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Simple Summary: Muscle plasticity is defined as the ability of the muscle to respond to changes
in environmental conditions. Muscle plasticity is exceptionally dynamic in fish; this is attributed
in part to their ectothermic (cold-blooded) nature and ability of indeterminate or continual growth,
throughout their lifespans. The molecular mechanisms regulating muscle growth in fish are not
completely characterized; however, recent advancements have established that microRNAs and
DNA methylation are important mechanisms regulating muscle plasticity. This review examines
these mechanisms and describes how they are regulated by genetic and environmental (i.e., nutrition,
temperature) factors and they in turn affect muscle growth and plasticity in fish.

Abstract: Growth rates in fish are largely dependent on genetic and environmental factors, of which
the latter can be highly variable throughout development. For this reason, muscle growth in fish is
particularly dynamic as muscle structure and function can be altered by environmental conditions, a
concept referred to as muscle plasticity. Myogenic regulatory factors (MRFs) like Myogenin, MyoD,
and Pax7 control the myogenic mechanisms regulating quiescent muscle cell maintenance, prolifera-
tion, and differentiation, critical processes central for muscle plasticity. This review focuses on recent
advancements in molecular mechanisms involving microRNAs (miRNAs) and DNA methylation
that regulate the expression and activity of MRFs in fish. Findings provide overwhelming support
that these mechanisms are significant regulators of muscle plasticity, particularly in response to
environmental factors like temperature and nutritional challenges. Genetic variation in DNA methy-
lation and miRNA expression also correlate with variation in body weight and growth, suggesting
that genetic markers related to these mechanisms may be useful for genomic selection strategies.
Collectively, this knowledge improves the understanding of mechanisms regulating muscle plasticity
and can contribute to the development of husbandry and breeding strategies that improve growth
performance and the ability of the fish to respond to environmental challenges.
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1. Introduction

Fish species that exhibit indeterminate growth display an exceptional ability for contin-
ual muscle growth throughout their life by an increase in muscle fiber number (hyperplasty)
and in muscle fiber size (hypertrophy) [1–7]. In fish, myogenesis starts during embryonic
development by somites from the mesodermal layer. Somites differentiate to myogenic pre-
cursor cells (MPCs) that are stored as a reservoir between the basal lamina and sarcolemma
of mature muscle bundles and are sequestered during adult myogenesis [8]. Myogenesis is
a complex mechanism initiated by activation, proliferation, differentiation, and maturation
of MPCs; these processes are orchestrated by various myogenic regulatory factors (MRFs),
signaling pathways, non-coding RNAs, and epigenetic mechanisms. The functional aspects
of MRFs and signaling pathways in mammalian species are well documented in previous
reviews [9–12], hence their role in skeletal muscle development is briefly discussed in the
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current review. Our focus is to discuss the role of epigenetic and microRNA mechanisms in
myogenesis and their regulation by biological factors thus affecting muscle plasticity in fish.

2. Myogenic Regulatory Factors

Myogenic regulatory factors are basic helix-loop-helix transcription factors that drive
the process of myogenesis, including MPC proliferation and differentiation (Table 1).
Preferential expression of MRFs determines progression of MPCs [13]. It is accepted
that MRF function is generally conserved in animals; this concept is supported by MRF
protein sequences with high similarity and consistent expression patterns throughout MPC
progression. Myf5 is an important MRF that functions to promote the commitment of
satellite cells to myogenic lineage. The committed MPCs are cells that express MRF specific
to satellite cells, including Pax7 [14,15], HGF receptor c-met [15], and Syndecan-4 [16].
Pax7 is necessary for the maintenance of satellite cells state [8,17–20]. Absence of Pax7
expression leads to defective muscle differentiation through cell cycle arrest and precocious
differentiation [21,22]. MPCs enter a proliferative phase and are capable of asymmetric
and symmetric cell division to either self-renew or differentiate into myoblasts. The self-
renewed cells express high levels of Pax7 [18] and those that differentiate express high
MyoD with a decrease in Pax7 expression [23]. Thus, MyoD is one of the major factors
determining the myogenic cell fate of MPCs [24,25]. In addition to the MRFs necessary
for satellite cell maintenance and differentiation, the expression of Mrf4 and Myogenin
after proliferation and during differentiation marks the differentiation process to form a
myofiber [26,27].

