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A network-based framework for shape analysis
enables accurate characterization of leaf epidermal
cells
Jacqueline Nowak 1,2,3, Ryan Christopher Eng 4, Timon Matz 2,3, Matti Waack2,3, Staffan Persson 1,5,6,7,

Arun Sampathkumar 4 & Zoran Nikoloski 2,3✉

Cell shape is crucial for the function and development of organisms. Yet, versatile frame-

works for cell shape quantification, comparison, and classification remain underdeveloped.

Here, we introduce a visibility graph representation of shapes that facilitates network-driven

characterization and analyses across shapes encountered in different domains. Using the

example of complex shape of leaf pavement cells, we show that our framework accurately

quantifies cell protrusions and invaginations and provides additional functionality in com-

parison to the contending approaches. We further show that structural properties of the

visibility graphs can be used to quantify pavement cell shape complexity and allow for

classification of plants into their respective phylogenetic clades. Therefore, the visibility

graphs provide a robust and unique framework to accurately quantify and classify the shape

of different objects.
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There is a myriad of shapes in nature but understanding their
origin and evolution remains a challenge1. Differences in
shapes are not only observed between categories of multi-

cellular eukaryotes but are also found on the level of their individual
cells. The shape of cells varies from simple to highly complex and can
alter during the course of development2. Cell shape is thought to be
an integrated result of subcellular processes and the forces acting on
the cell3 and often dictates cellular functions4. The development of
quantitative shape descriptors is the first step to enable comparison of
cell shapes as well as to probe their relationship with cellular pro-
cesses and effects on cellular functions. Therefore, a quantitative
descriptor of shape must be rich enough to: (i) obtain global insights
in differences among shapes, (ii) specify key characteristics of indi-
vidual shapes, and (iii) precisely reconstruct the cell shape in silico.

Shapes can be compared based on two classes of global descriptors:
region-based, quantifying key shape properties (e.g., area, convex hull,
eccentricity, medial axis, and combinations thereof), and boundary-
based (e.g., Fourier descriptors). Descriptors of shape can be obtained
by following one of two principal approaches: structural (discrete)
approaches, which divide the shapes into subparts, and global
(continuous) approaches, which analyze shapes in their entirety5. The
resulting descriptors facilitate the comparison of cell shapes but may
introduce bias based on the properties of the descriptors employed.
For instance, comparison based on distances between region-based
descriptors is size-dependent and is thus unsuitable for develop-
mental studies6. While ratios of region-based descriptors overcome
this issue, they provide limited information for shape comparison7.
The usage of landmarks positioned along the shape boundary facil-
itates easier comparison of shapes, although landmarks of different
shapes have to be superimposed to account for scaling, rotation, and
translation8. Further, due to the lack of common landmarks in cell
shapes, these points have to be placed manually or by arbitrary
sampling, thus rendering automated analyses challenging.

A more sophisticated type of boundary-based descriptors cast the
closed two-dimensional shape boundary as a sum of ellipses by
applying the Fourier Transform9. The resulting descriptor is simi-
larity invariant, resulting in a shape descriptor independent of shape
rotation, orientation, and scaling10. Another type of size- and
orientation-invariant boundary-based shape descriptor characterizes
a two-dimensional shape as a linear combination of sequential
boundary samples following the autoregressive model approach11.
However, the versatility of these descriptors to simultaneously
address the problems of shape comparison, specification of key
properties, and characterization of cell shape complexity remain
inadequate.

The puzzle-shaped pavement cells that appear on the cotyledon
and leaf epidermis of many plants represent complex cell shapes with
specific local features12. These local features are given by the convex
and concave parts of the cell boundary, namely cell protrusions,
referred to as lobes, and invaginating regions termed necks. Lobes
and necks have been used to compare differences in pavement cell
shape13. Despite efforts to devise descriptors that simultaneously
identify differences between pavement cells across different taxa and
accurately characterize their local shape features6,14,15, comparative
analyses that assess the performance based on a gold standard are
rare6. Such efforts can be regarded as a necessary step toward
understanding the contribution of cellular processes in the emergence
of complex cell shapes16–19. Here, we propose a unique network-
based shape representation, called visibility graph, whose properties
can serve both as global and local shape descriptors. We refer to the
corresponding framework as GraVis.

Results
A visibility graph is a graph-based representation of shape. We
represent the shape, defined by the shape contour, with a visibility

graph. The contour is given by a one-pixel border around the
defined shape. The visibility graph is a mathematical structure
that is fully specified by the set of nodes and a set of edges,
connecting pairs of nodes. The nodes of the visibility graph
correspond to pixels of the contour and are equidistantly placed
along the contour (Fig. 1a). A node can be viewed as a person
standing next to one side of a wall that represents the shape
boundary. Two nodes are then connected by an (undirected) edge
if they can see each other, i.e., the segment that connects them
does not cross or align with the shape boundary (Fig. 1a). Testing
this condition for every pair of nodes results in the set of edges,
altogether specifying the visibility graph for the analyzed shape
(Fig. 1b).

The visibility graph can be represented by its adjacency matrix,
A, whose rows and columns correspond to the nodes. A nonzero
value of a matrix entry indicates that there is an edge between the
two nodes, corresponding to a matrix row and column. If all
entries in the adjacency matrix take the value of either 0 or 1, the
graph is referred to as unweighted. If other values can be assigned
to the edges, the graph is said to be weighted. In a weighted
visibility graph, the edges are assigned the Euclidean distance, dE,
between the positions of the nodes (Fig. 1c). The edge weights can
further be scaled to the maximum value over all edges in the
network, resulting in a scaled weighted visibility graph. It can be
easily deduced that the unweighted visibility graph and the scaled
weighted visibility graph are scale-invariant, i.e., are not
dependent on the size of the entity whose shape is analyzed. In
addition, both the unweighted- and the scaled weighted visibility
graphs are orientation- and rotation-invariant. The weighted
visibility graph is in one-to-one correspondence with the actual
shape if a single node for every pixel on the boundary is used. To
provide a high-quality approximation, we estimate the pixel
distance between node placement based on the image resolution
and contour length (see “Methods”). As a result, the same shape
acquired under different resolutions may have different numbers
of nodes.

