
1Chehrazi-Raffle A, et al. J Immunother Cancer 2021;9:e002009. doi:10.1136/jitc-2020-002009

Open access�

Circulating cytokines associated with 
clinical response to systemic therapy in 
metastatic renal cell carcinoma

Alexander Chehrazi-Raffle,1 Luis Meza,1 Marice Alcantara,2 Nazli Dizman  ‍ ‍ ,3 
Paulo Bergerot,4 Nicholas Salgia,5 JoAnn Hsu,1 Nora Ruel,6 Sabrina Salgia,1 
Jasnoor Malhotra,1 Ewa Karczewska,1 Marcin Kortylewski,2 Sumanta Pal  ‍ ‍ 1

To cite: Chehrazi-Raffle A, 
Meza L, Alcantara M, et al.  
Circulating cytokines associated 
with clinical response to 
systemic therapy in metastatic 
renal cell carcinoma. Journal 
for ImmunoTherapy of Cancer 
2021;9:e002009. doi:10.1136/
jitc-2020-002009

►► Additional material is 
published online only. To view, 
please visit the journal online 
(http://​dx.​doi.​org/​10.​1136/​jitc-​
2020-​002009).

AC-R, LM and MA contributed 
equally.

Accepted 29 December 2020

For numbered affiliations see 
end of article.

Correspondence to
Dr Sumanta Pal; ​spal@​coh.​org

Original research

© Author(s) (or their 
employer(s)) 2021. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Background  Circulating cytokines and angiogenic factors 
have been associated with clinical outcomes in patients 
with metastatic renal cell carcinoma (RCC) receiving 
systemic therapy. However, none have yet examined 
cytokine concentrations in parallel cohorts receiving either 
immunotherapy or targeted therapy.
Methods  In this prospective correlative study, we enrolled 
56 patients who were planned for treatment with either 
a vascular endothelial growth factor-tyrosine kinase 
inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI). 
Eligibility requirements permitted any RCC histologic 
subtype, International Metastatic Renal Cell Carcinoma 
risk classification, and line of therapy. Immunologic 
profile was assessed at baseline and after 1 month on 
treatment using a Human Cytokine 30-plex protein assay 
(Invitrogen). Clinical benefit was defined as complete 
response, partial response, or stable disease ≥6 months 
per RECIST (Response Evaluation Criteria in Solid Tumors) 
V.1.1 criteria.
Results  Clinical benefit was similar between VEGF-
TKI and ICI arms (65% vs 54%). Patients with clinical 
benefit from VEGF-TKIs had lower pretreatment levels 
of interleukin-6 (IL-6) (p=0.02), IL-1RA (p=0.03), and 
granulocyte colony-stimulating factor (CSF) (p=0.02). 
At 1 month, patients with clinical benefit from ICIs had 
higher levels of interferon-γ (IFN-γ) (p=0.04) and IL-12 
(p=0.03). Among patients on VEGF-TKIs, those with clinical 
benefit had lower 1 month IL-13 (p=0.02) and granulocyte 
macrophage CSF (p=0.01) as well as higher 1 month VEGF 
(p=0.04) compared with patients with no clinical benefit.
Conclusion  For patients receiving VEGF-TKI or ICI therapy, 
distinct plasma cytokines were associated with clinical 
benefit. Our findings support additional investigation into 
plasma cytokines as biomarkers in metastatic RCC.

INTRODUCTION
The landscape of systemic therapy for meta-
static renal cell carcinoma (RCC) has under-
gone considerable change in recent years. 
At present, immune checkpoint inhibitors 
(ICIs), vascular endothelial growth factor-
tyrosine kinase inhibitors (VEGF-TKIs), and 
combination therapy with both an ICI and 
a VEGF-TKI are approved by the US Food 
and Drug Administration (FDA).1 With 

numerous treatment options and no firm 
consensus regarding their optimal sequence, 
biomarkers to select patients who will benefit 
from systemic therapies are urgently needed.

RCC is largely driven by the loss of von 
Hippel-Lindau protein, which enables uncon-
trolled activation of hypoxia-inducible factor-α 
and subsequent upregulation of numerous 
proangiogenic cytokines.2 3 Twin studies have 
established that variations in circulating cyto-
kine concentrations are primarily driven by 
non-heritable influences, which suggests they 
may be used as biomarkers for individualizing 
treatment of RCC among other acquired 
disease states.4 5 As such, peripheral cytokine 
assays have garnered considerable interest as 
potential functional biomarkers that may aid 
in individualizing treatment selection and 
avoiding potentially harmful adverse events.

