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Inducing lipid peroxidation and subsequent ferroptosis in cancer cells provides a potential
approach for anticancer therapy. However, the clinical translation of such therapeutic
agents is often hampered by ferroptosis resistance and acquired drug tolerance in host
cells. Emerging nanoplatform-based cascade engineering and ferroptosis sensitization by
p53 provides a viable rescue strategy. Herein, a metallo-organic supramolecular (Nano-
PMI@CeO2) toward p53 restoration and subsequent synergistic ferroptosis is
constructed, in which the radical generating module-CeO2 nanoparticles act as the
core, and p53-activator peptide (PMI)-gold precursor polymer is in situ reduced and
assembled on the CeO2 surface as the shell. As expected, Nano-PMI@CeO2 effectively
reactivated the p53 signaling pathway in vitro and in vivo, thereby downregulating its
downstream gene GPX4. As a result, Nano-PMI@CeO2 significantly inhibited tumor
progression in the lung cancer allograft model through p53 restoration and sensitized
ferroptosis, while maintaining favorable biosafety. Collectively, this work develops a tumor
therapeutic with dual functions of inducing ferroptosis and activating p53, demonstrating a
potentially viable therapeutic paradigm for sensitizing ferroptosis via p53 activation. It also
suggests that metallo-organic supramolecule holds great promise in transforming
nanomedicine and treating human diseases.
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1 INTRODUCTION

Lung cancer is the largest contributor to tumor-related death around the world. According to
statistics, in 2020, the probable number of new cases was 2,206,771, while mortality was 1,796,144
from 185 countries or territories across the world (Bade and Dela Cruz, 2020; Siegel et al., 2021; Sung
et al., 2021). Currently, clinical tumor therapeutic options are unsatisfactory. Conventional
pharmacotherapies by chemotherapies and/or targeted drugs are often accompanied by cancer
recurrence and poor prognosis due to their inherent limitations and complex heterogeneity of
cancer. While the emerging immunotherapy revolutionized the medication of lung cancer, it suffers
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from its intrinsic weakness including a narrow anticancer
spectrum, low response rate, and potential toxicity triggered
by self-immunity (Crunkhorn, 2020; Kennedy and Salama,
2020). Therefore, innovative precision medicine solutions are
urgently needed. To induce other forms of non-apoptotic cell
death, such as ferroptosis, overcoming drug resistance points a
new direction for cancer therapy.

Ferroptosis, a style of cell death with iron-reliance caused by
intracellular lipid peroxidation, has different death characteristics
compared to apoptosis, pyroptosis, and autophagy (Jiang et al.,
2021). Modulating cellular energy metabolism can significantly
affect cellular sensitivity to ferroptosis, given that it is dependent
on lipid metabolism and oxidative stress (Conrad and Pratt,
2019). Fortunately, metabolic reprogramming also inevitably
occurs during carcinogenesis (Chae et al., 2016), making
cancer cells highly sensitive to ferroptosis-inducing therapies
(Hu et al., 2020). More importantly, induction of the
ferroptosis pathway by depleting Xc or GPX4 has been shown
effective in killing drug-resistant cancer cells (Chae et al., 2016).
The new study also demonstrates the emerging role of ferroptosis
in the crosstalk between tumor cells and immune cells (Hu et al.,
2020). It indicates that targeting ferroptosis is of great significance
for anticancer therapy. However, cancer cells tend to weaken
ferroptosis by increasing the expression of antioxidant enzymes
(Li et al., 2022a) or upregulating prominin2 (Brown et al., 2021)
to promote iron transport. Abundant ferroptosis targets and
regulatory networks provide an available resource for
ferroptosis sensitization (Luo et al., 2021a). Among them, p53
as a tumor suppressor can enhance the cell sensitivity to
ferroptosis in a direct (transcription-dependent inhibition of
SLC7A11 expression) and indirect manner (by regulating
amino acid metabolism, iron transport, PUFA metabolism,
and antioxidant defense) (Ji et al., 2022).