The visibility graph is a fundamental combinatorial structure in
computational geometry to represent a set of objects along with a
visibility relation between them. Depending on how the objects
are defined, three primary types of visibility graphs are used to
characterize, recognize, and reconstruct the objects20,21, and they
have found various applications (Supplementary Fig. 1). For
instance, when the visibility graphs are formed on the vertices of
multiple polygons, they can be used for computation of shortest
paths among polygonal obstacles, with applications in robotics22;
when nodes correspond to the amplitude of particular time
points, visibility graphs can characterize properties of time
series23; when the nodes are placed along with a piecewise linear
approximation of a shape, network clusters in the resulting
visibility graph have been used for shape decomposition, but not
for shape comparison24,25. Our visibility graph concept also
differs from the shape context26, used for shape matching. The
shape context provides a descriptor based on the length and
rotation of neighboring points on the contour that can be used to
measure the similarity between two objects. However, visibility
graphs have not yet been used for shape comparison and
characterization of local and global properties of shape, which is
the main contribution of our study.

Comparison of visibility graphs. While visibility graphs with an
equal number of nodes can be compared based on Euclidean
distance of their adjacency matrices, after appropriate rotation
(see Supplementary Note 1, Supplementary Fig. 2 for illustration
of rotational distance), the comparison of visibility graphs with a
different number of nodes requires a distance measure applicable
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to matrices of a different dimension. A suitable and easy-to-
implement distance measure for visibility graphs with a different
numbers of nodes relies on the comparison of the distribution of
entries, or on the distribution of eigenvalues, of the matrices
associated with the graphs. These distributions provide a sum-
mary of values that characterize the graphs. We propose to
compare the unweighted visibility graphs based on the differences
in the distribution of eigenvalues of the Laplacian matrix (i.e.,
another matrix representation of a given graph), L=A−D,
with D denoting the diagonal matrix of node degrees (Fig. 2a).
The distribution of the eigenvalues of a Laplacian, which
are guaranteed to be nonnegative, have already been used to
compare images27. To quantify the distance between the dis-
tributions of eigenvalues for two visibility graphs we use the
Kolmogorov–Smirnov statistic (Fig. 2a)28. The resulting distances
yield a distance matrix that can be employed in clustering.

We test the proposed approach for comparison of visibility
graphs obtained from simple, synthetic shapes. To this end, we
create a set of 20 shapes divided into three groups: triangular (i.e.,
right-angled, equilateral, and obtuse), rectangular (i.e., square,
rectangle, trapeze, and rhombus), and circular (i.e., circle, ellipse,
and rotated ellipse), each in two sizes. The coordinates for each
shape are manually defined with uniform spacing of nodes, such
that either all shapes have the same number of nodes or the
number of nodes can vary (see Table 1).

We then use the defined coordinates of the shapes as node
positions, create the corresponding visibility graphs, and quantify
their pairwise distances using the described method based on
eigenvalue distributions (Fig. 2b, c, see Supplementary Fig. 2b for
rotational distance). By using hierarchical complete-linkage cluster-
ing with the resulting distance matrices, we find that the shapes are
accurately grouped into rectangular, triangular, and circular when
all shapes are described with the same number of nodes (Fig. 2b).

In addition, we show that our distance measure provides good
clustering of the shapes even when different numbers of nodes are
used in building the visibility graphs corresponding to the
synthetic shapes (Fig. 2c). We further test the Laplacian distance
measure based on the weighted adjacency matrices of the visibility
graphs for the set of synthetic shapes; however, this approach does
not result in improved clustering (Supplementary Fig. 3). These
results show that the structure of the visibility graphs, specified by
the considered edges, is rich enough to capture global differences
between shapes. In addition, they demonstrate that the eigenvalue-

based distance measure is suitable to quantify differences between
matrices of different sizes.

To compare visibility graphs with different numbers of nodes, we
also design a procedure for the reduction of visibility graphs based
on the modularity cluster quality measure29. This procedure allows
the comparison of two graphs with different numbers of nodes by
using the rotational distance (Supplementary Note 2, Supplemen-
tary Fig. 4). The rotational distance finds the superposition of the
nodes of two visibility graphs such that the corresponding
Euclidean distance of their adjacency matrices is minimized. To
assess how our graph comparison compares to other methods, we
also use the Fourier transform to compute the distance between
the synthetic shapes in the simpler scenario in which they all have
the same number of nodes (Supplementary Note 3, Supplementary
Fig. 5a). Although Fourier transform is the most widely used
approach for shape characterization, the resulting complete-linkage
clustering shows that the shapes are not separated well into the
three respective classes (Supplementary Fig. 5b–e).

We provide quantitative support for these results by calculating
the Biological Homogeneity Index (BHI) to measure the quality
of clusters (Supplementary Note 4)30. We find that GraVis has a
perfect score for graphs with an equal number of nodes. In
addition, using a different number of nodes and with and without
reduction, based on modularity, GraVis still shows high cluster
homogeneity and outperforms the approach based on Fourier
transform (Supplementary Table 1). The rotational distance fares
similarly well, whereas the Fourier transform results in the least
homogeneous clusters (Supplementary Table 1).

To investigate the sensitivity of the algorithm to the spatial
resolution of the node placement, we further used the set of
synthetic shapes with the same number of nodes to illustrate the
clustering quality based on different node densities. Therefore, we
selected the large shapes (3 triangles, 4 squares, 3 circles) with
each the equal number of nodes (n= 20) and used the node
reduction method based on modularity clustering (Supplemen-
tary Fig. 4) to reduce the number of nodes of each graph stepwise,
until all graphs contained 12 nodes. For all these graph sets we
calculated the distance matrices and used them for hierarchical
complete-linkage clustering (Supplementary Fig. 6). We then use
the resulting clusters to compute the BHI and observe that it
decreases for visibility graphs with a reduced number of nodes
(Supplementary Fig. 7). The visibility graphs with 20 and 19
nodes per graph have a perfect score of 1.0 for all clusters, thus

Fig. 1 Visibility graphs as a descriptor of shape. a Contour of an illustrative shape. Nodes (blue) are placed equidistantly along the contour and used to
create a visibility graph. Two nodes are connected in the visibility graph if they can “see each other”, i.e., the segment connecting them does not cross or
align with the contour (teal edge); otherwise, the nodes cannot see each other (orange edge). The edges between nodes can be weighted according to their
edge length (Euclidean distance dE). b Visualization of the visibility graph for the cell in (a). c Heatmap of the weighted and scaled adjacency matrix of the
visibility graph (a), where edges with a weight of zero indicate the absence of said edge, thus indicating “non-visibility” between the nodes. The weighted
visibility graph is used for local feature extraction, while the unweighted graph is used for global shape description and shape comparison. Source data are
provided as a Source Data file.
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showing that the corresponding node density of 10–14 pixel/
nodes is optimal for the detection of distinguishing global shape
features. In addition, we observe that the BHI score is slightly
below 0.9 for 17 and 18 nodes, demonstrating the robustness of
our approach for small differences in node numbers. Changes in
BHI for the number of nodes that differ by one is not larger
than 36%.

