoglo
bulin G (IgG) reaction to the viral NP and GP was 
found while investigating the serum sample of patients, 
and 2 patients had notable neutralizing titer of the 
antibodies. Gradually, neutralizing antibody titer 
declined, and this declination started 21 months post- 
infection, and diminished lower than detecting limit 27  
months post-infection [138].

At organ level, in patients with MARV infection, it 
seems that MARV mainly targets the adrenal glands 
and the liver (Figure 6), as well as lymphoid tissues for 
replication [139]. Autopsies performed on RAVV 
infected patients, a close-relative of MARV, indicated 
multiple malignant effects, including the swelling of the 
kidneys, heart, brain, and lymphoid tissues, in addition 
to hemorrhages of the soft tissues and mucosa [67]. The 
hepato-tropism of MARV was discovered in an in vitro 
analysis, suggesting that the hepatocyte receptor asialo
glycoprotein may worsen MARV infections [112]. The 
necrosis of parenchymal cells in the liver destroys the 
reticuloendothelial system, resulting in increased liver 
enzyme levels in association with MARV infection 
[96,140]. The infection of other organs can result in 
various symptoms, including proteinuria due to mal
function of kidney [134], heart and lungs hemorrhages 
[1], scrotum pain, and necrosis of the testicles and 
ovaries [114]. 

At the cellular level, macrophage, and dendritic cell 
(DC) are the primary targets for MARV entrance 
[110,141]. These findings were supported by the identi
fication of virions and antigens associated with the virus 
using immunohistochemical and electron microscopy 
experiments during the 1987 Kenyan outbreak [110], as 
well as by the observation of viral infections in the 
macrophages of macaques based on the results of per
ipheral smear of blood mono-nuclear cell populations 
from flow cytometry study [128]. The infection of DCs 
causes the paralysis of inherent immune response, and 
the abnormalities of lymphocytes stimulation [125]. The 
macrophage infections promote the production of proin
flammatory cytokines including TNF-α (tumor necrosis 
factor-alpha), which can cause bystander apoptosis in 
lymphocyte populations, leading to immunosuppression 
and lymphopenia (Figure 6). By stimulating monocytes, 
infected macrophages help in the dissemination of 
MARV, which induces the development of cytokines 
and chemokines [142,143]. Although the activation is 
not associated with MARV replication, this process con
tributes significantly to viral spread and delineates the 
pantropic nature of MARV and annihilation of focal 
tissues [10]. Furthermore, modifications in vascular 
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permeability are induced by interleukin (IL)-6 and TNF- 
α, which are both formed by macrophages [144]. 
Furthermore, tissue factors production by infected 
macrophage leads to the abnormal coagulations, such 
as DIC, and this is additionally supported by liver hepa
tocyte cells infection and causing decreased coagulating 
factor synthesis from liver (Figure 6) [145]. Infections on 
adrenocortical cells cause hypotension as well as meta
bolism disturbance, and these can cause multiorgan 

failure and shock, together with immunosuppression 
and coagulopathy (Figure 6) [146].

MARV pathophysiology in animals

MARV pathophysiology has been observed in animal 
models, including guinea pigs, mice, hamsters, baboon 
[147,148], and certain species of NHPs, such as rhesus 
macaques, common marmosets, cynomolgus macaques, 