p53 protein, one of the most important tumor suppressor
proteins (Levine, 2020; Liu and Gu, 2021), is often abnormally
expressed inmost human tumors. In wild-type TP53 tumor types,
the expression level and transcriptional function of p53 protein
are often negatively regulated by MDM2 and the homolog
MDMX, resulting in inhibition of its tumor suppressor
function (Ivanov et al., 2013; Wade et al., 2013; Meek, 2015;
He et al., 2020). Therefore, the p53-MDM2/MDMX protein
interaction is a reasonable and broad therapeutic target in
TP53 wild-type tumors. Although a large number of small-
molecule drugs that activate p53 have been discovered, such as
nutlins and imidazole WK23 (Liu et al., 2019), due to the poor
targeting and specificity of small molecules, administration of
high concentrations and subsequent biological toxicity is
inevitable. Peptide drugs with natural advantages such as high
affinity and good biosafety are becoming powerful competitive
drugs for protein–protein interaction (PPI) modulators (Yan
et al., 2022). At present, there have been many explorations
and modifications of p53-activator peptides, and considerable
therapeutic effects have been achieved at the animal level (Zheng
et al., 2021; Yan et al., 2021). However, searching for higher-
affinity peptide segments and overcoming their pharmacological
barriers (Giribaldi et al., 2021; Gonzalez-Valdivieso et al., 2021) to
promote their clinical translation still have a long way to go.

Supramolecular polymers, different from traditional
chemistry molecules, are based on non-covalent interactions
between molecules, such as metal coordination and hydrogen
bonding, and are attracting increasing attention as nano-drugs
(Aida et al., 2012; Zhou et al., 2021). However, general
supramolecules are often limited by single functional
components, inherent limitations, and complex biological
environments, resulting in unsatisfactory therapeutic effects.
Nano-platform-based cascade engineering has been
ingeniously introduced to optimize this cancer therapy (Chen
et al., 2020), in which metallo-organic supramolecules have
proven to be an effective and thriving strategy (She et al.,
2020; Jin et al., 2021; Liu et al., 2022). It relies on metallo-
organic coordination interactions, based on rich geometric
structures and connections between ligands and nodes (Chong
et al., 2020; Ni et al., 2020). Various metal materials such as gold
(Bian et al., 2018; He et al., 2019a; Yan et al., 2020a; He et al., 2020;
Zheng et al., 2021; Yan et al., 2021), silver (Fehaid and Taniguchi,
2018; Mi et al., 2021), iron (Shen et al., 2018; Chen et al., 2021),
rare earth elements (Yan et al., 2015; Zhang et al., 2017; Niu et al.,
2018; Yan et al., 2018; He et al., 2019b), etc., and organic modules
such as peptides (He et al., 2018a; He et al., 2018b; Yan et al.,
2020b), nucleic acids (She et al., 2020; Li et al., 2022b), small
molecules (Liang et al., 2021), etc., are selected as basic
building blocks for the self-assembly of metallo-organic
supramolecules. Abundant combinatorial options offer
greater possibilities for generating highly effective cancer
defense strategies, which can generate more therapeutic
species or achieve stronger antitumor effects. Although
many successful examples of metallo-organic
supramolecules have been reported in tumor imaging (Li
et al., 2020; Sung et al., 2021), regulation of protein
interactions (He et al., 2019a), immunotherapy (Liang
et al., 2021; He et al., 2022), and combination therapy (Jin
et al., 2021; Liu et al., 2022), great challenges remain in the
efficient and simple synthesis of such complex nanosystems.

Herein, to realize the combination of ferroptosis therapy
and p53 activation, p53 activator peptide (PMI) and the free-
radical generating nanoparticle CeO2 were selected to induce
ferroptosis in cancer cells (Sugantharaj David et al., 2017).
Based on metal-organic coordination and a “one-pot” self-
assembly strategy, a bifunctional metal-organic
supramolecular (Nano-PMI@CeO2) was constructed, in
which CeO2 functioned as the inorganic building block of
supramolecules, while the peptide-gold precursor polymer
formed based on gold–sulfur bond functioned as the
inorganic building block. The end product, Nano-PMI@
CeO2 was obtained by the in situ reduction and self-
assembly based on gold-thiol coordination bonds of
peptide-gold precursor on the surface of the CeO2 core.
Due to the coverage of CeO2 by the peptide gold precursor,
Nano-PMI@CeO2 has good biosafety in normal sites. The
reduction of gold–sulfur bonds in the tumor
microenvironment triggers the disassembly and release of
CeO2 and peptides at tumor sites, followed by dual
antitumor effects of ferroptosis and p53 activation. In
conclusion, this combination therapy is promising to
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reinvigorate the use of ferroptosis-sensitizing therapy in
antitumor therapy.

