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Abstract: Atrial fibrillation (AFib) is a common type of arrhythmia that is often clinically asymp-
tomatic, which increases the risk of stroke significantly but can be prevented with anticoagulation.
The photoplethysmogram (PPG) has recently attracted a lot of attention as a surrogate for electrocar-
diography (ECG) on atrial fibrillation (AFib) detection, with its out-of-hospital usability for rapid
screening or long-term monitoring. Previous studies on AFib detection via PPG signals have achieved
good results, but were short of intuitive criteria like ECG p-wave absence or not, especially while
using interval randomness to detect AFib suffering from conjunction with premature contractions
(PAC/PVC). In this study, we newly developed a PPG flux (pulse amplitude) and interval plots-based
methodology, simply comprising an irregularity index threshold of 20 and regression error threshold
of 0.06 for the precise automatic detection of AFib. The proposed method with automated detection
on AFib shows a combined sensitivity, specificity, accuracy, and precision of 1, 0.995, 0.995, and
0.952 across the 460 samples. Furthermore, the flux-interval plot configuration also acts as a very
intuitive tool for visual reassessment to confirm the automatic detection of AFib by its distinctive plot
pattern compared to other cardiac rhythms. The study demonstrated that exclusive 2 false-positive
cases could be corrected after the reassessment. With the methodology’s background theory well
established, the detection process automated and visualized, and the PPG sensors already extensively
used, this technology is very user-friendly and convincing for promoted to in-house AFib diagnostics.

Keywords: atrial fibrillation; arrhythmia; photoplethysmography; blood flux; reassessment; configu-
ration

1. Introduction
1.1. Background

Atrial fibrillation (AFib) is the main factor of cardioembolic stroke and is associated
with a 3.7-fold increase in all-cause death [1]. AFib happens when the atrium depolarizes
fast and irregularly, which leads to contractile dysfunction. However, adequate treatments
are hindered for those patients with AFib due to as many as 50~87% of them being initially
asymptomatic [2]. Thus, accurate and convenient automated AFib detection methods have
always been a popular research topic for their demands and challenges.

The golden standard of AFib detection is conducted through analyzing 12-lead elec-
trocardiogram (ECG) signals, which is inconvenient for large-scale screening programs and
not suitable for continuous or long-term monitoring. While ECG-based methods require a
minimum of two electrodes with stable contact with the skin, PPG-based methods only
need a single point of contact. Just like ECG, the photoplethysmogram (PPG) signal also
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originates from the cardiac cycle, which inherits the ability to extract the same variability
features but is more circumstantial, as it is the measurement of blood flow volume differ-
ence in the capillary caused by each heartbeat. A study on the extracted features between
ECG and PPG was conducted to confirm the viability of using PPG to replace ECG for heart
rate variability (HRV) features [3]. PPG signals also reflect one’s hemodynamic character-
istics that contain information on cardiac activity, cardiovascular condition, sympathetic
and parasympathetic nervous system interaction, and hemoglobin level from a peripheral
site [4–6]. These characteristics could shed new light on different AFib detection methods
by revealing new information, namely the change in every heartbeat’s stroke volume, that
was not accessible through ECG. However, previous studies are fixated on only using
interval-related features shared by both ECG and PPG.

PPG sensors are more affordable, easier to use, and already commonly implemented
on various wearable devices, making them a potentially convenient alternative for AFib
detection [7]. A common application is to combine a PPG device with a mobile phone by
either connecting the phone to a device with PPG sensors or utilizing the smartphone’s
camera as the PPG sensor. A demonstration of a use case scenario with a smartphone using
our methodology is depicted in Figure 1. The figure shows a concept of a mobile phone
app presenting the users with information regarding the detection result of the analyzed
PPG signal.
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1.2. Previous Studies

A detailed review of previous studies was conducted by Pereira et al. on different
approaches to PPG-based AFib detection [8]. In their paper, previous works are split
into three groups by the approaches they use, which are statistical analysis approaches,
machine learning approaches, and deep learning approaches. As Pereira et al. mentioned,
previous PPG-based AFib detection methods suffer from many shortcomings and face
many different challenges in different aspects, such as having difficulty in distinguishing
AFib from other AFib like cardiac arrhythmia and over-complicated models for users to
interpret the results.