Table 1. Established roles of DNA methylation for myogenic regulatory factors (MRF).

Gene/MRF Functional Role Methylation Status Reference

Pax7 Migration and early lineage
commitment

Hypermethylation in myogenic cells and mature
muscle fibers [28]

Myf5 Proliferation and differentiation of
MPC into myoblasts

Hypermethylation of enhancer region in
embryonic stem cells
Hypomethylation in myoblasts, myotubes, and
skeletal muscle

[29]

Myod Proliferation and differentiation of
MPC into myoblasts Hypomethylation in distal enhancer region [30]

Myogenin Differentiation of myoblasts into
myotubes

Demethylation in differentiated muscle
Hypermethylated in myoblasts and
non-myogenic cells

[31]

Obsn Formation of skeletal muscle Hypomethylation in muscle tissue
Hypermethylated in myoblasts and myotubes [28]

Myh7b Expressed intronic microRNA
miR499 Hypomethylation [28]

Gene promoters Myotube formation Hypermethylation of ID4 and ZNF238 binding
sites [32]

Notch1 Proliferation of muscle satellite cells Hypomethylation and its ligands Dll1 and Jag2
in skeletal lineage cells [33]

Signaling molecules play a significant role in regulating the expression of these MRFs,
thus determining the fate of myogenesis. TGF-β family members are responsible for
satellite cell maintenance while hedgehog signaling is responsible for transition from pro-
liferative to quantile mitosis. Satellite cell markers Pax7 and Pax3 are downregulated
and differentiation factor MyoD is upregulated by hedgehog in teleosts, thus determin-
ing myogenic commitment. Additionally, insulin-like growth factor-I (IGF-I) and insulin
regulate myogenesis by binding to receptor tyrosine kinase and initiating signaling cas-
cades. Growth factor signaling enhances myogenic proliferation and differentiation via
mitogen-activated protein kinase (MAPK), Ras/Raf, and PI3K pathways thus controlling
muscle regeneration, MPCs proliferation, and differentiation, respectively [34]. The signal-
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ing pathways initiate a cascade of reactions by phosphorylating different intermediates,
including target of rapamycin (TOR), thereby activating MRFs and ultimately triggering
gene expression responsible for muscle synthesis [35].

3. Epigenetics and DNA Methylation

Chemical modification of DNA bases was first reported in Tubercle bacillus and later in
calf thymus DNA [36,37]. Further establishing of the importance of DNA methylation in
transcriptional regulation of eukaryotic gene expression was reported by two simultaneous
studies [38,39]. Since then, studies have reported the presence of such modifications in
various organisms including prokaryotes, fungi, plants, and animals, including fish. These
modifications are post-synthetic, as the methyl group is added after the nucleotides are
incorporated into the DNA. Methylation of bases is carried out by DNA methyltransferases
(Dnmt) and the methyl group is donated by S-adenosyl methionine. DNA methylation
in mammals is carried out by three Dnmts: Dnmt1, Dnmt3a, and Dnmt3b. However,
eight Dnmt genes were identified in zebrafish and included Dnmt1 and Dnmt2, while the
rest were similar to the mammalian Dnmt3 [40–42]. Dnmt1 is a maintenance methyltrans-
ferase mainly functioning in methylating hemi-methylated DNA strands during replication.
Dnmt3a and Dnmt3b are de novo methyltransferases methylating nascent DNA or hemi-
methylated DNA. De novo methyltransferases are essential for laying methylation marks
during embryo implantation and early development [43]. The majority of base modifi-
cations in eukaryotes are on cytosines, while some of the unicellular organisms present
methylation on adenosine [44,45]. A methyl group is added to the carbon at fifth position
of cytosine resulting in 5mC. Until recently it was believed that methylation of cytosine is re-
stricted to CpG dinucleotide. Advanced sequencing techniques as well as the ability to map
sequences at base pair resolution disclosed non-CpG methylations. Non-CpG methylations
are less frequent than CpG methylations and are seen in mammalian oocytes [46], adult
brain [47], and embryonic stem cells [48]. In general, DNA methylation is associated with
transcriptional silencing, although there are exceptions [49]. Introduction of the methyl
group on cytosine affects the binding of proteins such as repressors, histones, and hormone
receptors to the DNA indicating regulation of gene expression [50–52] by sterically pre-
venting binding. The methylated regions act as binding sites for certain transcriptional
repressors including MeCP2, Mbd1, and Mbd2 leading to closed chromatin [53].