2 MATERIALS AND METHODS

2.1 General Instructions
The synthetical peptides were all purchased from CS bio Co. LLC.
The additional chemical reagents in our research were obtained
from Sigma-Aldrich, unless otherwise expressly announced.

2.2 Synthesis of Nano-PMI@CeO2
Under the HBTU/HOBT agreement, the peptides were
compounded with an optimized agreement developed for the
Fmoc-SPPS methodology, which was based on appropriate resins
by the automatic peptide synthesizer (CS Bio 336X). The
nanoparticles were prepared through a “two-step, one-pot”
gradual chemical reaction under appropriate conditions. In the
first step, 2 mg PMI and 2 mg NH2-PEGn-SH were stirred with
4 ml deionized water, and 1 ml of 10 mM chloroauric acid
solution was added at 500 rpm stir for 5 min. During the
process, a pale-yellow turbid liquid turned into a purple-red
transparent solution in the reaction system, accompanied by
an obvious Tyndall effect. In step 2, 5 ml HEPES (100 mM) in
which were dissolved 1 mM CeO2 nanoparticles, subsequently,
was added to the precursor polymer solution for its mild
reduction. In addition, to verify the effects of p53 activation
and ferroptosis acting independently, forming a univariate
experimental control with Nano-PMI@CeO2, we substituted
PMI-SH with NH2-PEGn-SH in step 1 to synthesize
corresponding nanoparticles termed Nano-PEG@CeO2, and
Nano-PMI were obtained by replacing CeO2 with the
prefabricated gold seed solution in step 2, and other
conditions remained constant. We also prepared empty carrier
gold nanoparticles Nano by replacing PMI-SH and CeO2 with
NH2-PEG-SH and gold seed solution, respectively.

2.3 Cell Culture
The A549 cell lines (human) and the Lewis lung carcinoma cells
(LLC, mouse) were bought from the Chinese Academy of Science
Cell Bank (Shanghai, China), cultured in a standard incubator
with the DMEM medium, and supplemented with FBS (10%),
penicillin (100 U/ml), and streptomycin (100 μg/ml).

2.4 Apoptosis Analysis
Generally, A549 cells were cultured in a 6-well culture dish with a
suitable density for 24 h prior to treatments. Then, the cells were
incubated with the Nano-PMI@CeO2 (0.02 mg/ml), the Nano-
PEG@CeO2 (0.02 mg/ml), and the Nano for 48 h. Next, all cells
were harvested and stained according to the protocol of the FITC
PE-7AAD Apoptosis Detection Kit (BD, United States).

2.5 Western Blot Analysis
After the indicated treatments of 48 h, the A549 cells were
collected and the total protein was extracted. The proteins
were separated by polyacrylamide gels after preprocessing,
transferred to the nitrocellulose transfer membrane, and

probed using primary and then secondary antibodies. The
primary antibodies are listed as follows: anti-p53(sc-126,
United States), anti-MDM2(sc-13161, United States), anti-
GPX4 (sc-166570, United States), anti-SLC7A11 (ab37185,
United States), anti-COX2 (12375-1-AP, United States), and
anti-GAPDH (60,004-1-lg, United States). The ECL substrate
(Millipore, MA, United States) was used for signal visualization.
The protein expression of p53, MDM2, GPX4, COX2, and
SLC7A11 was normalized to GAPDH and analyzed by ImageJ.

2.6 Mouse Study
All C57BL/6 mice were obtained from the Laboratory Animal
Center of Xi’an Jiaotong University, providing a standard specific
pathogen-free condition. The experimental procedures were
approved by The Medical Ethics Committee of Xi’an Jiaotong
University.

C57BL/6 mice (aged 5–6 weeks) were age-matched for tumor
inoculation. The LLC cell line was inoculated subcutaneously for
mice (1 × 106 cells/site). When the volume of the tumor reached
~100 mm3, the mice were selected randomly into the control
group, Nano-PMI@CeO2 (2 mg/kg), Nano-PMI (2 mg/kg),
Nano-PEG@CeO2 (2 mg/kg) groups (six mice per group).
Treatment was administered via intraperitoneal injection once
every other day. The body weight and condition of mice were
monitored daily. In addition, tumor volumes were analyzed by
the following formula: 1/2× major axis ×width-diameter2. The
humane endpoints were determined based on the level of animal
discomfort and tumor sizes.