In general, statistical analysis approaches extract RR interval (R peak to R peak) series
features and spectral entropy and then try to find the best threshold values with ROC
curves [9–13]. Simple statistical analysis methods are robust and intuitive but can be less
effective compared to the more advanced machine learning and deep learning methods.

Due to the randomness of atrial contraction for AFib in combination with significant
variability on inter-personal differences, the PPG signals can present in many different
waveforms. Due to these immense differences, for machine learning methods to cover all
the bases might require an immensely large amount of training data which can be very
hard to come by. While machine learning methods offer more effective and optimized
algorithms, much like the statistical analysis methods, their performance is still bound by
the limitation of how good the features are that were available to the model.

To overcome this limitation, researchers turn to deep-learning approaches with au-
tomatic feature extraction like convolution neural network (CNN). Convolution neural
networks are commonly used in solving image-related problems for their ability to extract
important and representative patterns as features automatically through different filters
from the data input [14]. Kwon et al. applied CNN models and mentioned previous
algorithms that were mostly based on RR interval series and HRV-related features and
had very little discussion on PPG signal amplitude [15]. A deep learning approach with
CNN layers may allow the model to learn about the amplitude information, but due to the
nature of being a black-box algorithm, it is hard to interpret or confirm how and whether
the model actually uses the amplitude information.

Methods proposed in previous works may achieve promising performance but the
explainability and transparency of the detection model were not very reassuring from the
regular user’s point of view. Based on the work by Pereira et al., we further organized
the previous studies into different groups by where their feature arise from each study
used in Table 1 to categorize different approaches and show how underutilized the pulse
amplitude information is.

Table 1. Features and methodology used in previous studies compare to this work.

Input Feature Type Reference Work Approach Classification Methodology Performance
(Accuracy)

Time domain

[9,10,12,16] Statistical analysis Feature thresholds, logistic models 0.952–0.9645

[17] Machine learning Support vector machines 0.9385

[18] Deep learning Deep neural network na

Time + Frequency
domain

[3,11,13,19–22] Statistical analysis Feature thresholds, logistic models 0.91–0.981

[23–25] Machine learning Decision tree, Support vector
machines 0.95–0.957

CNN [15,26–30] Deep learning Variations of CNN based deep
neural network 0.95–0.999

CNN + Time +
Frequency domain [31] Statistical analysis Logistic model 0.918

Time + Frequency
domain + pulse

Amplitude
[32] Machine learning Support vector machines 1

Pulse interval + Pulse
Amplitude This Work Statistical analysis Feature thresholds, plot

configuration 0.995
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1.3. Aim of This Study

When identifying AFib with ECG, the hallmark would be the irregularly irregular
ventricular response, absence of discernable P-wave, or even the presence of chaotic fibril-
latory F-wave. We seek to overcome the limitation of needing a minimum of two points of
contact on ECG-based methods by solely relying on the PPG signal. Previous studies on
using PPG for AFib detection require complex model and rely heavily on using traditional
inter-pulse interval features from ECG that are also available on PPG signals, such as
RR time series features and HRV features, while contraction-related information is often
completely neglected.

Among the reviewed works, we took particular interest in the study by Schack et al.,
where they briefly mentioned the correlation between pulse wave height and diastolic
length and achieved perfect detection of Afib, as we believe PPG amplitude holds the key
information on further improving PPG-based AFib detection [32].

In this study, we aim to propose a method that gives an accurate and informative
result by providing an easily understandable visual characterization of the physiological
basis for every prediction result. This would help inform the users of the basis of the
model’s decision to bolster user confidence and allow for a second opinion to double-check
the result as previous works were able to give users a concise result, but users may find it
obscure and out of touch. Here we have demonstrated a novel approach with simple and
intuitive criteria that is easy and explainable based on the physiological characteristic of
the cardiac cycle.

The presented model uses the automated AFib detection result with their PPG pulse
amplitude and interval correlation altogether. AFib is known to reduce one’s cardia output
with abnormal atrial contraction and diastolic dysfunction [5]. Since the PPG signal is
related to blood flow across the peripheral circulation, the stroke volume is correlated
to PPG signal amplitude with a strong correlation between each pulse pressure and its
preceding diastole [33]. We expect our model to be able to accurately distinguish AFib from
other cardiac arrhythmia and normal sinus rhythm (NSR) by analyzing one’s PPG signal
amplitude changes which act as a surrogate of beat-to-beat stroke volume variation.