3.1. DNA Methylation during Skeletal Myogenesis

Studies in mammals confirmed the regulatory role of DNA methylation during myoge-
nesis, including activation of MPC, proliferation, and differentiation. Comparative studies
to understand the methylation landscape among myogenic differentiating cells and mature
skeletal muscle suggested loss of methylation in mature fibers. In mice differentiating
muscle cells exhibit approximately 90% higher methylation rates when compared to ma-
ture myofibers [29]. Differential expression of enzymes involved in DNA methylation
was observed in a stage specific manner; Dnmt1 was upregulated during activation and
downregulated during differentiation. Reduced expression of de novo methyltransferases
Dnmt3a and demethylating enzymes Tet1, Tet2, and Tet3 during muscle precursor cell
activation was reported while Dnmt3b remained unchanged [54–57]. The role of DNA
methylation in cell fate commitment and in progression of myogenesis was supported by
several mammalian studies using 5-azacytidine and antisense RNA to inhibit Dnmt1 and
DNA methylation [58,59]. Proliferating myoblasts exposed to 5-azacytidine exhibited in-
creased expression of myogenic genes including Myogenin. This indicated a functional role
of DNA methylation in permitting binding of myogenic transcription factors to their target
genes promoting differentiation [60]. Hyper and hypomethylation of various MRFs and
genes involved in the process of myogenesis are listed in Table 1. Collectively these studies
support the important role of DNA methylation in various stages on myogenesis. Although
most of the studies represent CpG methylations, the importance of non-CpG methylations
is yet to be identified. Additionally, technical methods used could not differentiate between
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methylated and hemi-methylated cytosines, hence studies understanding such differences
are necessary to know the functional impact of DNA methylation in myogenesis.

3.2. Epigenetic Regulation of Muscle Plasticity in Fish

Most advances in the knowledge of epigenetic regulation of muscle plasticity in fish
have occurred only within the last five years; findings have provided support for DNA
methylation as a mechanism affecting muscle growth (Table 2). Comparing the methylome
of fast and comparatively slow growing tilapia indicated approximately 1000 differen-
tially methylated CpGs in both males and females, although there was very little overlap
between the sexes [61]. These findings indicate that variations in DNA methylations are
associated with faster growth, providing strong support for epigenetic mechanisms as a
significant regulator of muscle plasticity. In particular, the autophagy-related gene Atg14
displayed a high association of methylation with growth in male tilapia, suggesting that
suppression of muscle protein degradation contributes to muscle growth. Research in ze-
brafish reports similar findings; in muscle the autophagy-related genes Atg4b and Lc3b are
both hypomethylated and up-regulated during nutrient deprivation [62], supporting that
DNA methylation is responsible for starvation-induced loss of muscle protein. Nutritional
regulation of muscle growth via epigenetic modifications is supported by additional studies
in rainbow trout indicating hypermethylation in muscle of fish consuming higher dietary
carbohydrates [63] and regulation of DNA methyltransferase expression by dietary protein
in the Senegalese sole [64]. This concept is further supported by a nutritional programming
study in tilapia in which injections of glucose into the yolk of alevins were associated with
DNA hypomethylation in muscle 20 weeks post-injection [65], suggesting the existence of
epigenetic mechanisms at the origin of programming that affect muscle growth.