2.7 H&E and Immunohistochemistry
Tissues were stained with hematoxylin–eosin (H&E) referring to
regular histopathological techniques. All sections used for
histological analysis were 4 μm thick. For
immunohistochemistry, primary antibodies were used: anti-
p53 (21891-1-AP, United States), anti-COX2 (12375-1-AP,
United States), and anti-GPX4 (sc-166570, United States). The
slices were scanned with a Scanner, and images were analyzed
through ImageJ.

2.8 Statistics
Student’s t-test was chosen to test the statistical difference
between the experimental results of the two groups of data.
ANOVA was used to analyze more intergroup differences, and
the Tukey post-analysis or log-rank test was used when necessary
(*p < 0.05, **p < 0.01, and ***p < 0.001).

3 RESULTS AND DISCUSSION

3.1 Synthesis and Characterization of
Nano-PMI@CeO2
To construct this bifunctional metal-organic supramolecular
Nano-PMI@CeO2 with ferroptosis induction and p53
activation, the choice of basic functional building blocks is
crucial. In previous reports (He et al., 2020; Zheng et al.,
2021), PMI showed potent regulation of p53-MDM2/MDMX,
accompanied with huge nano-engineering work on it, which
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provided us with great convenience. As for the ferroptosis-
inducing module, the rare earth element nanoparticle CeO2

was selected. The fabrication of Nano-PMI@CeO2 mainly
includes two steps: 1) the preparation of PMI peptide-gold
precursor polymers [Au1+-S-PMI] n and 2) the reduction and
self-assembly of peptide-gold precursors on the surface of
nanoparticle CeO2 (Figure 1). In step 1, the peptide-gold
precursor was formed by spontaneous coordination between
Au3+ in chloroauric acid and thiolated PMI peptides. The
disappearance of sulfhydryl groups in PMI-SH and the
appearance of Au–S in Nano-PMI@CeO2 were confirmed in
the Fourier Transform Infrared (FT-IR) spectrum (Figure 2A).
PMI could be easily obtained by solid-phase synthesis (SPPS),
and the thiolylation of PMI was achieved by introducing a
cysteine residue at its C-terminus, which was crucial for the
preparation of peptide gold precursor and subsequent self-
assembly.

In step 2, 1mM CeO2 nanoparticles were dissolved in 5ml of
100mMHEPES and added to precursor polymer solution for itsmild
reduction. The peptide-gold polymer covered the surface of CeO2 and
self-assembles under the aurophilic interactions and van der Waals
forces. During the process, the reaction system changed from turbid
liquid to a purple transparent solution, accompanied by an obvious
Tyndall effect. There was no precipitation after the solution was
placed at room temperature for 24 h, which indicated the successful

preparation of Nano-PMI@CeO2 supramolecular colloid. The
characteristic absorption peak of the peptide in FT-IR
(Figure 2A) and the absorption peak in the UV–Vis absorption
spectra (Figure 2B) confirmed that the peptide was integrated. In
addition, we also prepared the empty-cargo counterpart of Nano-
PMI@CeO2, termed Nano-PEG@CeO2.

Through dynamic light scattering (DLS), we obtained the
particle size of the NPs. The average diameter of Nano-PMI@
CeO2 was shown to be 31.74 nm (Figure 2C). Under
transmission electron microscopy (TEM), both Nano-PMI@
CeO2 and Nano-PEG@CeO2 exhibited good monodisperse
properties and uniform size (Figure 2D). The size distribution
of Nano-PEG@CeO2 and Nano-PMI@CeO2 by TEM was in line
with the results of DLS (Supplementary Figure S1). Nano-PMI@
CeO2 had a ζ potential of 19.9 mV in PBS solution (pH = 7.4),
which suggested that the nanoparticles had good colloidal
stability (Figure 2E). Moreover, the colloidal stability of Nano-
PMI@CeO2 was proved again by the co-incubation test with 10%
FBS, in which Nano-PMI@CeO2 maintained its hydrodynamic
diameter and ζ potential during the 72 h incubation
(Supplementary Figure S2).