Next, by comparing a set of selected pavement cells, which
includes shapes along a gradient of complexity, we find that the
Laplacian distance measure results in the most homogenous
clusters, closely followed by the Fourier transform using the

correlation distance (Supplementary Fig. 8, Supplementary
Table 2). Therefore, we conclude that the proposed approaches
for comparison of visibility graphs with the same or different
number of nodes provide excellent ways for comparison of shapes
and outperform classical solutions in the tested scenarios.

Visibility graph as a global descriptor of shape. We next test the
ability of the visibility graphs to serve as global descriptors of
shapes from different domains. We use images of 24 sand grains
of the Australian coast, 20 fish shapes from the WoRMS data-
base31, and 20 leaf shapes provided by Vöfely et al.32. We then

Fig. 2 Comparison of unweighted visibility graphs. a Two visibility graphs are compared based on the spectrum (i.e., distribution of eigenvalues) λ of the
Laplacian L obtained from the unweighted adjacency matrices A. The Kolmogorov–Smirnov statistic is used to quantify the difference between the
distributions of two spectra. b–d Clustering dendrogram obtained by the procedure for a set of synthetic, simple triangular, circular, and rectangular shapes
with b the same number of nodes, c variable number of nodes between the network representations of the shapes, and d variable number of nodes which
were reduced using modularity clustering to have the same number of nodes. Source data are provided as a Source Data file.

Table 1 Properties of the visibility graphs of the synthetic set with equal and unequal number of nodes.

Shape Equal Unequal

Small Large Small Large

n m n m n m n m

Triangular
Rectangular 20 132 20 112 14 64 28 256
Equilateral 20 128 20 128 16 84 24 192
Obtuse 20 125 20 138 14 63 29 276
Rectangular
Square 20 150 20 150 12 54 32 384
Rectangle 20 148 20 148 16 91 40 592
Trapeze 20 146 20 144 14 69 34 424
Rhombus 20 150 20 148 12 54 32 384
Circular
Circle 20 190 20 190 24 276 32 496
Ellipse 20 190 20 190 22 231 32 496
Rotated ellipse 20 190 20 190 20 190 33 528

Note: Each shape in the synthetic set was used to generate a smaller and a larger visibility graph. For each graph, the number of input coordinates (nodes), Vj j ¼ n, and the corresponding number of
edges, Ej j ¼ m, are shown.
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create the corresponding visibility graphs and distance matrices
for the shapes from the three different domains (see Supple-
mentary Table 3). The principal component analysis (PCA)
demonstrates that our approach can distinguish the shapes
according to their complexity (Fig. 3). For example, the PCA of
the fish shapes (Fig. 3b) can be split into three parts: in the upper
left corner are the most complex shapes (i.e., seahorse and
swordfish), whereas in the upper right corner are the simpler,
smoother fish shapes (i.e., turbot and eelpout). The rest of the
shapes are intermediates of the two extremes and are centered at
the bottom, where again fish with smoother shapes, with fewer
fins, are on the right side and more complex shaped fishes, with
more fins, on the left of the PCA plot. The same trend can be seen
for the sand grains (Fig. 3a) and laterally reversed for the leaves
(Fig. 3c). We further compare the resulting shapes using the
Fourier transform approach. The resulting PCAs show no
obvious clusters or gradient of shape complexity. Thus, in con-
trast to the visibility graph approach, the Fourier transform
analysis performs worse in separating the shapes based on their
complexity (Supplementary Fig. 9). Together, these results show
that visibility graphs can serve as powerful global descriptors of
shape, and is applicable with data from different domains.

Visibility graphs quantify the complexity of epidermal pave-
ment cells. In addition to shape clustering, the visibility graphs
can be used to quantify the complexity of shapes. To illustrate this
point, we use epidermal pavement cells, which are frequently
employed to investigate morphogenesis16,33,34. During cell mor-
phogenesis, pavement cells change from simple, polygonal shapes
to more complex shapes with a defined neck (invaginations) and
lobe (protrusions) domains. To depict the distribution of different
cell complexities or the change of cell complexity over time, we
can use the relative graph completeness of the corresponding
visibility graphs. We quantify the (relative) graph density δ for
undirected graphs by the ratio between the graph edges and the
maximum number of edges in the graph (see “Methods”, Eq. 1).
In a dense graph, the number of edges scales with the square of
the nodes, i.e., it is close to the number of all possible edges on
those nodes. As a result, round cells, where each node is visible by
all others, will be represented by dense graphs, while more
complex cells will yield sparser graphs. Therefore, global network
properties, like the graph density, can be used to provide insights
in the relative completeness of cell shape (i.e., how many edges
are missing for the graph to become complete). For instance,
stomatal pores (Fig. 4b), formed by two guard cells have a typical
round shape and can be easily distinguished from complex

pavement cells by using the graph density as a measure of relative
completeness (dark orange, Fig. 4b).