Table 2. Research in fish investigating epigenetic regulation of muscle plasticity.

Factor Affecting Muscle Plasticity Fish Specie(s) Reference

Genetic variation in growth Nile tilapia [61]

Temperature
Atlantic salmon,

European sea bass, Senegalese sole,
stickleback

[66–69]

Nutrition
zebrafish,

rainbow trout,
Senegalese sole

[62–65]

Photoperiod Atlantic cod [70]
17β-estradiol rainbow trout [71]

Seasonal acclimation common carp
gilthead sea bream [72,73]

Several studies have characterized the role of DNA methylation in response to tem-
perature variation during early rearing stages. In Atlantic salmon, higher embryonic
incubation temperature (4 ◦C vs. 8 ◦C) increases post-embryonic growth rates; in first-
feeding larvae this response was associated with both reduced DNA methylation of the
Myogenin promoter and higher Myogenin expression [66]. Effects of incubation tempera-
ture on muscle Dnmt expression extended to the parr stage in which expression of Dnmt1
and Dnmt3a increased with higher larval rearing temperature. Similarly, European sea bass
larvae incubated at higher temperatures exhibited growth benefits, differential genomic
methylation patterns, and increased expression of Myogenin, Dnmt1, and Dnmt3 [67].
Comparable findings were observed in the Senegalese sole; higher early rearing temper-
ature enhanced hyperplastic muscle growth during metamorphosis [68], a response that
was correlated with reduced methylation of the Myogenin promoter, increased Myogenin
expression, and regulation of Dnmt1 and Dnmt3a expression [69]. In Atlantic cod, exposure
to continuous illumination during early juvenile development improved growth poten-
tial and was associated with higher Dnmt1 and Dnmt3a expression in fast muscle. [70].
Although the directional regulation of Dnmt expression is not consistently associated
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with the faster growth phenotype, these studies provide evidence that temporal effects of
early rearing conditions on muscle growth are regulated in part through modification of
DNA methylation.

Although most studies have focused on changes in muscle Dnmt expression as an
indicator of regulation of DNA methylation capacity, fewer have investigated changes
in methylation of MRFs that affect myogenesis and muscle plasticity. As previously
mentioned, in two studies improved growth rates induced by higher embryonic incubation
temperatures corresponded to hypomethylation of the Myogenin promotor and increased
expression in muscle [66,67]. In rainbow trout 17β-estradiol increased methylation within
exon 1 of Myod and decreased expression of the Myod gene, providing evidence for down-
regulation of a MRF by a steroid treatment that also promotes muscle atrophy [71]. Also
in rainbow trout, unique histone methylation patterns of the three paralogous Pax7 genes
were detected during in vitro myogenesis [74]. Expression of Pax7a2 exhibited decreased
expression with decreased H3K27 trimethylation. In contrast, Pax7b expression increased
and was correlated with decreased H3K9me3 and H3K27me3.

4. MicroRNA Regulation of Myogenesis

Small RNAs, particularly microRNAs (miRNAs), are extensively studied as post-
transcriptional microregulators of gene expression governing either mRNA stability, rates
of translation, or both [75]. Studies in mammals provide evidence for their transport [76]
and nuclear existence [77], suggesting functions other than translational inhibition. Simi-
larly, the presence of miRNA in exosomes [78] advocates their secretion and circulation
through body fluids [79–81] to control gene expression in recipient cells [82]. Besides
continuous efforts to understand various functional roles of miRNA, their biogenesis is
well established [83]. Primary transcripts of miRNA are either generated by transcription
of individual miRNA genes or by processing of intronic regions. MicroRNAs bind to target
mRNA by either perfect or imperfect base-pairing, leading to translational repression or
mRNA degradation. In addition, nuclear miRNAs bind to promoters and either activate
or inhibit gene expression. The distinguishable characteristics or functional properties of
activating and inhibiting miRNAs are not well understood [83].

