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Abstract 

We present SEQuence Weighted Alignment for Sorting and Harmonization (Seqwash), an algorithm designed to process sequencing 
profiles utilizing large language models. Seqwash harmonizes immune cell sequences into a unified representation, empowering 
LLMs to embed meaningful patterns while eliminating irrelevant information. Evaluations using immune cell sequencing data show-
case Seqwash’s efficacy in standardizing profiles, leading to improved feature quality and enhanced performance in both supervised 
and unsupervised downstream tasks for sequencing data.
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Immune repertoires represent a critical modality affected by the 
challenge of processing biological sequences at the patient level 
[1]. These repertoires, comprising T-cell receptor (TCR) and B-cell 
receptor (BCR) sequences, serve as crucial indicators of a patient’s 
immune response, reflecting the diverse repertoires of antigen- 
specific receptors generated by lymphocytes [2]. However, the or-
dering and length of these sequences within profiles exhibit signif-
icant variability among patients, posing challenges for accurate 
analysis and interpretation using artificial intelligence (AI) and 
machine learning techniques. While the sequence order itself 
does not directly contribute to understanding the immune re-
sponse, Large Language Models (LLMs) still analyze these diverse 
orderings as part of extracting patterns from the sequences [3]. 
LLMs have revolutionized natural language processing (NLP) tasks 
as they are trained on vast amounts of textual data [4]. LLMs are 
powerful AI models that aim to capture the context from human 
language by analyzing the sequential order and relationships be-
tween words. While biological sequences, in general, can be 
treated similarly to textual data, there are unique challenges in 
processing sequences that do not arise in traditional text data. For 
instance, TCR and BCR sequences lack inherent order-related 
meaning across patients, posing a challenge that limits the utiliza-
tion of LLMs for textual-like data [3]. Enabling LLMs to learn a low- 
dimensional representation of patients’ sequencing data can lead 
to capturing the semantic relationships and similarities between 
patients [5, 6]. In addition, it enables embedding the patient’s mo-
lecular signatures into a dense feature vector that facilitates build-
ing a multimodal framework [7, 8].

Deciphering patterns encoded in immune profiles presents a 
significant challenge, especially with large-scale data, due to vari-
ous factors such as varying lengths and hidden patterns contribut-
ing to the complexity of processing these data with LLMs. The 
focus of existing approaches in the literature tends to be on single- 

sequence analysis [9, 10], overlooking the holistic signature that 
can be captured at the patient level, that is analysis of all sequen-
ces as one input. This single-sequence processing prevents the 
representation of patients through vectorized feature embeddings, 
hindering meaningful comparisons among patients. Moreover, 
single-sequence analysis is a major roadblock to the design of a 
multimodal approach that considers data from different sources. 
For example, a multimodal approach that processes histopathol-
ogy whole slide images (WSIs) and corresponding molecular data 
requires matching the two modalities at the patient level.

In this article, we present SEQuence Weighted Alignment for 
Sorting and Harmonization (short Seqwash), an algorithm 
designed to facilitate the processing of the entirety of immune 
cell sequencing profiles for use by LLMs, models generally 
intended for NLP (see Fig. 1). Seqwash enables LLMs to extract 
meaningful patterns from a set of TCR/BCR sequences by elimi-
nating non-related and noisy information. Seqwash aligns 
sequences within each profile into a unified representation be-
fore feature extraction using an LLM. The objective is to harmo-
nize sequences across patients, thereby providing a more 
accurate latent representation. This approach ensures that each 
patient’s immune signature is represented with a dense embed-
ding, capturing essential information while mitigating the impact 
of varying sequence orders and lengths within each profile.

Materials and methods
Biological sequence data
Raw RNA-seq files were obtained from TCGA (The Cancer 
Genome Atlas) to reconstruct the immune repertoire of every pa-
tient. In raw RNA-seq data, the expressed TCR and BCR sequen-
ces can be identified by analyzing the reads that align to these 
specific genomic regions [11]. In this work, TRUST4 [11] was 

Received: 26 April 2024. Revised: 07 July 2024. Editorial decision: 23 July 2024. Accepted: 29 July 2024 
© The Author(s) 2024. Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/ 
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re- 
use, please contact journals.permissions@oup.com 

Biology Methods and Protocols, 2024, bpae055  

https://doi.org/10.1093/biomethods/bpae055 
Advance Access Publication Date: 30 July 2024 

Methods Article   

https://orcid.org/0000-0001-5488-601X


employed to obtain the TCR and BCR sequences of each patient 

from their RNA-seq profiles.
TCGA Datasets for two primary sites, namely lung and kidney, 

were included in the evaluation as they have reasonable number 

of samples per subtype. Lung dataset includes 1181 lung adeno-

carcinoma (LUAD) cases and 1085 lung squamous cell carcinoma 

(LUSC) cases. Kidney dataset includes 1035 kidney renal clear cell 

carcinoma (KIRC), 394 kidney renal papillary cell carcinoma 

(KIRP), and 69 kidney chromophobes (KICH). Infrequent sequen-

ces were filtered out by excluding those that were not common 

to sufficient proportion of patients within each subtype class. A 

threshold of 15% was experimentally determined and applied to 

the patient profiles.