To identify the composition of Nano-PMI@CeO2, we
centrifugally removed the nanoparticle and quantified the residual
in the supernatant. First, the nanoparticles were centrifuged at high
speed (10,000 g × 10min), and HPLC was used to detect the

FIGURE 1 | Synthesis and function of Nano-PMI@CeO2. Schematic depiction for the synthesis procedure of Nano-PMI@CeO2 and their targeting in the lung
cancer site by EPR effect and p53 pathways inducing ferroptosis.
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polypeptide content in the supernatant. As shown in Supplementary
Figure S3, there was almost no residual polypeptide in the
supernatant. The nanoparticles were incubated with a high
concentration of dithiothreitol (DTT) to disrupt the binding of
peptides and gold and passed through the HPLC column again,
and the peptide loading in the nanoparticles was calculated to be
91.8%. Furthermore, the Au and Ce elements in the epipelagic liquor
were analyzed by inductively coupled plasma mass spectrometry
(ICP-MS), and the results (Supplementary Table S1) showed that
the Au and Ce elements in the supernatant accounted for 2.2% and
0.4% of the reactants, respectively. Calculated from the ratio of the
reactants, the elemental concentrations of gold and cerium in the
particles were 0.197mg/ml and 0.04mg/ml, respectively, which
showed that our nanoparticles contain almost all the gold and Ce
elements. Thus, the resulting nanoparticle solution had almost no
impurities remaining, and purification is unnecessary. To validate the
biodistribution of the Nano-PMI@CeO2 in vivo, the 197Au in the
blood, the main organs, and the tumor extracted from LLC-bearing
C57BL/6mice were analyzed via ICP-MS. The noticeable blood cycle
time of Nano-PMI@CeO2 (Supplementary Figure S4) was
supported by the metabolic level measured via time-based ICP-
MS. Nano-PMI@CeO2 exhibited low normal tissue storage in a
period of 4 h ~ 1 week due to the metabolism and elimination,
while the cumulation of Nano-PMI@CeO2 at the tumor focus was
high due to the EPR effect. Furthermore, quantitative analysis of Au
and Ce elements in the dissociated organs from different time points
showed thatNano-PMI@CeO2 could be cleared from the body by the

mononuclear phagocytosis system. In summary, Nano-PMI@CeO2

was co-self-assembly constructed as a metallo-organic supermolecule
based on CeO2 nanoparticle (metal part) and peptide PMI (organic
part), with advantages of stable transport and controlled release for
intracellular peptide.

3.2 Nano-PMI@CeO2 Reactivated p53
Signaling and Augmented Ferroptosis of
Lung Cancer in Vitro
To explore the potential of Nano-PMI@CeO2 nanoparticles for
suppressing tumor growth in vitro, the antitumor mechanism of
Nano-PMI@CeO2 (0.02 mg/ml) was first tested on the lung
cancer cells A549 carrying wild-type p53 and overexpression
of MDM2/MDMX. After cells were treated with 0.02 mg/ml
Nano-PMI@CeO2, Nano-PEG@CeO2, and Nano for 48 h, flow
cytometric quantification of the increase in the number of PI and
Annexin V in different treatment groups was carried out. In
contrast to the control group, the apoptotic cell ratio in the Nano-
PMI@CeO2 group significantly increased by more than 70%
(Figures 3A,B), while the Nano-PEG@CeO2 group also
showed some potent activity in the A549 cells. We designed
Nano-PMI@CeO2 to induce tumor cell death via the ferroptosis
and apoptosis hybrid pathway, in which ferroptosis played an
important position. Although there was only a minor increase in
the Nano-PMI@CeO2 group compared to the Nano-PEG@CeO2,
this evidence still suggested that Nano-PMI@CeO2 has

FIGURE 2 | Characterization of Nano-PMI@CeO2. (A) FT-IR spectroscopy of Nano-PMI@CeO2 and PMI. Two absorption peaks at 3400 cm−1 and 1650 cm−1

were distributed to the stretching vibration of N-H and C=O of peptides. (B) UV–Vis spectra of peptides Nano-PMI@CeO2 and Nano-PEG@CeO2. The typical Au nano
shell absorption peak was observed closely at 550 nm. (C) Surface charge (Zeta potential) of Nano-PMI@CeO2 was measured in PBS at pH 7.4. (D) TEM images of
Nano-PEG@CeO2 and Nano-PMI@CeO2. (E) Hydrodynamic diameter of the Nano-PMI@CeO2 was measured by dynamic light scattering.
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potentially suppressed the proliferation process in tumor cells by
inducing apoptosis.