Several groups have explored cytokine 
concentrations as potential biomarkers for 
patients with RCC on VEGF-TKIs. Bilen 
et al6 identified a panel of seven cytokines 
that were negatively associated with clinical 
benefit from first-line sunitinib, including 
interleukin-8 (IL-8), IL-9, and tumor necrosis 
factor-α (TNF-α). Tran and colleagues 
retrospectively noted negative associations 
between progression-free survival from front-
line pazopanib and pretreatment IL-6, IL-8, 
VEGF, osteopontin, hepatocyte growth factor 
(HGF), and E-selectin.7 Zizzari et al8 demon-
strated that interferon-γ (IFN-γ), soluble 
programmed death ligand 1 (PD-L1), and 
soluble cytotoxic T-lymphocyte antigen 4 
(CTLA-4) were inversely correlated with a 
clinical benefit from sunitinib or pazopanib. 
Within our institution, we prospectively repli-
cated negative associations between clinical 
benefit from pazopanib and levels of HGF, 
VEGF, IL-6, IL-8, and soluble IL-2R.9

Similarly, investigators have examined 
outcomes using cytokines as biomarkers for 
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patients with RCC on ICIs. Transcriptional analysis estab-
lished that nivolumab induces elevated peripheral levels 
of IFN-γ, CXCL-9, and CXCL-10.10 Additionally, baseline 
IL-8 has been implicated as a negative prognosticator for 
ICI’s effectiveness across several tumor types, including 
RCC and urothelial carcinoma.11 12 More recently, 
machine-learning techniques identified an eight-cytokine 
composite immune signature that was prognostic for 
overall survival for patients with RCC on nivolumab.13

Lacking in the existing literature is parallel assessment 
of cytokines in patients receiving VEGF-TKIs or ICIs. To 
address this, we conducted a prospective trial to deter-
mine if various pretreatment and on-treatment cytokine 
levels in peripheral blood predict clinical outcomes for 
patients with metastatic RCC receiving ICI or VEGF-TKI 
therapies.

METHODS
Patient selection and sample acquisition
Patients diagnosed with metastatic RCC by standard 
criteria (American Joint Committee on Cancer Seventh 
Edition) were identified at a single institution.14 All 
subjects were planned for treatment with either a commer-
cially available ICI or VEGF-TKI therapy approved for 
metastatic RCC by the US FDA. Prior therapeutic failure 
of other ICI or VEGF-TKI agents did not preclude patients 
from participating in this study. Enrollment was open 
to patients across all RCC histological subtypes, Inter-
national Metastatic Renal Cell Carcinoma (IMDC) risk 
classification, and lines of therapy (online supplemental 
table 1).

The protocol was approved by the institutional scientific 
review committee, data safety monitoring board, and the 
institutional review board at the City of Hope Compre-
hensive Cancer Center. The study conformed with the 
amended Declaration of Helsinki and the International 
Conference on Harmonization Guidelines.

Cytokine analysis
Peripheral blood samples were obtained from each 
patient prior to and at 1 month subsequent to the initi-
ation of systemic therapy with either a VEGF-TKI or ICI. 
Plasma samples were separated using centrifugation in 
cell preparation tubes (BD Biosciences, San Jose, Cali-
fornia, USA) at 1800×g for 20 min at room temperature, 
then frozen at −80°C for subsequent batched analysis. A 
panel of 30 plasma cytokines (IL-1RA, IL-1b, IL-2, IL-2R, 
IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, 
IL-17, Eotaxin, EGF, FGF, G-CSF, GM-CSF, IFN-α, IGN-γ, 
CXCL9, CXCL10, CCL2, CCL3, CCL4, RANTES, TNF-α, 
and VEGF) was quantified for each plasma sample using 
the Human Cytokine Invitrogen 30-plex protein assay 
on the Luminex FLEXMAP 3D System (Fisher-Scientific, 
Waltham, Massachusetts, USA). In brief, antibody-
coated beads were incubated with plasma sample, incu-
bation buffer, and assay diluent. Detector antibody was 
added and incubated followed by the addition of diluted 

streptavidin-RPE. After washing, the plate was read 
in the Luminex detection system to quantify cytokine 
abundance.