2. Material and Methods

In this study, 5264 samples of 1-min ECG and PPG signals were recorded from
2632 subjects. The study was started by recruiting participants in community-based health
care centers. All subjects were fully informed and gave written consent for the recording
and usage of data in this study. Samples with AFib are labeled from ECG as a reference
to PPG signals. The study was approved by the Institutional Review Board of Academia
Sinica, Taiwan (Application No: AS-IRB01-16081).

2.1. Measurement Protocol

The test subjects are asked to sit on the chair in a rest condition for at least 5 min for
a questionnaire. Personal information with sex, age, smoking habit, familial history of
disorders, height, weight, waist circumference, SpO2 (peripheral oxygen saturation), blood
pressure, blood glucose, and HbA1C are asked or measured by commercial products listed
in the next section. The subjects are then set up with ECG patches for lead I angle and PPG
finger clips on index fingers for consecutive two 1-min recordings of waveform signals.

2.2. Hardware

The devices and instruments for the experiment are as follows: digiO2 POM-201
(digiO2, Miaoli, Taiwan) for SpO2. Omron HEM-7320 (Omron Healthcare, Kyoto, Japan) for
blood pressure. Roche Accu-check mobile (Roche Diabetes Care, Indianapolis, IN, USA) for
blood glucose. SEIMENS DCA Vantage Analyzer (Siemens Medical Solutions Diagnostics,
Tarrytown, NY, USA) for HbA1C. CardioChek PA analyzer (Polymer Technology Systems,
Indianapolis, IN, USA) for blood lipid. The signal of PPG is recorded from TI (Texas
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Instruments, Dallas, TX, USA) AFE4490 module and ECG from ADI (Analog Devices Inc.,
Norwood, MA, USA) AD8232-EVALZ.

2.3. Data Preprocess

After basic filtering of 0.1~40 Hz, automated valley and peak detection on PPG signals
were conducted. Python 3 modules peakutils (ver. 1.1.1) were applied for the valley and
peak detection. Peak detection was applied and cross-validated with two corresponding
neighboring valleys. Valleys were also validated with continuous positive slopes. Based on
the valleys, the PPG signal is broken into segments of singular pulses for later use.

Each sample’s cardiac rhythm was labeled based on its ECG signals accordingly
by corresponding author Y.T. Chang, who serves as a cardiology specialist and clinical
electrophysiologist. The labeled samples were selected from all samples but with interval
irregularity index (III, see Method section) above 10. In addition, we randomly selected
245 samples with III under 10 to balance the distribution and to approximate the 10:1 ratio
of non-AFib vs. AFib. The results labeled as ground truth are 286 NSR, 73 PAC (premature
atrial contraction), 59 PVC (premature ventricle contraction), 40 AFib, and 2 atrioventricular
blocks attributed to other types of arrhythmic rhythms.

2.4. Extraction of Irregularity and Regression RMSE of Main Cluster

First, an H-index inspired index is designed to represent the irregularity of each
sample set and be used to determine if the signal segment contains enough possible
AFib pulses. The index is calculated by finding the smallest quadratic mean (root mean
square) of the thresholds of percentage difference of consecutive pulse interval (T) and
the proportion of pulse satisfied said interval threshold (P) as summarized in Equation (1).
While previous studies have often used RR time interval features in an absolute time
difference of milliseconds, we opt to use the relative difference in % when it comes to inter-
pulse difference. We believe the change in pulse length should take the specific person’s
current heart rate into account. A 10-millisecond change in pulse between a person with a
heart rate of 60 beats/minute and another person with a heart rate of 80 beats/minute does
have a significant difference. Thus we use the relative difference in percentage instead of
using an absolute value shared across different samples. This resulting value will be the
interval irregularity index for the minute-long signal sample and be denoted as III. The
process of finding the irregularity is also illustrated in Figure 2.