Next, we also used the HCT116−/− cells, a p53 knockout cell
line, and the NCI-H1975 cells, a p53 mutation cell line, to further
verify the cytocompatibility of the Nano-PMI@CeO2. Apoptosis
experiments showed that after Nano-PMI@CeO2 (0.02 mg/ml)
treatment for 48 h, there was no significant increase in the
apoptosis rate in the p53 knockout cell lines (Supplementary
Figures S5A,B), and the p53 mutant cell lines showed almost the
same content (Supplementary Figures S5C,D). This result
indicated that Nano-PMI@CeO2 was dependent on p53
activation to upregulate p53 levels. The apoptosis rate of
HUVECs treated with Nano-PMI@CeO2 (0.02 mg/ml) for 48 h
analyzed by flow cytometry was consistent with the control,
which reflected the specific killing effect of the nanoparticles
on tumor cells (Supplementary Figures S5E,F).

After demonstrating the Nano-PMI@CeO2 exact antitumor effect
on the lung cancer cell lines, we further explored the underlying
mechanism throughWestern blotting. Since then, with the treatment

indicated with 0.02mg/ml concentration for 48 h, we harvested the
protein of A549 cells. Notably, CeO2, a well-known oxidative stress
inducer, could trigger the production of OHand iron death in tumors
(Ha et al., 2018; Das et al., 2013). As displayed in Figure 3C, the
expression of SLC7A11 in the Nano-PEG@CeO2 group was
significantly downregulated, in comparison with the control
group. It was reflected that Nano-PEG@CeO2 could regulate
ferroptosis of tumor cells, as similarly reported before (Hong
et al., 2021; Luo et al., 2021b). Furthermore, the expression of p53
with Nano-PMI@CeO2 treatment was remarkably increased
compared with the control group. By contrast, the MDM2 was
markedly downregulated in the Nano-PMI@CeO2 group
(Supplementary Figure S6). It was demonstrated that Nano-
PMI@CeO2 could achieve p53 accumulation in A549 cells by
blocking the p53 and MDM2 interactions (Figures 3C,D). In
addition, owing to the oxidative stress environment by CeO2,
reactivating p53 could significantly downregulate the intracellular
concentrations of SLC7A11 and GPX4 (Figures 3C,D). These key
protein expression levels reflected that Nano-PMI@CeO2 was helpful

FIGURE 3 | Nano-PMI@CeO2 potently enhanced tumor apoptosis in vitro by targeting p53 pathways and inducing ferroptosis. (A) Apoptosis effects of these NPs
on the A549 cell line measured by flow cytometric analysis. (B) Apoptosis rate was showed as mean ± SE (n = 3). p values were calculated by t-test (*, p < 0.05; **, p <
0.01; ***, p < 0.001). (C) Protein expression was shown of COX2, GPX4, p53, and SLC7A11 in A549 cell line treatment with 0.02 mg/ml Nano-PMI@CeO2, 0.02 mg/ml
Nano-PEG@CeO2 using Western blot. (D) Relative protein levels of COX2, GPX4, p53, and SLC7A11 were calculated using ImageJ. Experiment results were
presented as mean ± SE (n = 3) p values were calculated by t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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in further augmenting ferroptosis in A549 cells (Jiang et al., 2015; Lei
et al., 2021). Taken together, these results demonstrated that Nano-
PMI@CeO2 not only induced tumor cell deaths by promoting the
apoptosis pathway but also owed to augment ferroptosis in vitro
through reactivation of the p53 pathway.

3.3 Nano-PMI@CeO2 Suppresses Tumor
Progression In Vivo
In the process of further verification of the in vivo therapeutic effect of
Nano-PMI@CeO2, lung cancer allografts were constructed for animal
models. In detail, it was achieved by seeding LLC cells (1 × 106/
mouse) into the epidermis of C57BL/6, as described in Figure 4A.
The Nano-PEG@CeO2 (2mg/kg), Nano-PMI@CeO2 (2mg/kg), and
Nano-PMI (2mg/kg) were injected intraperitoneally every 2 days

after the tumor grew to around 100mm3. The tumor volume and
body weight were recorded every day. Compared with the group
treated with PBS, Nano-PEG@CeO2 inhibited tumor proliferation by
51% at the end of treatment (Figure 4B). Also, Nano-PMI@CeO2

successfully suppressed the tumor growth with a tumor inhibition
rate greater than 74% (Figure 4B), limiting the tumor volume to
<550mm3. The comparison of the operated tumors at the end of the
12-day experimental process revealed that tumor growth was
noticeably hindered in the Nano-PMI@CeO2 treatment group
(Figure 4C). At the same time, the tumor weight (Figure 4D)
also proved the highest efficiency of Nano-PMI@CeO2 compared
to the other two groups. In addition, in the survival curve experiment
(Supplementary Figure S7), Nano-PMI@CeO2 greatly prolonged
the median survival time of mice (26 days), significantly surpassing
other control groups (19.5 days for Control, 24 days for Nano-PEG@