Clinical data analysis
Patients were treated with either an ICI or VEGF-TKI until 
disease progression per Response Evaluation Criteria 
in Solid Tumors (RECIST) V.1.1 criteria or discontinua-
tion due to adverse events, death, or subject/investigator 
decision. Clinical benefit (CB) was classified as a (CR), 
partial response (PR), or stable disease (SD) in excess 
of 6 months per clinician’s evaluation of CT of the chest, 
abdomen, and pelvis. Individuals experiencing progres-
sive disease (PD) on therapy or who achieved SD of less 
than 6 months were classified as experiencing no clinical 
benefit (NCB).

To arrive at relative change from baseline, ratio of 
1 month to baseline cytokine values were calculated. 
Median and IQR were used to summarize cytokine data 
at baseline as well as relative change at 1 month. The 
Wilcoxon test was used to assess statistical significance 
in differences of cytokine values between CB and NCB 
patients within VEGF-TKI and ICI cohorts. The χ2 test was 
used to determine statistical significance in comparison 
of high versus low cytokine values between CB and NCB 
patients.

The significance threshold for type I error was set at 
0.05. Given the exploratory nature of the analysis, no 
formal correction for multiple testing was applied. SAS 
V.9.4 was used to perform statistical analyses and generate 
graphs.

RESULTS
Patient characteristics
We prospectively analyzed 56 patients who were treated 
at City of Hope Comprehensive Cancer Center between 
2016 and 2019 (table 1). Of these, 40 (73%) patients were 
male and 16 (27%) were female, with a median age of 
67 (range 32–85). Median lines of therapy received was 
2 (range 1–6). The most common ICIs rendered were 
nivolumab monotherapy (45%) and nivolumab plus ipili-
mumab (14%), and the most frequent VEGF-TKIs given 
were cabozantinib (18%), sunitinib (13%), lenvatinib/
everolimus (9%) and axitinib (2%).

Among those eligible for evaluation, 7 patients (13%) 
achieved a PR and 25 patients (45%) achieved SD as a 
best response. Seventeen patients (30%) experienced PD 
and seven (13%) discontinued treatment due to toxicity. 
CB was similar in patients receiving VEGF-TKI and ICI 
(65% vs 54%, respectively). Treatment-related toxicities 
were reported in 36 evaluable patients (64%). The most 
common reported toxicities were fatigue (21%) with ICIs 
and hand–foot syndrome (17%) with VEGF-TKIs.

Biomarker results
Cytokine data were available at baseline and at 1 month 
for 56 and 47 patients, respectively. Patients were stratified 
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based on clinical benefit status: CB (n=30) or NCB (n=26). 
Patients were further grouped based on therapy received, 
resulting in four analyzable groups: CB–VEGF-TKI (n=13), 
CB–ICI (n=17), NCB–VEGF-TKI (n=10) and NCB–ICI 
(n=16).

Patients with CB from VEGF-TKIs had lower pretreat-
ment median levels of IL-6 (8.4 vs 13.5 pg/mL, p=0.02), 
IL-1RA (178 vs 248 pg/mL, p=0.03), and G-CSF (23.9 vs 
38.3 pg/mL, p=0.02) compared with patients with NCB 
(table  2A and figure  1). No significant pretreatment 

cytokine differences were seen among CB and NCB 
patients on ICIs.

Additionally, we assessed the cytokine concentration 
change from baseline to 1 month on therapy. To normalize 
values, we then converted these relative changes into ratio 
form. Patients who derived CB from ICIs had higher rela-
tive increases in IFN-γ (2.04 vs 0.91, p=0.04) and IL-12 (1.51 
vs 1.01, p=0.03). For patients on VEGF-TKIs, those with CB 
had lower relative IL-13 (0.56 vs 0.93, p=0.02) and GM-CSF 
(0.94 vs 1.24, p=0.01), and higher relative VEGF (1.69 vs 

Table 1  Summary of patient baseline characteristics and clinical outcomes

Overall (n=56) Clinical benefit (n=30) No clinical benefit (n=26) P value

Age, median (IQR) 67 (58–73) 67 (61–73) 61 (57–74) 0.2

Gender

 � Male 40 (71%) 23 (41%) 17 (30%) 0.4

 � Female 16 (27%) 7 (13%) 9 (16%)

Histology

 � Clear cell RCC 47 (84%) 26 (46%) 21 (38%) 0.6

 � Non-clear cell RCC 9 (16%) 4 (7%) 5 (9%)

IMDC risk category

 � Favorable 20 (36%) 13 (23%) 7 (13%) 0.3

 � Intermediate 28 (50%) 12 (21%) 16 (29%)