I I I = min

{ √
Ti

2 + Pi
2

2

}50

i=1

(1)

Then, for each pulse segmented by valley detection, the sequences of pulse amplitudes
(Hi) were normalized by dividing individual pulse amplitude by its average and then
paired together with intervals with different offsets. For each sample, the sets of (ti−1, Hi)
and (ti, Hi) were then visualized into a scatter plot as shown in Figure 3 (later referred to
as flux-interval plot) to form the basis of our method. From the flux-interval plot, we can
observe that NSR, PAC, PVC, and AFib samples display distinctively different patterns.
Flux-interval plot allows users to assess their changes in cardio-output over time and
identify different cardiac rhythms with their distinctive patterns, much like identifying
AFib from ECG using only a few iconic criteria. We expect any well-informed user can
easily differentiate normal and abnormal rhythms easily based on the unique patterns
without needing much training.
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Figure 3. Illustration of the transformation of PPG signals to flux-interval plot with Hi vs. ti.

On each sample set of (ti−1, Hi) and (ti, Hi), DBSCAN (Density-based spatial clustering
of applications with noise) clustering was applied. Conceptually the clustering result would
reflect the types of pulses within the signal based on each pulse’s location flux-interval plot.
The orthogonal regression was then applied to the main cluster (the cluster with the most
data) of (ti, Hi) sets, and the residual errors were recorded in the form of root-mean-squared
error (RMSE). As the examples show in Figure 4, we expected that the fitted regression
line of the main cluster would result in a smaller RMSE on premature contractions as they
tend to have tight clusters as opposed to the more scattered distribution of AFib on the
flux-interval plot. We intend to use this denoted “Regression RMSE of Main Cluster” as a
simple index to represent the degree of dispersion of each sample.
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2.5. Hemodynamic Model and (ti−1, Hi)

Previous studies, such as the analysis of cardiac arrhythmia by Pfeiffer et al., have
indicated a strong correlation between (ti−1, Hi), but the reasoning behind this correlation
was not clearly explained [33]. Here we try to explain the hemodynamic cause of (ti−1, Hi)
correlation in detail as below, and our algorithm would also use cardiac electrophysiology
to enhance the discrimination power.

A person’s stroke volume is determined by how much blood is ejected during con-
traction. As shown in Equation (2), there are three factors affecting one’s stroke volume
(or flux), namely preload, contractility, and afterload. During the diastole of the heart, the
blood accumulates in the ventricle before the ventricular contraction, and the end-diastolic
pressure is so-called preload. The normal diastole starts with rapid filling due to passive
ventricular suction and follows with active filling by atrial contraction. While ejecting the
blood from the heart, it has to overcome the systematic arterial pressure that is pushing
back against the aortic valve, which is referred to as afterload.

Stroke volume = f (Preload, Contractility, Afterload) (2)

For simplicity, it is assumed that for each person within each one-minute measurement,
their contractility and afterload should remain largely the same, thus, they are treated as
constant here. Therefore we substitute the contractility and afterload with a Constant to
transform the model function into Equation (3).

Stroke volume = fp(Preload, Constant) (3)

During the cardiac cycles, the preload period for pulse i is represented by the preceding
pulse’s interval (ti−1). In the early passive diastolic phase, the atrium works as a reservoir
of blood and the filling volume is related to the ventricular suction pressure and the filling
time. Since the preceding pulse interval (ti−1) would largely affect the filling time and the
flow rate is in proportion to ventricular suction pressure. The integral of these 2 items may
represent the preload, which like an hourglass between heart contractions, we acquired
Equation (4).

Stroke volume = fp( f low rate (s)× ti−1, ) + active filling (4)
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Since the atrial mechanical function is impaired in AFib, the active diastolic filling is
negligible in AFib. This simplified the model into Equation (5) and allows us to focus on
how the preload period affects one’s stroke volume.

Stroke volume = fp( f low rate (s)× ti−1 ) (5)

PPG amplitude is in proportion to stroke volume, but their relationship has yet to be
properly modeled. The PPG signal amplitude is correlated to the amount of blood flow
but is hard to model due to many other different variables such as systematic vascular
resistance. These various variables can result in inter- and intra-personal differences when
comparing. In this study, we assume that within each one-minute PPG measurement, the
intra-personal difference on variables other than stroke volume remains largely the same
and thus can be neglected. Based on this assumption, we can interchange the stroke volume
with PPG amplitude and result in Equation (6).

Amplitude (Hi) = f low rate (s)× ti−1 (6)

This explains why the flux-interval plot of Hi vs. ti−1 would present with a positive
slope, especially in patients with AFib.

2.6. Electrophysiology Model and (ti, Hi)

The AFib is well-known as chaotic heart rhythm, and previous studies that have aimed
to evaluate the randomness of AFib found the auto-correlation between each RR interval
was low [34]. However, this relationship would not be random in sinus rhythm, PAC,
or PVC.