Besides the here proposed relative completeness measure based
on graph density, there are other measures to describe the
complexity of pavements cells. These include the circularity,
quantifying how close a shape is to a circle, and the number of
lobes of pavement cells6,14 scored by GraVis (see Section on lobe
quantification, below). Through a comparative analysis, we find
that there is a significant positive Pearson correlation between the
relative completeness and the circularity of pavement cells (r=
0.84, p value < 10−35, Supplementary Fig. 10a). Moreover, there is
a significant negative Pearson correlation between the relative
completeness and the number of lobes per cell without (r =
−0.35, p-value < 10−5) and with tri-cellular junctions (r=−0.57,
p value < 10−12, Supplementary Fig. 10c, d). Inspection of the
correlation plots indicates that the visibility graph approach
provides a more refined description of cell complexity since there
are cells of small circularity and high relative completeness values
(Supplementary Fig. 10a). In fact, the majority of cells with high
relative completeness and small circularity belong to stomata
cells, as shown in Supplementary Fig. 10b. In addition, the lack of
perfect negative correlation to the number of lobes suggests that
the relative completeness, as a continuous measure, offers a
different aspect of quantifying cell complexity.

Centrality measures of visibility graph characterize local shape
features. While global properties of visibility graphs, such as the
graph density, discussed above, allow for comparison of shapes,
properties of nodes in the graph can be employed to quantify
local shape features. To test this idea, we use centralities of nodes
in visibility graphs of pavement cells to determine necks and
lobes. Different centrality features can be used to characterize the
position and role of nodes in the graph35. Nodes on positions of
necks are expected to be on average closer, or more visible, to
other nodes in comparison to lobes. Therefore, we use the clo-
seness centrality of a node to quantify the likelihood that a node
corresponds to a neck or lobe (Fig. 5a, b, see “Methods”, Eq. 2).
We hypothesize that lobes and necks correspond to local minima
and maxima of the closeness centralities along the contour,
respectively (Fig. 5c). We find that the closeness centrality pre-
dicts lobes and necks with the highest accuracy, and outperforms
predictions based on other centralities (Supplementary Note 5,
Supplementary Table 4, Supplementary Fig. 11). We can fur-
thermore discriminate the detected lobes as either true lobes (the
indentation between two cells) or as tri-cellular junctions (sites
where three cells meet)36 by superimposing the lobe positions

Fig. 3 Comparison of shapes from different domains based on their visibility graphs. The distances between visibility graphs based on the spectra of
their Laplacians can be used in multivariate analyses and visualizations to distinguish different groups of similar shapes. We show the principal component
analyses of shapes from three different domains: a sand grains, b fish shapes, and c leaf shapes13,31,32. Source data are provided as a Source Data file.
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with positions of detected tri-cellular junctions (see “Methods”
and Supplementary Fig. 12). In addition, GraVis can be used to
also measure distinct shape parameters, including the cell area,
the circularity, the lobe length, and the neck width, to address
particular questions relevant to shape analysis14,37.

GraVis accurately quantifies lobe number. Our network-based
framework, GraVis, relies on different network properties to
analyze shapes. Next, we compare the performance of GraVis with
respect to lobe detection against three contending lobe detection
tools, namely: LobeFinder, PaCeQuant, and LOCO-EFA6,14,15. All
three tools use a boundary-based approach to detect the lobes of
pavement cells: LobeFinder uses a convex hull-based algorithm to
identify lobe positions. PaCeQuant detects lobes by looking for
local changes in the contour curvature orientation, while LOCO-
EFA uses an advanced elliptical Fourier analysis where the contour
is decomposed into a set of unique coefficients. The number of
lobes in the latter can be inferred from the resulting ellipse profile
which shows the contribution of specific modes.

To compare the lobe detection performance of these contending
approaches, similar to PaCeQuant, we create a gold standard of
pavement cell shapes by manual curation of lobes. To this end, we
select 30 pavement cells from 3 different scenarios involving
Arabidopsis thaliana wild type, oryzalin-treated wild type, and the
clasp-1 mutant. Oryzalin, an inhibitor of microtubule polymeriza-
tion38, is known to inhibit de novo lobe formation and growth of
established lobes39, while clasp-1 is a mutant allele of the CLASP
gene that encodes a regulator of microtubules that impacts
pavement cell morphology40. We first look at the number of lobes
that were detected manually by 20 experts, yielding the gold
standard (Supplementary Fig. 13). A detailed evaluation of the
consensus of manually detected lobes reveals that, as expected, more
pronounced protrusions are detected by the majority of experts,
while smaller protrusions are detected by single or only a few
individuals (Supplementary Fig. 14). We then compare the number
of manually detected lobes to the number of lobes detected by the
approaches in each scenario, in which we exclude tri-cellular
junctions (Fig. 6a–c). We excluded LOCO-EFA from the analysis
since it does not provide information about whether or not detected
lobes are tri-cellular junctions. For all three scenarios, with the
default parameters for all approaches, the number of detected lobes
by GraVis is closer to the mean of the gold standard compared to
the other tools (dotted line, Fig. 6a–c) and shows no significant
difference to the mean of the gold standard.

Fig. 5 Detection of lobes and necks in pavement cells based on visibility graphs. a, b The closeness centrality is calculated for the nodes of a visibility
graph, visualized by different node sizes. c Lobes (light blue nodes) and necks (dark blue nodes) correspond to the local minima and maxima along the
contour, respectively.

Fig. 4 Heatmap of Arabidopsis pavement cell completeness. a Example
microscopy image of Arabidopsis pavement cells at 96 h after
germination (single image). b The original microscopy image can be
recreated by plotting the extracted visibility graphs of all detected
pavement cells and weighting them according to their relative
completeness (δ), which is calculated by the relative density of the
corresponding visibility graphs. Simple, round shapes like stomata have
smaller relative completeness (white) in comparison to the more
complex pavement cell shapes (dark orange). Source data are provided
as a Source Data file.
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To show the accuracy of the approaches with respect to the
gold standard, we calculate the root mean square error (RMSE)
based on the mean of manually detected and the number of
predicted lobes based on default parameter values (Fig. 6d). Our
findings demonstrate that GraVis exhibits the lowest RMSE and
performs better than the other two compared approaches for
quantifying the number of lobes when default parameters are
used. We test the significance of the RMSE between GraVis and
the other tools using a two-sample t test. The RMSE mean of
PaCeQuant is 5.2 times higher than that of GraVis (p value:
5.28 × 10−7), the mean RMSE for LobeFinder is 4.3 times higher

(p value: 1.61 × 10−9). The comparison based on a number of
lobes including tri-cellular junctions shows similar findings, with
the addition that LOCO-EFA has an RMSE that is 3.9-fold higher
in comparison to that of GraVis (p value: 1.24 × 10−7)
(Supplementary Fig. 15a–d). Calculating the difference between
the RMSE and the median of manually detected lobes confirms
the results that GraVis outperforms the other tools when default
parameters are used (Supplementary Fig. 16).