4.1. Functional Regulation of miRNA in Muscle

Myogenesis involves orchestrated interaction of various mechanisms involving sig-
naling pathways and coordinated gene expression of various myogenic regulatory factors
(MRFs). The role of miRNA in myogenesis was first established in Dicer mutant mice
exhibiting reduced muscle miRNA, perinatal death, and decreased skeletal muscle with
abnormal myofiber morphology and apoptosis of myoblasts [84]. This study established
the important role of miRNAs in vertebrate muscle development. MicroRNAs with muscle
specific expression and function are designated as myomiRNAs. The involvement of
myomiRNAs in MPC proliferation and differentiation is established [85–87]. For example,
miR-1 and miR-206 promote myoblast differentiation through anti-proliferative effects by
repressing expression of the MRFs Pax3, Pax7, and Notch 1. The myomiRNA miR-133
also suppresses proliferation and promotes differentiation through various mechanisms,
including repression of the mitogen-activated protein kinase pathway, cyclin D2, and
uncoupling protein-2. Nachtigall et al. [88] compared the evolution and organization of
myomiRNAs in cartilaginous and bony-fish genomes through genome-wide comparative
analysis and concluded synteny in myomiRNA distribution.

4.2. MicroRNAs Targeting Genes Involved in Muscle Development

In several fish species, including rainbow trout [89,90], zebrafish [91], Japanese floun-
der [92], sea bass [93], Nile tilapia [94], Chinese perch [95], and common carp [96], the
most abundant miRNAs expressed in skeletal muscle are reported as miR-1, miR-206, and
miR-133a. In vivo and in vitro studies in mammalian systems have established that inter-
action of miR-1, miR-206, and miR-133a with their target genes regulates skeletal muscle
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cell proliferation and differentiation [97–99]. These studies shed light on the regulatory
network among the miRNA and MRFs. Mature miR-1 and miR-133 are derived from
one polycistronic pre-miRNA targeting two different genes. miR-1 promotes myogenesis
by targeting histone deacetylase 4, a transcriptional repressor of muscle gene expression,
while miR-133 targets serum response factor which enhances muscle cell proliferation [97].
In zebrafish, miR-1 and miR-133 explain more than 54% of miRNA-induced regulation
of gene expression, that when down-regulated cause disruption of actin organization in
sarcomere assembly [91]. Additionally, muscle specific expression of miR-206 is controlled
by Myod [99] which along with miR-1 targets and represses pax7 that is a marker for
proliferation [98]. Regulatory expression of miR-206 by Myod is also associated with the
negative regulation of Follistatin-like 1 and Utrophin genes which are necessary for muscle
cell differentiation [99]. MicroRNA-206 is also involved in negative regulation of Igf-1
expression in tilapia skeletal muscle [100]. In addition, findings in tilapia and Chinese perch
report negative regulation of Myod expression by miR-203b and miR-143, respectively;
both miR-203b and miR-143 bind to the 3′-untranslated region (UTR) of MyoD, suppressing
its expression [101,102]. Further promoting growth is miR-181a-5p that represses expres-
sion of Myostatin-b in tilapia [103]. Repression of Myostatin expression by miR-2014 and
miR-1231-5p is also described in yellow croaker (Larimichthys crocea) [104].

Unique miRNA expression profiles are reported in muscle during different develop-
mental stages in common carp [96], the ray-finned Schizothorax prenanti [105], and pacu
(Piaractus mesopotamicus) [106], supporting a significant role in maintenance and growth of
this tissue. Genetic and environmental factors are also established as significant regulators
of miRNA in fish muscle (Table 3). Differences in expression of miRNAs between fish
with divergent growth phenotypes suggest that genetic variation in miRNA expression
is a significant mechanism affecting the capacity for muscle growth. These findings were
reported in rainbow trout [107], tilapia [94], Chinese perch [108], and blunt snout sea
bream [109]. Notable was an up-regulation of miR-133 in fast-growing tilapia [94]. Ex-
pression of miR-133, miR-181a-5p, and miR-206 is also correlated with body weight in
rainbow trout, although indirectly [107]. However, miR-1, miR-133, and miR-206 were
down-regulated in fast-growing, compared to slow-growing, Chinese perch [108]. Varia-
tion in miRNA expression that correlates with body weight warrants additional research
that investigates whether genetic variation in miRNA expression has value as genomic
markers for growth phenotypes.