The coupling interval, namely the RR-interval preceding the premature beats (ti−1),
is traditionally believed to be constant in a stable sinus cycle length [35]. In addition, the
ECG morphology of a premature beat has a fixed relationship with its coupling interval. It
is because the firing of a PAC or PVC is originated from the same piece of the myocardium
with the same mechanism. Although various kinds of premature beats may present in
a patient, a dominant morphology with its fixed coupling interval would be observed
more frequently.

The relationship of returning cycles, namely the RR-interval following the premature
beats (ti), is also not random [36]. When a PAC fires with a shortened RR-interval (ti−1),
returning cycle would be prolonged if the sinoatrial node (SA node) is not electrical
penetrated by the electrical wave of PAC. The electrical wavefronts of PAC and the SA
node collide somewhere in the atrium, and the returning cycle would compensate for the
short coupling interval, and the summation of the coupling interval and the returning cycle
would equal to two times of sinus cycle length. Even when a PAC with a further shorter
RR-interval is encountered, the electrical wavefront will penetrate and reset the SA, node,
and the return cycle would be nearly the same as the basic sinus cycle length. Since the
PAC falls in the last 60~80% of the basic sinus cycle would fall in the above conditions, the
length would not be random and depend on the characteristics of the SA node and PAC
coupling interval (ti−1) This condition remains similar for PVC, since its electrical wave
must penetrate the atrioventricular node (AV node) first and requires a longer conduction
time before reaching the SA node.

We suggested that coupling interval (ti−1) and returning cycle (ti) would present a
stable relationship in patients with PAC or PVC. Since the flux (Hi) is associated with ti-1
explained in the hemodynamic section, and the coupling interval is presented with constant
more frequently, the flux-interval plot of returning cycle (ti, Hi) would be non-random and
present with a few clusters of points. On the contrary, although the flux-interval plot of
(ti−1, Hi) presents with a positive linear slope in AFib, the flux-interval plot of (ti, Hi) would
be dispersed because of the low correlation of ti−1 and ti is low in AFib.
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3. Results

Based on our data set, we found that with two simple conditions of checking irregu-
larity and the regression RMSE of the main cluster, we can correctly determine if the 60 s
PPG segments contain AFib with only two false positives without any false negatives. In
Figure 5, we visualized how each condition separates different sinus rhythms in a tree-like
structure. The same steps of acquiring interval irregularity were adopted on amplitude
here for the purpose of matching the scale of the X and Y-axis. From the top plot, we can
clearly see AFib samples (red dots) have significantly larger irregularities compared to the
others and with some premature contractions data in the mix. With an interval irregularity
of 20 as the boundary, all NSR and AFib could be separated perfectly. Despite being labeled
as premature contractions, the data with irregularity under 20 are generally NSR with
occasional premature contractions which are considered normal and mostly harmless. On
the other hand, the premature contraction data with irregularity over 20, these PAC and
PVC usually have a bigeminy, trigeminy, or even quadrigeminy rhythm, which leads to
two or more distinctive clusters each with tight distribution on their flux-interval plot.
Based on the features previous studies used, differentiating these PAC and PVC with large
irregularity from AFib is what their methods may struggle on. On the right subplot of
Figure 5, we can see that by assessing the orthogonal regression RMSE of the main cluster,
we can convincingly pick out the AFib data from the pile of data that had irregularity over
20 with regression RMSE of the main cluster at 0.06 as the boundary. Based on these two
simple yet powerful threshold conditions that require no complex computation we can
automate the classification of AFib with the performance of 1, 0.995, 0.995, and 0.952 for
sensitivity, specificity, accuracy, and precision, respectively. This result suggests our model
is not inferior to the majority of the 24 studies reviewed by Pereira et al.