Figure 6. MARV hemorrhagic fever pathophysiology model in humans. Marburg virus primarily targets dendritic cells, monocytes, 
parenchyma cells at a liver, adrenocortical cells, and several lymphoid tissues. Infection of dendritic cells leads to poor stimulating condition 
of T lymphocyte that causes lymphocyte apoptotic condition. Due of this, body’s immunity is suppressed and cytokines/chemokines number is 
increased, which leads to shock as well as multiorgan damaging occurrence. Macrophage or monocyte infection leads to uncontrolled 
cytokines/chemokines activation, and they continue the damaging of T lymphocyte and endothelial cell. Endothelial cell infection causes 
increase of blood vessels permeability and DIC (disseminated intra-vascular coagulopathy), while both occurrences lead to hemorrhages. 
Systemic replication can also occur because of this infection in endothelial cells. Parenchymal cell infection occurrences in liver can decrease 
coagulation factors, and these occurrences can cause hemorrhages later on. Adrenocortical cells of adrenal gland infecting occurrence by 
MARV can lead to disorders in the metabolism and dysregulated blood pressure; and hemorrhage occurs at a later stage due to these 
infections. MARV infection the on lymphoid tissues of lymphatic system, especially lymph nodes and spleen infections lead to tissue necrosis 
and malfunctioning adaptive immunity. Shock and lymphoid organ damage can occur in the later stage.
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squirrel monkeys, and African green monkeys 
[149,150]. MARV has been shown to infect Kupffer 
and monocytes cells, as well as DCs and macrophages, 
in animal models. The reduction of NK (natural killer) 
cells, and CD4 and CD8 T lymphocyte cells generally 
occur throughout the viral infection time because of the 
death of these cells through apoptosis [67,151].

In the MARV-infected humanized mouse model, 
Marburg virus manifests malignancy in a greater 
range. MARV primarily infects macrophages, B cells, 
T cells, NK cells, and phagocytes in these mice [152]. In 
non-adapted wild type MARV-Ravn infected mice 
models, virus infection causes acute illness, faded and 
enlarged livers, featuring necrosis, enlarged spleens, 
and reduced lymphocytic cell populations [153], while 
mouse-adapted MARV-Ravn models are accompanied 
by several symptoms, such as reduced physical activity, 
weight loss, rumpled fur 3 to 4 days post-infection, and 
death within 5 to 7 days [154].

Guinea pig shows mild feverish manifestation when 
infected by host-adapted variant of MARV. However, con
secutive passaging the guinea pigs with MARV can cause 
malignant conditions among the animals. In fact, one of 
the first MARV guinea pig model studies showed that 
100% of the MARV-inoculated guinea pigs die 7–9 days 
post-infection after 8 passages by whole blood [155]. This 
feature was further used to generate and characterize 
a guinea pig model against MARV Angola strain. In the 
experiment of MARV Angola strain on guinea pigs, it was 
substantiated that MARV infections can cause lymphocy
topenia, thrombocytopenia, as well as greater infecting 
occurrences in kidney cells, liver cells, spleens, and lungs 
[156]. The viral pathophysiology of MARV in guinea pigs 
appears to resemble those observed in mice and humans. 
Furthermore, vaccination studies have been widely per
formed in guinea pigs, and one study testing the efficiency 
of trivalent rVSV vaccine vectors demonstrated that 100% 
protection is possible when MARV infection occurs in 
them [157].

Syrian hamster models usually show no manifestations 
when infected with wild-type MARV strains. But STAT2 
null immunodeficient hamster models show infections of 
liver and spleen, neutrophil leukocytosis, and an increase 
of proinflammatory cytokine [158]. Besides, another 
study confirmed that hamster-adapted variant of MARV 
in Syrian golden hamster models manifest similar patho
physiological response to MARV infection as those 
observed in human and NHP, including similar clinical 
symptoms, such as rashes, hemorrhages, coagulopathies, 
and malfunctioned immune response [159].

Among all tested NHP models, rhesus and cynomolgus 
macaques are the best-characterized as well as widely used 
in MARV research due to their accurate recapitulation of 

human pathophysiology [160]. MARV infection on 
NHPs showed that lymphocytosis is prevalent in the 
initial stages [161], and leukocytosis and thrombocytope
nia is seen within 5 to 6 days after infection because of the 
increased neutrophil levels. MARV then infects adrenal 
glands, hepatocytes, as well as lymphoid tissues. During 
the final stages, the virus infects the endothelia of several 
organ tissues. The viral antigens can be found in several 
organs, including the kidneys, liver, spleen and adrenal 
glands. Typically, diarrhea, anorexia, fever, rash, and 
hemorrhage may manifest after 2 to 6 days of infection, 
and viremia arises on the 3rd day. The highest titer is 
typically observed after 8 days of infection [115].