Table 3. Research in fish supporting miRNA-mediated regulation of muscle plasticity.

Biological Factors Affecting Muscle Plasticity Fish Specie(s) Reference

Temperature Senegalese sole
zebrafish [110,111]

Genetic variation in growth

rainbow trout
tilapia

Chinese perch,
blunt snout sea bream

[94,107–109]

Nutrition

rainbow trout,
Chinese perch,

grass carp,
Nile tilapia,
Atlantic cod

[112–118]

Spawning or 17β-estradiol rainbow trout [90,119]

4.3. MicroRNA Regulation of Muscle Cell Fate

MicroRNAs can determine muscle cell fate very early during somatogenesis. Fish
exhibit two distinct muscle types, slow and fast muscles, and the role of miRNAs in muscle
cell type determination was reported by studies using fish as model species. Ubiquitously
expressing miR-214 synchronizes Hedgehog signaling in zebrafish by translational repres-
sion of its negative regulator Su(Fu), thus coordinating a balance among slow and fast
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muscle cell types. Knockdown of miR-214 in zebrafish embryos led to the development of
fewer to a complete absence of slow muscle cells [120], and hence established miRNA as
necessary for development of slow muscle cells. Similarly, knockdown and overexpres-
sion of miR-3906 in zebrafish embryos affected the fast muscle phenotype [121] through
its function in maintenance of calcium ion concentration homeostasis specifically in fast
muscles. Knockdown of miR-3906 increases the expression of its target gene Homer-1b,
which in turn up-regulates fast muscle specific gene Fmhc4 and calcium sensitive gene
Atp2a1, thus causing a surge in calcium ions concentration and disorganized sarcomeric
actin in fast muscle resulting in swimming abnormality. However, over expression of
miR-3906 decreases calcium ion concentration, resulting in bent bodies and shortened tails
in zebrafish [121]. Another important miRNA extensively studied for its involvement in
muscle cell fate determination is miR-499; it is highly expressed in slow skeletal muscle
in Nile tilapia, pacu, and rainbow trout compared to fast skeletal muscle [88,106,122]. A
regulatory network involving functional repression of Sox6 by miR-499 through Prdm1
for the maintenance of slow-twitch muscle was also reported in zebrafish [123], allowing
restricted expression of Sox6 in fast-twitch muscle. In the Chinese perch, miRNA profiling
in fast and slow muscle suggests that miR-181a-5p, miR-143, and miR-103 have central
roles in regulating the performance of the muscle types [95,102,124]. All together these
studies emphasize the regulatory mechanisms of miRNA in balanced determination of
muscle cell fate and muscle-specific function.

4.4. Biological Factors Affecting miRNA Expression in Muscle

Understanding the role of miRNAs as a mechanism regulating muscle function during
physiological perturbation has been the focus of numerous studies in fish. Perhaps one of
the most significant environmental factors affecting muscle growth in fish is the availability
of nutrients; several studies support that both nutrient intake and diet composition affect
miRNA expression in muscle. Experimental designs that involve feed deprivation and
refeeding have been valuable for identifying miRNA biomarkers for anabolic and catabolic
responses. When Chinese perch [112] and grass carp [113] are subjected to feed depri-
vation and refeeding, miR-206, miR-133a-3p, and miR-181a-5p are up-regulated within
just 1–3 h of refeeding, supporting that miRNA-induced regulation of MRFs like Myod
and Myostatin are significant for rapid recovery growth. Additional in vivo and in vitro
studies have investigated effects of specific nutrients on miRNA expression using rainbow
trout and MPCs derived from its muscle. Methionine deficiency arrested cell differentia-
tion and reduced expression of miRNAs, including miR-133a and the MRFs Myod and
Myogenin, which were rescued by the introduction of methionine [114]. Analogous to
in vitro experiments, decreased expression of miR-133a was also observed in muscle of
rainbow trout consuming a methionine-deficient diet [115]. In tilapia muscle it was deter-
mined that regulation of Kruppel-like factor-15 (Klf15), a key regulator of branched-chain
amino acid metabolism, during feed deprivation is mediated by changes in miR-125a-3p
expression [116]. This mechanism is likely significant for the metabolic and physiological
adaptations to nutrient deprivation in fish. Furthermore, miRNAs with established roles as
regulators of myogenesis (i.e., miR-1, miR-133, miR-206) are affected by consumption of
first feeds in the rainbow trout alevin [117] and Atlantic cod [118].