We note that the default value for the number of nodes used, as
the only parameter in GraVis, is determined by using the gold
standard to calculate the optimal distance between node pixels that

Fig. 6 Comparison of visibility graphs with other contending approaches to counting the number of lobes without tri-cellular junctions in leaf
pavement cells. The comparison involves three computational approaches: PaCeQuant14, based on the contour curvature, LobeFinder6, based on the
convex hull, and LOCO-EFA15, based on elliptical Fourier analysis. Since LOCO-EFA does not distinguish between true lobes and tri-cellular junctions, it was
removed from the comparison, but is included in the comparison of tools based on the total number of lobes (Supplementary Fig. 15). The quantitative
comparison is based on a gold standard that includes n= 30 Arabidopsis pavement cells obtained from each of the three scenarios: a, e wild type, b, f
clasp-1 mutant, and c, g oryzalin treatment, all with manually annotated lobes by 20 experts. The clasp-1 data used for the gold standard (96 h after
germination) differ from the clasp-1 data used in the comparison of different genotypes (120 h post dissection), as the images were captured at different
time points. Shown is the competitive comparison using a–d default parameters and e–h tuned parameters to detect the number of lobes without tri-
cellular junctions. The dotted line denotes the mean of the gold standard, i.e., manual detection by 20 experts, for the respective scenario. While GraVis
performs best based on the residual mean square error (RMSE) using d default parameters, it performs as good as PaCeQuant using h tuned parameters. p
values were determined with a two-sided two-sample t test and were Benjamini–Hochberg adjusted. Boxplots are shown with median (horizontal line),
mean (gray square), 25th and 75th percentiles (box edges), and 1.5-fold of the interquartile range (whiskers). Source data are provided as a Source
Data file.
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depends on the image resolution (Supplementary Note 6, Supple-
mentary Fig. 17). We emphasize that the optimal distance found
through this analysis is 0.65 node/µm, which is in turn used in all
remaining analyses (see “Methods”). Nevertheless, it can be
expected that tuning of the parameter values for the other tools
may lead to better performance in comparison to the default
settings. To test how the performance depends on the parameter
values used, we tune the three parameters (i.e., Gaussian σ in
curvature analysis, minimal length of a protrusion section, and the
minimal length of an indentation section) for PaCeQuant and one
parameter (i.e., the threshold between consecutive modes) for
LOCO-EFA on a training set of 20 cells randomly sampled from the
gold standard (Supplementary Fig. 18). The performance is then
evaluated on the remaining 10 cells, as a test set, with respect to the
RMSE with the best-performing parameter values on the training
set (Supplementary Fig. 18). The parameter values resulting in the
smallest overall RMSE are in turn used for the final comparison of
performance, demonstrating that both in the cases with and without
tri-cellular junctions GraVis performs better or as good as the other
tools with respect to the mean (Fig. 6h, Supplementary Fig. 15h).
Interestingly, GraVis shows a smaller variance in the RMSE in
comparison to all other tools (Supplementary Table 5, Fig. 6,
Supplementary Fig. 15). This finding demonstrates that tuning of
the contending tools, unlike GraVis, should be done on a case-by-
case basis to reduce the variance of predictions, which may severely
bias comparisons in different biological scenarios (e.g., unseen
genotypes and cell types).

We also calculate the percentage of recovered tri-cellular
junctions for each tool and find that PaCeQuant detects all tri-
cellular junctions, followed by GraVis that recovers almost all tri-
cellular junctions using default parameters (Supplementary
Fig. 15i), whereas the percentage of recovered tri-cellular
junctions decreases for PaCeQuant and GraVis using tuned
parameters (Supplementary Fig. 15j). A detailed analysis of
recovered junctions for the manually annotated lobes of the gold
standard shows that there is variance in the detection of tri-
cellular junctions among the experts (Supplementary Fig. 19)—
which is expected in different applications6,14.

GraVis distinguishes genetically modified lines with effects on
pavement cell shape. To show that GraVis is powerful in detecting
differences of local features in pavement cells, we use different
genetically modified lines in which the number and size of lobes and
necks are affected (see Fig. 7c). For each line, we manually select 80
pavement cells to generate the visibility graphs and the corresponding
distance matrices. The clasp-1 images used for this comparison were
captured at a different time point than the clasp-1 data used for the
manual lobe detection in the gold standard. By applying GraVis we
could separate three distinct regions in the PCA plot. In the lower-left
corner, we identify two lines with defects in lobe formation that
display reduced shape complexity (RIC1-OX, CA-ROP2, Fig. 7a)41,
whereas on the right, we identify a cluster consisting of the two wild-
type ecotypes (Col-0, Ws, Fig. 7a) that have highly complex pave-
ment cells. The remaining shapes are between these two extremes
and comprise the other lines (DN-ROP2, dek1-4, lue1, ric1-1, rop4-1,
spr2-2, clasp-1), with an increase of cell complexity from left to right.
The number of nodes per unit of contour length in the visibility
graph from pavement cells of the analyzed is similar (with some
variability across cells within a line, Supplementary Fig. 20). The
boxplots of the detected number of lobes, excluding tri-cellular
junctions, show a similar result as the PCA (Fig. 7b). Hence, the wild-
type ecotypes have the highest number of detected lobes, whereas
RIC1-OX and CA-ROP2 have the lowest numbers of detected lobes.
We test whether there is a difference in means between the genotypes

using the Kruskal–Wallis test, and find that there is both a significant
difference for the number of detected lobes without tri-cellular
junctions (p value < 10−31) and with tri-cellular junctions (p value <
10−28). Further, we test which genotypes show differences in means
and create a graph, where the nodes show the genotypes that are
connected by edges if there is no difference in mean (p value > 0.05,
Supplementary Table 6, Supplementary Fig. 21). The clustered gen-
otypes in the graph correspond to the clusters in the PCA (Fig. 7a).
While there are a plethora of studies focussing on pavement cell
shapes, these studies have used various manual methods to quantify
and assess these phenotypes13,36,39. By contrast, GraVis can be used
to distinguish genotypes based on their pavement cell shapes in an
automated fashion, thus enabling efficient genetic screens in future
studies.