Figure 6a,b demonstrated how the (ti−1, Hi), (ti, Hi) relations generally manifest
themselves for different types of cardiac rhythms on the flux-interval plot. The most
iconic and representative characteristics are summarized in Table 2 as a guideline for
differentiating types of cardiac rhythms. NSR would mostly be in a single tight cluster
with little variation both in terms of interval and amplitude. PAC and PVC with rhythmic
premature contractions would often present themselves as two or more distinct cluster of
premature beats, normal beats, and the extended normal beat right after each premature
beat. For samples of NSR, PAC, and PVC, their style of data distribution would appear
consistent on both (ti−1, Hi) and (ti, Hi) flux-interval plots. On the other hand, the AFib
pattern would often look like a semi-tight scatter of points forming a positive slope on the
(ti−1, Hi) plot and a widely scattered distribution on the (ti, Hi) plot. This visualization
helps us understand the fundamental difference between types of cardiac rhythms for
classification. The observed distinct characteristic of different rhythms on the flux-interval
plot is consistent with our hypothesis on identifying cardiac rhythms based on similar
characteristics when identifying them via ECG. The plots cluster pattern correlates to the
functionality of the atrium and the irregularity reflects the rhythmicity. Though with the
cluster pattern, we can differentiate AFib from PAC and PVC, however, it appears that PAC
and PVC are indistinguishable on the flux-interval plot.

Table 2. Distinct flux-interval plot characteristics for visual reassessment.

Hi vs. ti−1 Hi vs. ti Data Distribution

AFib
-Positive linear correlation
-Pulses interval often exceed 0.6 s
(100 bpm)

-Pulses interval often exceed 0.6 s
(100 bpm)

-Single cluster with wide
variation on both flux and interval

PAC/PVC -Typically with more vertical pattern
and multiple clusters

-Typically with more vertical
pattern and multiple clusters

-low variation within
individual cluster

NSR -Compact pattern -Compact pattern -Single cluster with small
variation on interval
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4. Discussion

Compared to previous studies, our approach is more in line with the statistical anal-
ysis with assistance from machine learning methods while focusing heavily on deriving
meaningful physiological features via novel approaches. While many previous works
already achieve perfect or near-perfect results through different algorithms, their behind
the scene processes are hidden to the users, like a black box. With our innovative approach
with the flux-interval plot, we can provide a visual presentation on why and how we can ef-
fectively and convincingly distinguish AFib from other types of cardiac arrhythmia. While
introducing a novel predictive analytic model to new users, their question on its usability
often resides in how accurate it is and how they can trust the result. Our straightforward
model offers good accuracy on par with the best performing studies, while added intuitive
visual presentation allows the user to carry out a “trust, but verify” approach. The extra
information grants users access to a more informative result and the ability to double-check
the basis of each prediction with their own eyes for increasing use case confidence. This has
the potential to bring significant improvement and contribute to new functionality to the
PPG-based AFib detection method in the future. While our method produces accurate au-
tomated prediction via simple parameters, there still are 2 false-positive cases of non-AFib
arrhythmia classified as Afib, as presented in Figure 7.
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isode of atrial tachycardia (multiple APC in short succession) in the mix at around 39 s 
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Figure 7. Two false-positive cases of premature contractions (non-AFib) classified as AFib. In both
cases, frequent PACs were encountered, but these PACs came with different coupling intervals if
measured carefully (a,b). In addition to the PAC attacked in case (a), a short-run atrial tachycardia
(AT) attacked around time mark 39 s.

4.1. Visual Reassessment

Figure 7a,b presents the two false-positive cases of ECG-labeled PAC samples misclas-
sified as AFib by our automated detection, while their flux-interval plot tells a different
story. Upon visually reassessing the flux-interval plots in both configurations following
the guideline in Table 2, we can clearly see that in both cases, the (ti, Hi) plot did not
present itself in a single widely scattered cluster and multiple clusters can be identified.
In the case of Figure 7a, it appears as sinus rhythms with PAC, but with a short episode
of atrial tachycardia (multiple APC in short succession) in the mix at around 39 s mark,
thus resulting in the resemblance of AFib. In the case of Figure 7b, the false-positive lies
in the presence of various kinds of PAC with different coupling intervals (ti−1). These
false-positive results could be attributed to the limitation of the clustering algorithm to
differentiate these turbulences of RR-interval when complex arrhythmias happen. Even
when reading ECG signals, these complex arrhythmias are frequently confusing and require
a clear ECG P-wave to figure out the answer in clinical practice.