In ferrets, an experiment recently demonstrated that 
MARV neither causes disease nor causes viremia in 
them [162]. Although the serology reports for MARV 
infection were positive and these ferrets produced neu
tralizing antibodies, they did not develop clinical dis
ease [163]. Additional studies on ferrets may contribute 
to our comprehension of the various mechanisms that 
contribute to differences in pathophysiology, hence 
improving our understanding of the disease.

Management approaches for Marburg virus

No established management approach for MARV cur
rently exists. Nevertheless, a popular treatment approach 
is the utilization of palliatives for pain alleviating purpose. 
Moreover, supportive treatment is often offered, includ
ing blood volume administration and electrolyte balance 
[164]. Although there are currently no clinically approved 
vaccines or therapeutics to prevent or treat MVD, there 
are certainly established and effective approaches that can 
be used to manage outbreaks and cases.

Several supportive methods and therapies were used 
pre-clinically and clinically in the past, as well as several 
new approaches that have been studied in animal models 
[2,12,165–167]. In supportive therapies, antibiotic was 
recommended in almost each of the outbreaks; yet 
numerous improved supportive therapeutic approaches 
were established in every outbreak. At the time of the first 
MARV occurrence in 1967, a variety of supportive 
approaches rather than only antibiotics were used, includ
ing cardiac glycosides, antipyretics, steroids, electrolytes, 
convalescent serum, and fluids supplement [85,168]. 
Clinicians introduced the use of parenteral fluids, analge
sics, prophylactic heparins, and plasma of Lassa fever 
patients to the infected humans during the second out
break [46,169]. Anti-malarial drugs and antibiotics were 
used in the 1980 outbreak of Kenya [47]. Moreover, in the 
1987 Kenya outbreak, heparins, steroids, antibiotics, and 
plasma were utilized, and concurrently dialysis was pro
ceeded [48]. In the 1990 Russian outbreak, extracorporeal 

VIRULENCE 623



hemosorbents were used, in addition to hemodialysis 
[63]. In addition to antibiotics and anti-malarials, the 
next epidemic in the DRC in 1998–2000 had the imple
mentation of modern acetaminophens, antiemetics, anta
cids, and intravenous fluids [49]. During the 2004–2005 
Angolan epidemic, no treatment was provided to patients 
initially, but antimalarials, antibiotics, analgesics, antie
metics, sedatives, and cimetidine were provided later, as 
well as oral rehydration was administered concurrently 
during the first 3 months and intra-venous fluid were 
given after 3 months [170–172]. Although the informa
tion was unavailable regarding the MARV management 
of Uganda outbreak initially in 2007 but, some supportive 
managements were provided during the 2008 Uganda- 
origin outbreak of MARV, including blood transfusion, 
malaria prophylaxis, antiemetics, cholecystectomies, and 
antibiotic for the case that transferred to the USA [52]. 
Moreover, intravenous fluid, plasma, hemofiltration, and 
hypertonic saline were provided to the case that trans
ferred to the Netherlands [166]. Newly, an innovative 
approach of remote controlled and pressure guided fluid 
supplementation has been proposed for the efficacious 
management of filovirus infected patients [173].

Modern researches have investigated various drugs 
for MARV infection. A recent study of remdesivir 
against Marburg virus showed that it has therapeutic 
efficacies in cynomolgus macaque models, which 
makes it an important drug to be assessed further. 
The study showed that it had therapeutic efficacy 
when given at 4 or 5 days post inoculation once 
daily in vehicle, for 12 days with 5 mg/kg dose, or 
10 mg/kg loading dose followed by 5 mg/kg dose 
[174]. Another study showed that cholesterol conju
gated fusion inhibitors are active in vitro against 
Marburg virus [175]. Recently, 4-(aminomethyl) ben
zamide has also been substantiated to be a potent 
entry inhibitor of MARV infection [176]. 
Furthermore, researchers demonstrated 33 hit com
pounds in vitro against MARV with their several 
pharmacological potentials [177]. Some small mole
cules, such as BCX4430, favipiravir, aloperine etc. 
have also been showed to be effective against MARV 
infection [178]. Again, an inhibitor compound FC 
-10696 has recently been discovered to inhibit the 
egress of MARV [179]. Also, AVI-7288 has been 
indicated to show potentials as a post-exposure pro
phylaxis against MARV [180].