GraVis classifies plants into their phylogenetic clade. Plants can
be classified into respective taxa and clades based on their leaf
shape42. However, it remains unclear if the shape of individual
cells also allows for accurate classification. To test this hypothesis,
we use GraVis in combination with machine learning approaches
to classify pavement cells from different vascular plant clades. To
this end, we use manually extracted pavement cells from the data
set published by Vöfely et al.13,32. To predict the phylogenetic
clade for a pavement cell, we use the adaxial pavement cells from
five different phylogenetic clades: eudicots, monocots, ferns,
angiosperms, and gymnosperms. Due to the small sample size
and close phylogenetic relationship, the pavement cells from
angiosperms and gymnosperms are treated as a single class
(Table 2). We use a multiclass support vector machine (SVM)
with a Gaussian kernel and trained a model with 80% of the data
set. To build the multiclass SVM, we use the well-established one-
against-all strategy with accuracy as a measure of performance
(see “Methods”). As features, we use the number of lobes along
with the minimum, maximum, and selected moments (mean,
median, skewness, and kurtosis) of different centrality measures
of the visibility graphs representing the pavement cells (see details
in Supplementary Information file).

We show that ferns can be distinguished from the rest of the
clades with high accuracy of 84%. As a result, following the one-
against-all strategy, we remove the fern samples from the training
set and repeat the procedure with the samples from the remaining
clades. The last SVM was built based on the training data for
monocots and the merged samples of angio- and gymnosperms.
Finally, we use the test set (remaining 20%) to evaluate the overall
performance of the SVM models. The average accuracy on the
test set is 85%, while the average precision and recall are 57% and
51%, respectively (Table 2).

Furthermore, we use the extracted visibility graphs of all five
clades to calculate a distance matrix which we use in a PCA.
Indeed, in line with our SVM results, the ferns are easily
distinguishable from the other clades (blue), while the other four
clades are harder to differentiate (Supplementary Note 7,
Supplementary Fig. 22).

In addition, we compare different shape features that were
previously used by Vöfely et al.13, e.g., the solidity and aspect
ratio, with features we extracted with GraVis, e.g., the relative
completeness and number of lobes per cell. The Kruskal–Wallis
test indicates that there are significant differences in means
between the five clades based on the four compared properties
(Supplementary Fig. 23). However, Dunn’s post hoc test indicates
that the aspect ratio and the number of lobes could not separate
the angiosperms and eudicots of the ten compared pairs of clades
(Supplementary Table 7). Furthermore, the relative completeness
could not separate the angiosperms and monocots and the
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Table 2 Prediction of plant clades using nested SVMs.

Clade Samples Training set Accuracy Test set Accuracy Precision Recall

SVM1 SVM2 SVM3

Ferns 1176 919 0.84 – – 257 0.92 0.87 0.72
Eudicots 3534 2841 0.78 0.75 – 693 0.78 0.76 0.89
Angio-/
gymnosperms

209+ 570 167+ 468 0.72 0.71 0.74 42+ 102 0.86 0.55 0.30

Monocots 870 692 0.74 0.73 0.73 178 0.83 0.11 0.12
Total 6359 5087 1272 0.85 0.57 0.51

Note: Pavement cells of five different plant clades were used for prediction. The two minority classes angiosperms and gymnosperms were merged. The multi-class SVM was trained on 80% of the total
dataset, the remaining 20% were used as a test set to evaluate the resulting SVMs.

Fig. 7 Comparison of pavement cells based on visibility graphs distinguishes Arabidopsis wild-type and genetically modified lines. a Images of LTi6b-
GFP expressing Arabidopsis wild-type (Col-0, WS) and genetic lines (RIC1-OX, CA-ROP2, DN-ROP2, dek1-4, lue1, ric1-1, rop4-1, spr2-2, clasp-1). For all
genetically modified lines we captured six images, for DN-ROP2 we captured four images. b PCA of distances (n= 80 pavement cells per sample from
different images) between pavement cells of wild-type Col-0 and WS (light gray and dark gray, respectively) and expression lines: RIC1-OX (red), CA-ROP2
(light blue), DN-ROP2 (dark blue), dek1-4 (pink), lue1 (teal), ric1-1 (salmon), rop4-1 (orange), spr2-2 (green), and clasp-1 (yellow). The circles correspond to
selected cells, and the other shapes denote the center of mass for the corresponding expression lines. We used triangles for genetic lines with simple cell
shapes (RIC1-OX, DN-ROP2), pentagons for very complex shapes (Col-0, Ws), and squares for shapes in between. Sample cells for Col-0 (light gray), CA-
ROP2 (light blue), and lue1 (teal) and are shown in the lower right corner. c Boxplot of a number of detected lobes for wild-type and mutants (80 pavement
cells per sample). Boxplots are shown with median (horizontal line), 25th, and 75th percentiles (box edges), and 1.5-fold of the interquartile range
(whiskers). Source data are provided as a Source Data file.
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solidity could not distinguish differences between angiosperms
and gymnosperms. In conclusion, the solidity, the aspect ratio,
the number of lobes, and the relative completeness are able to
distinguish most of the pairs. We note that this analysis does not
allow to classify a particular pavement cell into the respective
clade, since it is based solely on the comparison of means between
clades. To provide a more sophisticated strategy, it might be
promising to do a joint analysis of multiple properties to
distinguish the shapes of the different plant clades.

Discussion
Although decades of research efforts have generated diverse
descriptors of shapes, their ability to quantify cell shapes and
characterize their subtle differences generally remains poor (5, 8,
10). For instance, quantification of shape variations based on
Elliptic Fourier analysis has been widely used in biological studies,
although it fails in comparison of simple shapes (see Supple-
mentary Fig. 5)43. In addition, an extension of the classical
descriptors to quantify the number of lobes and necks in cells
with complex shapes, like pavement cells in the leaf epidermis,
does not result in accurate measurements (see Fig. 6)6,14,15.