 � Poor 8 (14%) 5 (9%) 3 (5%)

Treatment received

 � Nivolumab monotherapy 25 (45%) 11 (20%) 14 (25%) 0.4

 � Cabozantinib 10 (18%) 4 (7%) 6 (11%)

 � Nivolumab+Ipilimumab 8 (14%) 6 (11%) 2 (4%)

 � Sunitinib 7 (13%) 4 (7%) 3 (5%)

 � Lenvatinib/Everolimus 5 (9%) 4 (7%) 1 (2%)

 � Axitinib 1 (2%) 1 (2%) 0 (0%)

Line of therapy, median (IQR) 2 (1–3) 2 (1–3) 2 (2–3) 0.2

Line of therapy

 � First line 11 (20%) 8 (14%) 3 (5%) 0.3

 � Second line 26 (46%) 13 (23%) 13 (23%)

 � Third line 12 (21%) 6 (11%) 6 (11%)

 � Further lines 7 (13%) 3 (5%) 4 (7%)

Best clinical response

 � Partial response 7 (13%) 7 (13%) 0 (0.0%) <0.01

 � Stable disease 25 (45%) 23 (41%) 2 (4%)

 � Progressive disease 17 (30%) 0 (0.0%) 17 (30%)

 � Toxicity-related discontinuation 7 (13%) 0 (0.0%) 7 (13%)

Progression-free survival, months, 
median (95% CI)*

6.2 (2.9–10.4) 13.9 (8.6–28.3) 2.3 (2.0–2.6)

Treatment-related toxicity

 � Yes 36 (64%) 21 (38%) 15 (27%) 0.3

 � No 20 (36%) 9 (16%) 11 (20%)

*Kaplan-Meier method.
IMDC, International Metastatic Renal Cell Carcinoma Consortium; RCC, renal cell carcinoma.
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0.81, p=0.04) as compared with those with NCB (table 2B 
and figure 2).

DISCUSSION
This is the first prospective study involving analyses of 
baseline and on-treatment cytokine concentrations on 
ICI or VEGF-TKI therapy. We found that pretreatment 
levels of IL-1RA, IL-6, and G-CSF as well as on-treatment 
levels of IL-12, IL-13, IFN-γ, GM-CSF, and VEGF were asso-
ciated with CB from systemic therapy.

Among cytokines analyzed pretreatment, we observed 
a negative association between IL-6 concentrations and 

CB in patients who received a VEGF-TKI. Previous studies 
have also observed an inverse relationship between CB 
and levels of IL-6 in RCC.7 15 16 One of the key biolog-
ical pathways governing this phenomenon is the IL-6/
JAK/STAT3 axis, which potentiates tumor proliferation 
and cellular metabolism on upregulation.17 18 Extrinsic 
to the tumor milieu, IL-6 promotes tumor survival by 
recruiting mesenchymal stem cells and myeloid-derived 
suppressor cells (MDSCs). Mesenchymal stem cells are 
non-immune cells that, when engaged with IL-6, can 
suppress tumor-infiltrating CD8+ T cells and B cells in the 
tumor microenvironment and thus mitigate tumor immu-
nity.19–21 Similarly, MDSCs, which require IL-6 for activa-
tion, have been shown to suppress T cell response and 
facilitate cancer persistence via the JAK/STAT3 signaling 
pathway.22–24

Another tumorigenic by-product of IL-6 is upregula-
tion of angiogenesis. This occurs both within the tumor 
by autocrine and/or paracrine signaling and by tumor-
extrinsic positive-feedback amplification of STAT3 
transcription factor, which increases expression of pro-
angiogenic VEGF and HIF1α.25–27 Elevated levels of 
pretreatment IL-6 may therefore serve as a harbinger of a 
highly proliferative and angiogenic state that will be less 
effectively abrogated by treatment with a VEGF-TKI.

Another important negative association evident in 
our VEGF-TKI cohort was between CB and pretreat-
ment IL-1RA. IL-1 is a potent proinflammatory cytokine 
that promotes tumorigenesis through several pathways, 
including angiogenesis, endothelial cell activation, 
lymphoid cell polarization, and recruitment of tumor-
associated macrophages and MDSCs.28 By extension, 
IL-1RA has long been thought to antagonize carcino-
genesis via inhibition of IL-1α and IL-1ß.29 30 Intrigu-
ingly, emerging data of IL-1RA in advanced diseases are 
beginning to unravel its role in caspase-8 and caspase-9 
inhibition, which would evade apoptosis and facilitate 
oncogenesis.31 32 Therefore, elevated IL-1RA concentra-
tions may in fact signal a highly proliferative RCC that is 
less responsive to VEGF-TKI therapy.