Numerous experiments were conducted on rodent 
and NHP models for testing vaccine efficacies against 
MARV. To date, some vaccines have been trialed for 
human use [78,181,182]. Among them, cAd3 vaccine, 
also known as chimpanzee adenovirus serotype 3 vec
tor, encoded with wild type GP from MARV, is in 

phase 1 clinical trial for human use [183]. The MVA- 
BN-Filo vaccine, also known as the modified vaccinia 
Ankara vector vaccine, is encoded with GP from 
Ebola, Sudan, MARV, and NP from Tai Forest virus. 
It has been planned for phase 2/3 trials after the 
successful completion of phase 1 trial [78,184]. 
MARV DNA plasmid vaccine, which is a MARV 
DNA plasmid that expresses GP from MARV Angola 
[185], as well as from MARV Sudan [186]. Both of 
them completed phase 1 clinical trial [78]. rVSV- 
MARV-GP vaccine is recombinant vesicular stomatitis 
virus vector for MARV GP, that has been studied in 
NHP models, but human trial is not conducted yet 
[78,187,188]. In addition, VLP vaccine or virus-like 
particles with GP vaccines are yet to be trialed in 
humans, as NHP studies of VLP vaccine have been 
completed [189,190]. In recent times, single vial triva
lent vaccines have been invented, which showed high 
antibody levels in mouse and NHP models. This vac
cine might help in easier distributing and administrat
ing procedures of vaccines in rural and poor areas 
[191]. Hence recombinant subunit vaccines platform 
should be allowed to develop safer and efficient multi
valent vaccine candidates for protection against 
MARV [192].

The experimental approaches have substantiated 
the efficacies of numerous treatments, which include 
anti-viral treatment, pre- and post-exposure vaccine 
treatment, and treatment with IFNs; these are dis
played in the Table 6. However, Experimental 
approaches are still being processed in animal models 
as well as in humans to determine the efficacy of 
treatments and vaccines. A very recent study substan
tiated that combination therapy, especially usage of 
monoclonal antibody (MR186-YTE) with remdesivir, 
can significantly protect macaques from MARV infec
tion. The study showed that monoclonal antibodies 
alone can give 100% protection, and 80% protection 
in NHPs when used together with remdesivir 5 days 
post-infection [193]. Therefore, further investigation 
of monoclonal antibodies and combination therapies, 
as well as their human implementation can be 
another possible dimension of MVD management.

Conclusion and future prospects

Rural and poor conditions, along with sporadic out
breaks in Africa, are principal reasons for unsatisfactory 
clinical findings of the Marburg virus. Although the 
African fruit bat has been identified as a potential natural 
reservoir for MARV and most of the outbreaks have been 
caused by spillover into human population from an ani
mal reservoir, human-to-human transmission mediated 
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by the care providers or health professionals who work in 
hospitals also played great role in the growth of MARV 
outbreaks. These outbreaks demonstrated that MARV 
could be malignant and able to cause severe outbreaks 
if not taken proper steps immediately. Although MARV 
strains originate only in African regions, the outbreak 

history suggests that other continents could also be at 
risk. Recent outbreaks have indicated the necessity of 
additional research exploring the pathophysiology and 
pathogenicity of MARV. Current data remain based on 
earlier studies of infected patients. In response to the 
intensity of previous outbreaks, epidemiologists have 

Table 6. Evaluation of Marburg virus treatment in NHP models.

Treatment 
types

Animal 
models Compounds used

MARV 
Strain

First dose 
after 

infection Dose
Dose 

numbers
Survival 

rate Ref.