FIGURE 4 | Nano-PMI@CeO2 in vivo antitumor activity. (A) Schematic depiction of the subcutaneous allograft lung cancer model and therapeutic process LLC
allograft lung cancer model was established by subcutaneous injection LLC cells. Mice were treated with intraperitoneal injection every 2 days six times with nanoparticle
drugs (2 mg/kg) or PBS. (B) Tumor sizes were measured by a vernier caliper every day. Tumor volume data were shown as mean ± SE (n = 6/group). p values were
calculated by t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001).(C) Photographs and (D) average weights of tumors were collected at the end of the experiment (n = 6). p
values were calculated by t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). (E&F) Allograft tumors from mice after the 12 days of treatment staining by H&E (E) and TUNEL
(F). (Scale bar: 200 μm).
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CeO2 and 21 days for Nano-PMI). Collectively, these data
demonstrated that Nano-PMI@CeO2 was a potent antitumor
therapy therapeutic agent. In addition, H&E staining assays
(Figure 4E) and TUNEL staining assays (Figure 4F) with the
quantitative analysis (Supplementary Figure S8) of the tumor
tissue further confirmed the superior therapeutic effect of Nano-
PMI@CeO2. In short, this evidence suggested thatNano-PMI@CeO2,
as a novel nano-drug, was strongly efficacious in inducing a cancer-
killing effect in vivo.

3.4 Nano-PMI@CeO2 Augmented
Ferroptosis Through p53 Accumulation In
Vivo
Based on the results above, we reckoned that Nano-PMI@CeO2

could reactivate the p53 pathway by inhibiting the negative
regulation of MDM2/MDMX. Under this, the protein levels of
SLC7A11 were reduced, and downregulation of GPX4 induced

far more ferroptotic cell death when compared to Nano-PEG@
CeO2 in vivo (Figure 5A). To further reveal the underlying
mechanisms of Nano-PMI@CeO2 on antitumor effect in vivo,
immunohistochemical staining was used to validate the p53
expression levels and other key proteins relating to ferroptosis.
From Figures 5B,C, we could observe that the nanoparticles
CeO2 inhibited GPX4 protein expression and triggered COX2
protein. Based on this, we reckoned that the nanoparticles CeO2

lead to the tumor cell ferroptosis via the GPX4 pathway. At the
same time, the results showed that the Nano-PMI@CeO2 could
effectively activate the accumulation of p53 protein in tumor cells
in vivo, while inducing the ferroptosis process with noticeable
downregulation of GPX4 (Figures 5B,C). As a result, Nano-
PMI@CeO2 earned more active inhibition of tumor proliferation
than the Nano-PEG@CeO2 group in the regimen. Nano-PMI@
CeO2 could not only effectively activate the accumulation of p53
protein in tumor cells in vivo but also induce the noticeable
downregulation of GPX4 (Figure 5). Overall, owing to the

FIGURE 5 |Mechanism of Nano-PMI@CeO2 in vivo induced tumor cell death. (A) Schematic diagram for antitumor activity of Nano-PMI@CeO2 targeting the p53
pathways and inducing ferroptosis. (B) Representative IHC staining of COX2, GPX4, and p53 in tumor sections. (Scale bar:100 μm). (C) IHC scores analysis presented
intratumoral protein levels of p53, GPX4, and COX2. p values were calculated by t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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enhanced tumor permeability and retention (EPR) effects, the
metallo-organic supramolecule could passively be accumulated in
the tumor location in vivo, validating their potential for
facilitating p53 reactivation, while achieving tumor cell
apoptosis and enhanced tumor cell ferroptosis.