In Figure 8, we show the two cases of atrioventricular block labeled as others, which
are automatically detected as non-AFib. In both cases, their irregularity indexes are very
high, but their regression RMSE on the main cluster is less than the threshold of 0.06. Thus,
they are correctly detected as non-AFib. From looking at their flux-interval configurations
following the guideline in Table 2, they are very similar to PAC/PVC but far from AFib.
This suggests that even other types of arrhythmias may have similar characteristics with
PAC/PVC on the flux-interval plots and can too be easily differentiated from AFib. The
two cases demonstrated reassessment with flux-interval configuration is very useful for
users to confirm automatic classification results.
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Figure 8. (a,b) Two cases of non-AFib (ECG labeled as others, atrioventricular block) correctly
detected. In both cases, their irregularity indexes are very high, but their regression RMSE on the
main cluster is less than the threshold of 0.06. Thus, they are automatically detected as non-AFib.
Their flux interval configurations are similar to PAC/PVC but far from AFib.
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4.2. Sample Size and Applicable Population

The participants were recruited in multiple community-based health care centers and
aimed to exploit the potential utilization of PPG in blood chemistry tests and other physiol-
ogy signals. Thus, the baseline epidemiologic questionnaire did not investigate the history
of detailed disease entities, such as valvular heart disease. At first glance, the resulted
sample size of 460 would appear to be insufficient for meaningful statistical analysis. This
is due to the majority of 5264 samples being initially categorized as NSR for having very
little inter-pulse interval changes. In another words, these samples’ pulse intervals are so
consistent it is not possible for them to contain any AFib episode or any arrhythmic rhythm
that could possibly be mistaken as AFib. We believe our survey is reasonable to represent
a general population with our 5264 samples of 60 s ECG strips from 2632 volunteered
subjects, which comprise a total of 87.7 h of recording. The overall time length of our data
set may be significantly shorter compared to studies with 24 h Holter monitoring, but our
dataset has covered a significant number of unique individuals. Regarding the prevalence
of arrhythmia, it is difficult to compare our incidence with previous works directly as
the population registry for disease prevalence was more commonly surveyed by medical
database or 24-h Holter study [37]. In comparison, our data set includes 73 premature
atrial complexes (73/5264, 1.4%), 59 premature ventricular complexes (59/5264, 1.1%), and
40 atrial fibrillations (40/5264, 0.8%). These numbers suggest the prevalence of arrhythmia
in our dataset is not too far off from previous works.

As aforementioned, this study is based on a general population and intended for
screening purposes and in-house AFib diagnostics. Our study was not designed for
complex arrhythmia conditions or detecting heart diseases. For example, in the presence of
atrial fibrillation and AV block at the same time, we might possibly not detect the condition
and make the correct diagnosis, although this kind of more complex condition would
be more likely to be encountered in a hospital setting. In addition, the mechanism of
paroxysmal atrial fibrillation involves trigger activity, which is the same mechanism of
the atrial premature complex. Thus, in the presence of multiple APC triggers and atrial
tachycardia with variable conduction, it is also difficult to differentiate with the PPG signal
only and it might sometimes even be misleading if only a short ECG strip was used.
Fundamentally, our flux-interval plot is a personalized heart performance monitoring
technique that keeps track of the relative changes in blood flux that is sensitive to sudden
changes in heartbeat interval and blood flux. Further studies would be required on how
specific heart disease would affect the model performance, but we expect this methodology
to remain effective in AFib detection.

5. Conclusions

PPG signals provided blood flux information previously unavailable through ECG
had shed new light on new methods for detecting atrial fibrillation and other arrhythmia
patterns. In this study, we demonstrated how monitoring one’s change in blood flux
(represented by PPG pulse amplitude) across a period of time can be an easy and effective
way of detecting if the subject is having an atrial fibrillation episode. We found when
projecting the PPG waveform data to the flux-interval plot, based on explainable physiology
relation between pulse interval and amplitude, AFib could be easily characterized and
convincingly differentiated from other arrhythmic rhythms. Previous AFib detection
usually suffers from conjunction with PAC/PVC by PPG if only counting on interval
randomness has been solved either through the automatic detection process or visual
reassessment with this novel technology. While our proposed PPG method offers significant
benefits over previous methods, like any other PPG-based method, it is still limited by
the quality of the PPG signal and may require longer signal strips. The proposed method
with automated detection on AFib shows a combined sensitivity, specificity, accuracy, and
precision of 1, 0.995, 0.995, and 0.952 across 460 samples studied. Due to the generalized
population sample of this study, studies focused on populations with some common types
of heart disease could further validate the robustness and applicability of the methodology.
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