Antibody 
based 
treatment

Rhesus 
macaque

MR191-N Angola 4 days 50 mg/kg 2 100% [194]
5 days 2 80%

Ravn 5 days 2 100%
Rhesus 

macaque
Purified Immunoglobin G Ci67 15–30  

minutes
100 mg/kg 3 100% [195]

2 days 3 100%
Antiviral 

treatment
Cynomolgus 

macaque
BCX4430 Musoke 1 hour 15 mg/kg 30 83% [196]

1 day 28 100%
2 days 26 100%

Rhesus 
macaque

siRNA NP Angola 1–4 days 0.5 mg/kg 7 100% [197,198]
5 days 7 50%

Ravn 3 days 0.5 mg/kg 7 100% [198]
6 days 7 100%

Rhesus 
macaque

PMOplus (pool) Musoke 30–60  
minutes

40 mg/kg 14 100% [199]

Cynomolgus 
macaque

PMOplus (NP) Musoke 1 day 15 mg/kg 14 83% [200]
2 days 14 100%
4 days 14 83%

Cynomolgus 
macaque

GS-5734 Angola 4 or 5 days 10 mg/kg loading dose, 
then 5 mg/kg

12 83% [174]

5 days 5 mg/kg 12 50%
Post- 

exposure 
vaccines

Rhesus 
macaque

rVSV-MARV Musoke 20–30  
minutes

107 PFU 1 100% [201]

Rhesus 
macaque

rVSV-MARV Musoke 1 day 2 × 107 PFU 1 83% [202]
2 days 1 33%

Pre-exposure 
vaccines

Cynomolgus 
macaque

rVSV-MARV Musoke, 
Popp

- 107 PFU 1 100% [203]

Cynomolgus 
macaque

rVSV-MARV Musoke, 
Angola, 
Ravn

- 2 × 107 PFU 1 100% [204]

Cynomolgus 
macaque

rVSV-MARV Angola - 2 × 107 PFU 1 100% [205]

Cynomolgus 
macaque

rVSV-ZEBOV + rVSV-SEBOV + rVSV- 
MARV

Musoke - 107 PFU 1 100% [206]

Cynomolgus 
macaque

VLPs + QS-21 adjuvant Musoke, 
Ci67, 
Ravn

- 1 mg VLPs +.1 ml QS-21 3 100% [190]

Cynomolgus 
macaque

mVLPs + adjuvant Musoke - 3 mg VLPs +.1 mg QS-21 
or .5 mg/kg polyI:C

3 100% [189]

Cynomolgus 
macaque

DNA MARV GP Musoke - 20 µg 3 67% [207]

Cynomolgus 
macaque

DNA MARV GP Angola - 4 mg 4 100% [208]

Cynomolgus 
macaque

DNA MARV GP + DNA RAVV GP +  
DNA EBOV GP + DNA SUDV GP

Musoke - 500 µg individual or 2  
mg total

3 100% [209]

Cynomolgus 
macaque

DNA MARV GP + rAD5 MARV GP Angola - 4 mg DNA GP + 1011 PU 
rAD5 GP

4 100% [208]

Cynomolgus 
macaque

VRP-MARV GP and/or NP Musoke - 10 × 106 FFU 3 67– 
100%

[210]

Cynomolgus 
macaque

CAdVax-panFilo Musoke, 
Ci67, 
Ravn

- 4 × 1010 PFU 2 100% [211]

Cynomolgus 
macaque

rAD5 MARV GP Angola - 1011 PU 1 100% [208]

Rhesus 
macaque

Inactivated MARV Popp - 7 µg 2 50% [212]

Interferons Rhesus 
macaque

rNAPc2 Angola 10 minutes 30 µg/kg 15 17% [161]

Rhesus 
macaque

IFNβ Musoke 1 hour 35 µg/kg 15 33% [213]
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suggested MARV as a threat to global public health. 
Therefore, novel studies examining MARV remain cru
cial to provide unambiguous guidelines for the therapeu
tic management of patients, and for the development of 
vaccines. These steps could be used to minimize future 
outbreaks and reduces the CFRs. Vaccine studies have 
been ongoing for the past few years, and the virus is being 
studied on a variety of animal models, including NHPs, 
mouse models, guinea pigs, and hamsters. Vaccine stu
dies should be perpetuated until the licensure and dis
tribution of vaccines in humans occurs.
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