3.5 Nano-PMI@CeO2 Safety Evaluation In
Vivo
Metallo-organic supramolecules often enhance the therapeutic
performance via reducing functional molecule concentrations in

normal tissues and increasing concentrations in tumors
sufficiently under the EPR effect (Figure 6A). To evaluate the
biosafety with Nano-PMI@CeO2 treatment in vivo, we performed
comprehensive toxicity research using C57BL/6 mice. The Nano-
PMI@CeO2 was administered intraperitoneally (2 mg/kg) to the
mice on alternate days for 12 days. Then, we recorded the changes
in body weight of each group, as shown in Figure 6B, and the
body weight of mice in the four groups gradually increased.
Although the growth rate of body weight in the Nano-PMI@
CeO2 group was slightly lower than that in the control group and
Nano-PMI group at the later stage of treatment, there was no

FIGURE6 |Nano-PMI@CeO2 safety evaluation in vivo. (A) Schematic illustration of tumor specificity for Nano-PMI@CeO2 via the EPR effect. (B)Body weights were
measured every day to evaluate the safety of Nano-PMI@CeO2, Nano-PEG@CeO2, and Nano-PMI in vivo. (C–F) Count of white blood cells (WBCs) (C), thrombocytes
(D), red blood cells (RBCs) (E), and hemoglobin (F) in C57BL/6 mice with the different treatments. (G) Representative histological H&E staining images of the heart, liver,
spleen, lung, and kidney in mice with the indicated treatment. (scale bar: 100 μm).
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remarkable difference between the groups. Then, as expected, the
safety of both Nano-PMI@CeO2 and Nano-PEG@CeO2 was
further confirmed by analysis of white blood cells (Figure 6C),
thrombocytes (Figure 6D), red blood cells (RBCs) (Figure 6E),
and hemoglobin (Figure 6F) in peripheral blood of mice. The
H&E staining for the key organ slice also confirmed the
abovementioned results that Nano-PMI@CeO2 was enough
biosecurity as a potential therapeutic effect (Figure 6G). The
meaning of this research was to verify the antitumor and biosafety
of Nano-PMI@CeO2 for the treatment of lung cancer to identify
evidence-based resources that could better facilitate informed
consent.

4 CONCLUSION

Ferroptosis, as a novel tumor therapy strategy, has gained a great
lot of attention in tumor development and treatment. As the
primary hallmark of cancer is a valid escape from conventional
modes of cell death, the traditional cancer therapeutic schedules
still face enormous challenges, covering drug resistance, off-target
effects, and so on (Shan et al., 2020; Luo et al., 2021a). Recently,
nanoparticles have provided a new form of opportunity for
anticancer therapy because of ferroptosis activation. For
example, Zhao et al. developed a micellar delivery nano-drug,
called DHM@RSL3, to release RSL3 in the hypoxia environment
around the tumor, suppressed GPX4 protein expression with site-
selectivity, and induced ferroptosis (Guo et al., 2020).
Furthermore, Lin et al. constructed an arginine-capped silicate
nano, named AMSNs, which presented huge responsiveness of
GSH to activate GPX4-related ferroptosis in tumors (Wang et al.,
2018). Beyond that, compared to small molecules, nanomaterials
had higher power of clinical application in inducing iron death,
taking advancements of longer blood circulation, stronger
targeting, more controllable release ability, etc. Therefore,
nanoparticle-induced iron death is considered an effective and
safe way for various malignant tumor treatments.

Although multiple advances have been tapped out to produce
iron death in malignancy tumors, the nano-drug as a single
ferroptosis strategy may be unsatisfied with the demands of
the complex tumor situation, such as drug resistance (Zhang
et al., 2019; Guo et al., 2020). In recent years, several studies have
combined iron toxicity measures with other therapeutic
approaches to kill tumor cells, that is, introducing other
strategies with ferroptosis for more efficient multi-modal
carcinoma therapy (Liu et al., 2018; Zheng et al., 2021c). Our
results indicated that metallo-organic supramolecular realized
ferroptosis sensitization through p53 pathway reactivation and
provided a feasible delivery scheme for p53-mediated tumor
ferroptosis death. As described above, supramolecular
therapeutic agents have been extensively developed in cancer
therapy to elevate target specificity and treatment efficacy and, at
the same time, reduce the side effects on normal cells.

In conclusion, under the combination of peptide chemistry
and nanotechnology, we developed an intracellular-activatable

nanoparticle for promoting p53 of the tumor cells and combining
ferroptosis and apoptosis. Here, Nano-PMI@CeO2 showed the
enormous potential of metallo-organic supramolecular in
restoring the p53 pathway in vitro and in vivo, primed the
tumor cells to cell apoptosis, and augmented GPX4-related
ferroptosis. This is an effective attempt to apply metal-organic
supramolecules to sensitize tumor iron death. Taken together,
this study not only validated sensitizing ferroptosis via
reactivation p53 as a clinical translational potential but also
more importantly provided a practicable pattern to translate
metal-organic supramolecules into a candidate drug for
tumor-targeted strategy.
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