Sequence ranking weights
Seqwash was used to harmonize the immune repertoire of each 

patient. Seqwash hinges on two pivotal factors for calculating 

the ranking weight of each sequence within a given profile (see  

Algorithm 1): sequence length and base position within the se-

quence. Sequence length represents the number of bases within 

a sequence, while base position denotes the order of a base 

within a given sequence. The first step of Seqwash is to assign a 

weight to every base. Since we are dealing with TCR and BCR 

sequences here, which consist of 20 amino acids (bases), arbi-

trary but fixed weights were assigned to each amino acid 

(Algorithm 1, Line 1). These factors are used to calculate the 

ranking weight ω for each sequence through 

ω ¼
Xl

b¼1

λb ×
1
xb

� �

þ
l

lmax
(1) 

In this context, λb represents the arbitrary weight assigned to 
each base b, while xb indicates the position of base b within the 
sequence, starting from 1. The variable l stands for the length of 
the sequence, and lmax signifies the maximum sequence length 

Figure 1 The mechanism of Seqwash in harmonizing the sequence profiles of a patient involves calculating a ranking weight for every sequence and 
then applying weighted sorting to align the sequences based on the calculated ranking weights before feeding them into an LLM.

Algorithm 1 Seqwash Approach for Harmonization of 
biological Sequences
1: Initialize λ as a dictionary with arbitrary weights for each 

amino acid
2: procedure COMPUTE RANKING WEIGHT ðS;λÞ
3:   for each sequence si 2 S do
4:    Initialize ωs 0
5: l Length of si

6:    for each base b in si do
7: λb λ½b�
8: xb Position of b in si

9:    ωsi  ωsi þ λb × 1
xb

� �

10:   lmax Maximum sequence length in S
11:   ωsi  ωsi þ

l
lmax

12: Sh descending sortðS;key¼ ωsi
Þ

13:  return Sh

14: procedure FEATUREEXTRACTION (Sh; GÞ

15:  g G Shð Þ % extract embedding g using the LLM model G
16:  return g
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within the set of sequences, that is the available population. 
Equation (1) encapsulates the process of computing the weighted 
sum of the base factors for every base within a sequence, consid-
ering their positions. This sum, combined with the ratio of se-
quence length to the maximum sequence length, ultimately 
determines the ranking weight. The ultimate goal of utilizing 
Equation (1) is to unify the sequence orders (indices) across pa-
tient profiles, primarily leveraging the shared foundation of bases 
constituting these sequences. By employing a consistent set of 
parameters for these bases, along with the sequential arrange-
ments of bases and the length of the sequence that a given base 
is part of, we can effectively prioritize the sequences based on a 
standardized criterion. As illustrated in Algorithm 1, Lines 2–11, 
the ranking weight is computed for sequence si, where si 2 S.

Weighted sorting
Once the ranking weights are calculated for the entire set of 
sequences of a patient, the sequences are sorted in descending 
order based on these weight values to generate the harmonized 
set Sh (Algorithm 1, Lines 12–13). This weighted sorting process is 
critical to unify the sequence representation across the patients. 
This is achieved by arranging the sequences within every profile 
in which the sequences with higher ranking weights occupy 
prominent positions in the resulting list.