Temperature is an additional factor that affects miRNA expression. In zebrafish,
changes in muscle growth trajectories (hyperplasia vs. hypertrophy) induced by manipu-
lation of embryonic incubation temperature were associated with differential expression
of miRNAs, with increased Myogenin expression in the higher temperatures that im-
proved growth performance [110]. Similar findings are also reported in Senegalese sole,
in which thermal plasticity of muscle growth was correlated with increased Myogenin
expression and regulation of miRNAs with putative roles in muscle development and
nutrient metabolism, such as miR-181-5p/3p and miR-206-3p [111,125]. These studies
point towards miRNA-related mechanisms that regulate muscle plasticity during tempera-
ture manipulation and fluctuation; this information can contribute to the optimization of
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husbandry strategies to enhance muscle growth or improve fish health and performance.
The need for such studies to understand the consequences of climate change on fish species
is increasing.

In addition to biological factors of exogenous origin, endogenous factors such as hor-
mones are established as regulators of muscle physiology through mechanisms involving
miRNAs. Physiological changes in salmonid skeletal muscle during sexual maturation are
characterized by protein degradation and lipid loss [126,127]. By utilizing the spawning
salmonid as a model for muscle atrophy, studies in rainbow trout have determined that
miRNAs are important for the mobilization of muscle nutrient reserves during the energy
intensive spawning period. Through comparing the transcriptome of sterile and spawning
rainbow trout, 28 miRNAs were associated with the lncRNA-mRNA-microRNA gene
network described as the muscle ”degradome” [119]. The steroid hormone, 17β-estradiol,
is up-regulated only during sexual maturation in female rainbow trout and has been im-
plicated as a biological factor directly regulating miRNA in muscle [90]. Furthermore,
17β-estradiol-induced responses in muscle included regulation of miR-133, miR-206, and
miR-499, along with differential regulation of MRFs like Pax7 and Myod. In an additional
area of hormone-related research, efforts to understand the effects of thyroid hormone
influence on histone deacetylase (Hdac4) lead to the discovery of miRNA regulation of
muscle development during metamorphosis in the Japanese halibut [105]. This study
presented evidence of an interaction between signaling pathways, epigenetic regulators
like Hdac4, and miRNAs (miR-1 and miR-133).

5. Conclusions

Within the last decade significant advancements in the knowledge of molecular regula-
tion of gene expression have established that miRNAs and DNA methylation are significant
mechanisms affecting expression of myogenic regulatory factors and muscle plasticity in
fish. Genetic, environmental, and physiological factors cause differential expression of
miRNAs and DNA/gene methylation in muscle that are directly linked or correlated with
growth responses. These findings are reported in model species like the zebrafish and
stickleback as well as fish species significant for aquaculture such as rainbow trout, Atlantic
salmon, Chinese perch, and tilapia. Continued advancements in our understanding of the
molecular mechanisms regulating muscle plasticity is central for the development of novel
genetic markers to aid in selective breeding for enhanced growth. It is also valuable for the
development of husbandry strategies that improve the capacity for muscle growth through,
for example, diet, photoperiod, or temperature manipulation that enhance aquaculture
production efficiency and advance global food security.
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