Similarly, baseline concentrations of granulocyte colony-
stimulating factor (G-CSF) and on-treatment concen-
trations of granulocyte macrophage colony-stimulating 
factor (GM-CSF) were inversely associated with CB from 
VEGF-TKI. In preclinical models, RCC cell lines produce 
G-CSF without any counter-regulatory dependence on 
exogenous G-CSF.33 It has also been shown that G-CSF 
and GM-CSF can increase the motility and invasiveness of 
tumor cells as well as enhance the metastatic process.34 35 
Furthermore, higher levels of intratumoral GM-CSF have 
been associated with the presence of lymph node metas-
tasis, high tumor, node, metastases (TNM) stage, Fuhrman 
grade and the presence of tumor necrosis.36 In this 
context, RCC with higher concentrations of G-CSF and 
GM-CSF may be indicative of an imbalanced immunoreg-
ulation that fares worse with VEGF-TKI therapy.

Our most robust associations in patients who derived 
CB from ICIs were seen from on-treatment increases of 

Table 2  Associations of (A) pretreatment and (B) on-
treatment cytokine levels with clinical benefit from systemic 
therapy

(A) Pretreatment n CB NCB P value

G-CSF (VEGF-TKI)

 � High 11 5 (38.5%) 6 (66.7%) 0.02

 � Low 11 8 (61.5%) 3 (33.3%)

IL-1RA (VEGF-TKI)

 � High 9 4 (30.8%) 5 (55.6%) 0.03

 � Low 13 9 (69.2%) 4 (44.4%)

IL-6 (VEGF-TKI)

 � High 11 2 (15.4%) 7 (77.8%) 0.02

 � Low 11 11 (84.6%) 2 (22.2%)

(B) On-
treatment

n CB NCB P value

GM-CSF (VEGF-TKI)

 � High 10 3 (25.0%) 7 (77.8%) 0.01

 � Low 11 9 (75.0%) 2 (22.2%)

IFN-γ (ICI)

 � High 10 9 (64.3%) 1 (9.1%) 0.04

 � Low 15 5 (35.7%) 10 (90.9%)

IL-12 (ICI)

 � High 15 10 (71.4%) 5 (45.4%) 0.03

 � Low 10 4 (28.6%) 6 (54.6%)

IL-13 (VEGF-TKI)

 � High 12 4 (33.3%) 8 (88.9%) 0.02

 � Low 9 8 (66.7%) 1 (11.1%)

VEGF (VEGF-TKI)

 � High 15 11 (91.7%) 4 (44.4%) 0.04

 � Low 6 1 (8.3%) 5 (55.6%)

The χ2 test was used to determine statistical significance in 
comparison of high versus low cytokine values between CB and 
NCB patients.
CB, clinical benefit ; G-CSF, granulocyte colony-stimulating factor; 
GM-CSF, granulocyte macrophage colony-stimulating factor; ICI, 
immune checkpoint inhibitor; IFN-γ, interferon-γ; IL, interleukin; 
NCB, no clinical benefit; VEGF-TKI, vascular endothelial growth 
factor-tyrosine kinase inhibitor.
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IL-12 (p=0.03) and IFN-γ (p=0.04). IL-12 is a key proin-
flammatory and anti-angiogenic cytokine that antago-
nizes tumor growth via stimulation of STAT4, which then 

subsequently upregulates IFN-γ.37 Once activated, IFN-γ 
can facilitate a cell-mediated adaptive immune response 

Figure 1  Associations between clinical benefit from vascular endothelial growth factor-tyrosine kinase inhibitor (VEGF-TKI) 
therapy and pretreatment interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and IL-1RA. Box contains values 
q1, median and q2. Whiskers expand out to 10th and 90th percentiles. P values are from the Wilcoxon rank-sum test. CB, 
clinical benefit; NCB, no clinical benefit.