Feature extraction
With the sequences harmonized, they are now ready for feature 
extraction using pre-trained LLMs (Algorithm 1, Lines 15–16). Five 
LLMs have been employed to extract features from both raw and 
harmonized immune cell profiles, namely DistilBERT, ALBERT, 
XLNet, XLM-RoBERTa, and DeBERTa. The rational for employing 
these LLMs for Seqwash evaluation is to leverage their pre- 
trained knowledge representations and utilize them to produce 
compact and expressive embeddings of fixed sizes across the 
patients to enable consistent comparisons. Each of these LLMs 
brings its own unique architecture and pre-training methodolo-
gies, which could potentially capture different aspects of the in-
put data. DistilBERT, for instance, is a distilled version of BERT 
(Bidirectional Encoder Representations from Transformers), 
designed to be faster and more memory-efficient while maintain-
ing much of BERT’s performance. ALBERT, on the other hand, 
introduces parameter reduction techniques to improve efficiency 
without sacrificing accuracy. XLNet explores an autoregressive 
model that considers all permutations of the input sequence, en-
hancing its understanding of language coherence. XLM-RoBERTa 
extends BERT to multilingual settings, potentially beneficial for 
datasets with diverse linguistic characteristics. DeBERTa incorpo-
rates self-attention mechanisms with relative position represen-
tations, aiming to capture long-range dependencies effectively. 
All these models produce a 768-dimensional embedding for a 
given immune repertoire. For all models, we applied average 
pooling at the last hidden layer to generate a single feature vector 
for the complete profile from the sequence feature vectors. This 
method resulted in a better performance than extracting CLS 
(classification) layer.

Statistical significance analysis
The variance in the extracted feature vectors was analyzed using 
the Analysis of Variance (ANOVA) test to determine whether sig-
nificant differences exist in the mean feature values across the 
primary diagnoses (subtypes) in each dataset. We calculated the 
P-value of each feature (768 features for each patient) extracted 

from every LLM for every patient in lung and kidney datasets. We 
set the significance level at 0.001 to determine the significance of 
each feature in terms of differentiating between differ-
ent subtypes.

Patient-level supervised classification
The performance of Seqwash was assessed in a supervised classi-
fication task. Support Vector Machine (SVM) classifiers were 
trained on 70% of the datasets, with the remaining 30% used to 
test their performance. Two classifiers were trained and tested 
on each of the lung and kidney datasets: one using features of 
raw sequences and another using features of sequences harmo-
nized by Seqwash. The hyperparameters of each SVM classifier 
were fine-tuned using the grid search method. Macro F1-score was 
calculated for each classifier, which averages the F1-scores of 
each class, treating all classes equally.

Patient-level unsupervised similarity search 
and retrieval
To assess the resulted representation on an unsupervised task, 
we performed search and retrieval using leave-one-out valida-
tion utilizing all the samples in each dataset as no training is 
needed for nearest neighbor search. Leave-one-out validation is 
the extreme scenario of cross-validation, where the fold size is 
k¼1. Hence, every patient is treated as a query once and there-
fore excluded from the archive when searching for the top-n 
matches. We calculated the Euclidean distance between the 
query sample and every other sample to identify the most similar 
samples with the minimum distances to the query. Majority vote 
among top-5 retrievals (MV5) was calculated to determine the 
subtypes. The majority vote criterion indicates that at least n/ 
2þ1 of the top-n samples should belong to the same class as the 
query. Macro F1-score was calculated using the primary diagno-
sis of the retrieved samples.

Results
Seqwash was employed to standardize immune repertoires of 
patients according to a unified criterion illustrated in the 
Materials and Methods section, facilitating different LLMs in cap-
turing meaningful information and producing predictive embed-
dings for an immune repertoire. The datasets were acquired 
from the Genomic Data Commons repository of The Cancer 
Genome Atlas (TCGA), encompassing samples from lung and kid-
ney as primary sites.

To visually assess the impact of Seqwash on immune reper-
toires, we generated heatmaps for randomly selected sequencing 
profiles from the TCGA lung cancer dataset, both before and after 
applying Seqwash, as shown in Fig. 2(a). Each amino acid within 
a TCR/BCR sequence is represented by a distinct color. Notably, 
both heatmaps show the profiles of the same patients. The first 
heatmap displays raw sequences pre-Seqwash application, re-
vealing no consistent pattern across patient profiles. Conversely, 
in the second heatmap, noticeable patterns across the patient 
profiles enable the identification of the beginning of each profile.

We assessed the Seqwash features by analyzing embeddings 
produced by five LLMs: DistilBERT, ALBERT, XLNet, XLM- 
RoBERTa, and DeBERTa. We conducted ANOVA tests on the 
extracted embeddings of patients from lung and kidney cancer 
datasets from TCGA, aiming to identify significant features with 
a P<0.001, as shown in Fig. 2(b). The application of Seqwash 
resulted in an increased number of statistically significant 
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Figure 2 (a) Heatmaps of immune repertoires of 10 randomly selected patients before and after applying Seqwash. (b) Statistical significance analysis 
using ANOVA test on deep features extracted from five LLMs, with a significance level indicated by a P< 0.001. (c) Macro F1-score results for both SVM 
classification and majority-vote k-NN (k nearest neighbour) search using lung and kidney cancer data from TCGA.
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features compared to raw features, indicating the enhancement 
of feature quality and relevance.