Since the shape of cells is important for their functionality and
development, its accurate quantification can be used to under-
stand genetic basis and programs that control diverse features of
cell shape. Here, we propose the concept of a visibility graph as a
versatile descriptor of shapes, which is at the core of the GraVis
framework. Our network representation extends the visibility
graph analysis of time-series data and visibility graphs as used in
computational geometry23. In both representations, a node
denotes a point location, on a timeline or in space, and an edge
represents a visible connection between nodes. Rather than
representing polygonal obstacles, our visibility graph is used to
characterize the shape of a given object by placing nodes along its
contour. The main advantage of this shape representation is that
it allows the calculation of a variety of local and global network
properties to facilitate comparison and extraction of relevant
shape characteristics. The network properties can readily be used
as features in machine learning approaches.

Following these ideas, we demonstrate that the GraVis fra-
mework facilitates comparison of shapes from different domains,
accurate quantification of lobes and necks in pavement cells in a
fully automated fashion, adding functionality in comparison to
the state-of-the-art contenders (of which PaCeQuant is the only
automated tool) with and without parameter tuning. In addition,
we show that GraVis facilitates accurate classification of plants
into respective clades based on the shapes of their adaxial pave-
ment cells. However, the identification of network properties that
can be directly related to key shape characteristics may be an
involved process. For instance, while we show that the minima of
closeness centrality along the contour of a cell coincides with the
number of lobes, we also exclude that other centrality measures
provide a better means for quantification of this shape feature. In
addition, while we show that the features of the visibility graph
can be used to infer new biological insights that impact shape, the
comparison and mining of graphs will require capitalizing on the
recent development in graph alignment and graph kernels44,45.

Prospective applications for GraVis include associating the
network properties of the visibility graphs with key cellular pro-
cesses and structures as well as tracking their temporal changes.
We expect that accurate quantification of key shape features of
different genotypes, such as that of GraVis, may be used to define
shape changes across development and facilitate genetic screens
to determine the genetic basis of morphogenesis. Finally, our
framework can be used to gain a deeper understanding of the
interrelation between cells and organ shapes.

Methods
Data sets of simple synthetic shapes and pavement cells. We created a syn-
thetic set of simple shapes including three types of triangular (right-angled, equi-
lateral, and obtuse), three types of circular (circle, ellipse, and rotated ellipse), and
four types of rectangular shapes (square, rectangle, trapeze, and rhombus). For
each object, we created a smaller and a larger shape by using graphs with equal as
well as different numbers of nodes (Table 1). We also created a set of 12 pavement
cells, which were selected from images of three genotypes (Col-0, lue1, CA-ROP2).
For each cell, we created the visibility graph obtained using the optimal distance
based on the image resolution.

Shape data sets from different domains. We used shape data sets from three
different domains: sand grains, fish, and leaves for which we collected sand from
different beach locations on the Australian coast. Images were captured using a
brightfield microscope and a dark background (Leica M205 FA stereomicroscope,
8.2×). Here, we selected 24 unique shapes from a single image for further pro-
cessing. Furthermore, we chose 20 open-access images of fish drawings from dif-
ferent subfamilies from the marine species database WoRMS31,46. We also selected
20 images of leaf shapes collected from 278 different vascular plant taxa which were
openly accessible13,32. All selected images were segmented by converting them to
grayscale and binarizing them using either a mean or Otsu thresholding. Small
particles and holes were then removed. Furthermore, the petioles of leaves were
removed to focus only on the shape of the leaves themselves. The visibility graphs
for all shapes were created and compared within their corresponding data sets.

Microscopy images of pavement cells of wild-type and mutants. For imaging
of the 96 h post-dissection cotyledons, seeds in the wild-type and clasp-1 back-
ground expressing 35Spromotor:LTi6b-GFP47 were sterilized in 70% ethanol and
rinsed three times with sterilized dH2O before being stored in dH2O in the dark at
4 °C for 3 days. Embryos were dissected from the seed coat and the cotyledons were
removed from the rest of the embryo. Samples were then mounted under 0.5%
micro-agar supplemented with or without 1 µm oryzalin (Sigma-Aldrich) using
custom-made chambers with coverslip glass bottoms. Samples were moved to a 21 °
C growth cabinet with a 16-h light regiment. Z-stacks (0.3 µm step sizes) of adaxial
cotyledon surfaces proximal to the petiole were acquired 96 h post-dissection on a
spinning-disk confocal microscope (Roper Scientific) with a 60× objective lens.
Overlapping regions of interest were stitched together using the stitching plug-in
for ImageJ48,49.

For imaging of the wild-type (Col-0, Ws eco-types), RIC1-OX, CA-ROP2, DN-
ROP2, dek1-4, ric1-1, spr2-2, rop4-1, clasp-1, and lue1 lines41,50–52, seeds were
sterilized in 70% ethanol and rinsed three times with sterilized dH2O and plated
onto half-strength Murashige and Skoog media with 1% micro-agar. For all
genetically modified lines, we captured six images, except for DN-ROP2, for which
we captured four images. Plates were stored in the dark at 4 °C for 3 days before
being grown vertically in a 21 °C growth cabinet with a 16-h light regiment for five
days. Seedlings were incubated in 0.2 mg/mL of propidium iodide (Sigma-Aldrich)
for 2 min followed by two rinses with water. Z-slices (0.5 µm step sizes) of adaxial
cotyledon surfaces were imaged with an SP8 confocal light microscope (Leica)
using a 20× objective lens.

Preprocessing of pavement cell images. Imported images of pavement cells were
converted to grayscale and screened for necessary image cleaning steps, such as
removal of artificial edges caused by image stitching, image denoising, or image
rescaling. The need for the cleaning steps was evaluated in an automated manner;
however, it can also be specifically selected in the GraVis GUI. Artificial edges were
detected by using a Sobel filter as well as probabilistic Hough lines and were
consequently removed. Noisy images were detected by calculating the percentage of
white image pixels after binarization and were subjected to total variation
denoising, white top hat transform, and histogram equalization.

After cleaning, the image intensity was rescaled, and a Gaussian filter and a tube
filter were used for image smoothing and enhancement of tube-like structures,
respectively. This was followed by image binarization, where the threshold for the
binarization was selected by calculating the mean of the global threshold using
Otsu’s method and the maximum of the pixel intensity histogram. The image was
separated into background and pavement cell contours, which were skeletonized
after removing small objects and holes. The skeleton was examined for small gaps
that were closed if the gap was small enough and the skeleton endings were tilted at
a similar angle. To ensure that only whole cells were used for the creation of
visibility graphs, protruding branches of the skeleton were detected and removed.
The final image was labeled to guarantee that each detected pavement cell had its
own label, which was used to extract the corresponding cell contour. Therefore, the
pixels belonging to a labeled cell were selected and the cell contour was tracked
along the border of the object defined by these pixels. The tracked contour pixels
were then sorted in a clockwise manner using the marching squares algorithm,
starting from the right-most pixel.