Figure 2  Associations between on-treatment cytokine changes and clinical benefit either vascular endothelial growth factor-
tyrosine kinase inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI) therapy. Box contains values q1, median and q2. 
Whiskers expand out to 10th and 90th percentiles. P values are from the Wilcoxon rank-sum test. CB, clinical benefit; GM-CSF, 
granulocyte macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; NCB, no clinical benefit.
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through the IFN-γ/JAK/STAT1 pathway promoting 
T-cell-mediated antitumor immune responses.38 The 
importance of IL-12 in cancer has been demonstrated in 
murine models where IL-12 deficiency was associated with 
a higher frequency of spontaneous tumors and enhanced 
tumor growth.39 40 In humans, IL-12 polymorphisms have 
been shown to increase the susceptibility of glioblastoma 
development.41

With respect to ICIs, several preclinical models have 
demonstrated that IL-12 and IFN-γ play a pivotal role in 
facilitating an anticancer response to PD-1/PD-L1 inhib-
itors. Treatment with ICIs is accompanied by elevated 
plasma concentrations of IFN-γ as well as an influx in 
IFN-γ-producing T cells, both in peripheral blood and 
tumor tissues.42 Similarly, intratumoral IL-12 was shown 
to reverse resistance to anti-PD-1 therapy in T-cell-rich 
tumors.43 More recently, anti-PD-1 treatment was associ-
ated with an increase in intratumoral CD8+ T cells and 
dendritic cell (DC)-like cells that increased IFN-γ and 
IL-12, respectively.44 Taken together, increasing IL-12 
and IFN-γ may reflect a clinically efficacious anticancer 
immune response from ICIs.

We also detected that a greater decrease in on-treat-
ment IL-13 was associated with CB from VEGF-TKI. IL-13 
is a pleiotropic cytokine that is overexpressed in a variety 
of solid tumors.45 46 One of the downstream targets of 
IL-13 implicated in cancer progression is STAT6, which 
promotes apoptotic resistance by downregulating tumor 
immunosurveillance.47–49 However, IL-13 also activates 
the 15-lipoxygenase-1 pathway, which has been shown 
to induce apoptosis and inhibit proliferation of cancer 
cells.49–51

Not surprisingly, previous research on the role of IL-13 
in malignancies has generated conflicting evidence. 
Although several studies have facilitated a protumor 
effect,52–54 others have elucidated a protective environ-
ment.55 56 With respect to RCC, IL-13 has been associated 
with shorter recurrence-free survival and overall survival 
in post-nephrectomy patients.57 Our findings corroborate 
a predominance of pro-tumorigenesis, supporting IL-13 
as a promising negative prognostic biomarker in RCC.

Lastly, we observed significantly greater increases 
in on-treatment VEGF among patients who benefited 
from VEGF-TKI. Upregulation of plasma VEGF is a 
well-documented feedback mechanism of patients on 
VEGF-TKI therapy, although the mechanism behind this 
observation remains unclear.58–60 Initial enthusiasm for 
its application as a predictive biomarker for VEGF-TKI 
therapy was tempered by inconsistent validation. However, 
subsequent studies have yielded encouraging results by 
grouping VEGF along with other pro-angiogenic cyto-
kines as part of a broader immune signature.7 13 58 61 The 
development of an oncogenic immune signature that 
accounts for the dynamic interplay of cytokines is a prom-
ising future direction that warrants further investigation.

There are several limitations to the present study. We 
included a small number of patients and did not include 

a healthy control arm. Subjects included in this study 
were sourced from a single hospital and may not be repre-
sentative of the general population. The heterogeneity of 
therapy line, and thus, previous exposure to VEGF-TKI 
and/or ICI therapy, posed an additional limitation which 
is not controlled for within this study. Moreover, it should 
be noted that the inclusion of five patients on lenva-
tinib plus everolimus, a mechanistic target of rapamycin 
(mTOR) inhibitor, likely introduces immunomodula-
tory effects that are extrinsic to the VEGF-TKI pathways 
shared by the other regimens within this cohort. In addi-
tion, lifestyle-related variables, which may affect the levels 
of these cytokines, were not accounted for in the present 
study.62

CONCLUSIONS
In the present study, we detected associations between 
peripheral cytokine concentrations and response to 
systemic therapy in patients with metastatic RCC. Pretreat-
ment IL-6, IL-1RA, and G-CSF—as well as on-treatment 
IL-12, IL-13, IFN-γ, GM-CSF, and VEGF—were signifi-
cantly associated with CB from either VEGF-TKIs or ICIs. 
Although exploratory, these data support the further 
in-depth study of plasma cytokines as biomarkers for 
immune phenotype stratification in order to provide 
more individualized treatment for metastatic RCC.
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