The efficacy of Seqwash features was also evaluated through 
both supervised classification and unsupervised similarity search 
applications. As illustrated in the first radar plot in Fig. 2(c), the 
macro F1-score of classification demonstrates an overall en-
hanced performance when employing Seqwash features com-
pared to raw features. The second radar plot illustrates the 
macro F1-score results of applying similarity search. Across al-
most all the LLMs, an improvement in performance is observed 
when utilizing Seqwash features.

In summary, Seqwash contributes to overcoming the chal-
lenge of processing biological sequences at the patient level by 
harmonizing them into a unified representation. This enables 
LLMs to capture informative patterns while eliminating irrele-
vant information. Evaluation has demonstrated the effectiveness 
of Seqwash in standardizing profiles, resulting in enhanced fea-
ture quality and, consequently, improved performance on both 
supervised and unsupervised downstream tasks.

Discussion
The results of the validation demonstrate that Seqwash signifi-
cantly enhances the harmonization and standardization of im-
mune cell sequences at the patient level, a critical aspect for 
extracting meaningful patterns from complex datasets. By en-
abling LLMs to capture comprehensive and informative patterns 
while filtering out irrelevant information, Seqwash improves the 
quality and relevance of deep features. This results in enhanced 
performance in both supervised and unsupervised tasks. This ad-
vancement has implications for computational biology, particu-
larly in the analysis of immune repertoires. Accurate and 
efficient processing of sequence data is crucial in unraveling and 
predicting immune signatures among patients, whether they 
exhibit similar or diverse immune responses. Moreover, this 
progress is essential for personalized medicine, where patient- 
specific insights can lead to the discovery of predictive features, 
facilitating more accurate classification and decision-making.

To the best of our knowledge, there are no existing harmoni-
zation methods in the literature that analyze immune cell 
sequences at the patient level, which is the gap that Seqwash 
addresses. Current approaches typically focus on single- 
sequence analysis, overlooking the holistic signature that can be 
captured at the patient level, that is analyzing all sequences in a 
patient’s immune repertoire as a unified input. This single- 
sequence processing approach prevents the effective representa-
tion of patients through vectorized feature embeddings, hinder-
ing meaningful comparisons among patients. Furthermore, in 
general, there is a notable lack of approaches that harness AI and 
machine learning techniques to address challenges in other 
fields, particularly in medical applications and the analysis of 
complex data like genomics. This represents a significant obsta-
cle to fully leveraging powerful AI tools that have the potential to 
drive advancements in these areas.

One common approach in biological sequence representation 
is one-hot encoding. While widely used [12, 13], this method has 
several limitations, including high dimensionality, high compu-
tational complexity, and significant memory requirements for 
categorical variables with many categories. Additionally, the 
sparse representation of vectors dominated by zeros is inefficient 
for storage and computation, especially in large datasets. Most 
importantly, one-hot encoding does not consider semantic rela-
tionships between categories, treating them as independent 

entities without acknowledging any underlying connections. 

Applying one-hot encoding at the patient level is impractical due 

to the large number of sequences each patient has, leading to 

exhausted memory requirements. Seqwash addresses these limi-

tations by enabling the representation of patient-level data, thus 

facilitating more meaningful and efficient comparisons among 

patients and advancing the application of AI and machine learn-

ing in computational biology.
In this article, we effectively employed Seqwash to process im-

mune cell sequencing data derived from TCGA datasets with two 

primary sites: lung and kidney. We considered immune reper-

toire in this work since the immune cell profiles have reasonable 

lengths, and the TCRs/BCRs are shorter sequences compared to 

other biological sequences such as DNA or RNA. The primary 

aim of our investigation is to clarify how sequence structure 

influences the quality of features extracted by LLMs, showcasing 

Seqwash’s efficacy on both raw and processed profiles.
While Seqwash demonstrates promise for extension to diverse 

biological sequences such as DNA and RNA-seq data, these con-

texts may pose unique challenges due to their increased variabil-

ity. In the complex landscape of cancer research, these datasets 

might contain only sparse relevant changes amidst a vast array 

of sequences. Hence, proactive preprocessing steps are essential 

to effectively navigate these challenges before harmonizing the 

profile structures.
Our future research endeavors are dedicated to broadening 

the applicability of Seqwash across various biological contexts, 

including DNA and RNA sequences. We aim to enhance Seqwash 

by incorporating additional preprocessing stages tailored to the 

specific characteristics of these datasets. This will involve imple-

menting filtration mechanisms to mitigate noise before harmo-

nizing the profiles.
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