The quality of our pre-processing pipeline was determined by calculating the
pixel accuracy (see Supplementary Note 8, Supplementary Fig. 24, Supplementary
Table 8). We found that on average 95% of the pixels were correctly classified after
image segmentation.
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Creation of visibility graphs. The visibility graph was created from the shape
contour by placing equidistant nodes along with it. The optimal pixel distance was
calculated from the optimal number of nodes per µm and the image resolution (see
below). After positioning the nodes, edges were drawn between each pair of nodes
if the corresponding segments did not cross the contour. If a segment between two
nodes lay on the contour, we allowed an edge to be drawn if there was no addi-
tional node on the segment. Edges were weighted according to the Euclidean
distance between nodes. We quantify the (relative) graph completeness δ for
undirected graphs by the ratio between the number of edges in the graph and the
maximum possible number of edges in a graph on the same number of nodes

δ ¼ 2m
nðn� 1Þ ; ð1Þ

where m and n are the numbers of all edges and nodes in the graph, respectively.

Comparison of visibility graphs. We implemented different approaches for the
comparison of graphs with equal or different numbers of nodes. The comparison
approach implemented in GraVis was based on the Laplacian matrices of the
graphs. A graph was transformed into its corresponding unweighted adjacency
matrix. The Laplacian matrix was computed by subtracting the adjacency matrix
from the diagonal matrix with node degrees on the diagonal. The eigenvalues of the
Laplacian matrix were calculated and normalized to the largest eigenvalue. The
Kolmogorov–Smirnov statistic was then used to calculate the maximum distance
between the distribution of Laplacian eigenvalues. The resulting distance between
each pair of graphs was stored in a distance matrix which can be used for clustering
or for dimension–reduction techniques, like the principal component analysis.
Additional approaches for the comparison of visibility graphs, such as the rota-
tional distance, as well as the Fourier transform analysis are outlined in the Sup-
plementary Information file. These approaches can be applied with the reduced
visibility graph which was obtained by applying modified modularity clustering.
The reduced visibility graph using modularity allowed the comparison of graphs
that differ in their numbers of nodes (see Supplementary Information file for
details).

Detection of lobes as local features of pavement cells. The closeness centrality
was calculated for each node in the graph. Lobes and necks were identified by the
local minima and maxima of the closeness centrality along the contour.

The closeness centrality of a node v was calculated as

C vð Þ ¼ n� 1
P

u2V dðu; vÞ ; ð2Þ

where d (u, v) is the distance, i.e., the length of the shortest path, between u and v in
the visibility graph on n ¼ jVj nodes. To distinguish true lobes from tri-cellular
junctions, we correlated the lobe positions with the positions of detected tri-cellular
junctions, allowing for a difference of three pixels in x- and y-direction. Tri-cellular
junctions were identified in the skeletonized image of the pavement cells by
searching for the crossing of the skeleton. The position of lobes, necks, and tri-
cellular junctions were shown along the cell contour in a visual output per pavement
cell (see Supplementary Fig. 12). The cell area A was calculated by multiplying the
image resolution with the number of pixels that are surrounded by the cell contour.
The circularity C was calculated from the cell area and perimeter P37

C ¼ 4πA=P2: ð3Þ
The neck width was calculated as the Euclidean distance between two

consecutive necks14. The lobe length was calculated as the length of the line
intersecting the lobe position, which is orthogonal to the line connecting the two
adjacent necks14.

Comparison of lobe detection tools. The contours of 30 pavement cells were
selected from microscopy images of Arabidopsis epidermal tissues 96 h after ger-
mination for 3 different scenarios (wild type (Col-0 background), oryzalin-treated,
clasp-1 mutant). Lobes of these 30 cells were detected manually by 20 experts in a
blind study and used as a gold standard. Lobes were also detected using the tools
PaCeQuant, LobeFinder, LOCO-EFA, and GraVis. For PaCeQuant and Lobe-
Finder, the outlines were saved as Region of Interest files (.roi). For LOCO-EFA,
the outlines of the selected pavement cells were converted into their corresponding
x- and y-pixel positions. The number of detected lobes was provided in table
format for GraVis, PaCeQuant, and LobeFinder. In contrast, we selected the
number of detected lobes from LOCO-EFAs’ output as the highest modus number
with a lambda that dropped by more than 0.5 compared to the lambda of the next
mode. For the gold standard, GraVis, PaCeQuant, and LobeFinder, we removed
detected lobes in positions of tri-cellular junctions from the analysis, thus only
keeping true lobes. Furthermore, we tuned the parameters for GraVis, PaCeQuant,
and LOCO-EFA as described in the Supplementary Information file and compared
the performances of the tools (Supplementary Figs. 15e–h and 18).

The RMSE was calculated to quantify the difference between the number of
lobes detected by the tools and the mean of the number of manually detected lobes.
Furthermore, to calculate the optimal pixel distance between visibility graph nodes

for GraVis, we created visibility graphs using node distances ranging from 2 to 39
pixels for the 30 pavement cells. We computed the RMSE between the detected
lobes and the mean of the gold standard. To this end, we chose the pixel distance
with the lowest RMSE and the image resolution to calculate 0.65 nodes/µm as the
optimal number of nodes (Supplementary Fig. 17).

Prediction of plant clades. We used the dataset from Vöfely et al.13,32 to predict
plant clades using different properties of visibility graphs. The manually traced
outlines of pavement cells were provided as coordinate files from which we selected
all adaxial cells to create the corresponding visibility graphs. In total, we selected
6359 cell outlines from 5 different plant clades (see Table 2).

For each visibility graph, we calculated the number of lobes and a range of
different graph centralities (Supplementary Table 4) for which we further
computed the mean, median, minimum, maximum, kurtosis, and skewness from
the distribution of node centralities. These were used as features of an SVM. Non-
negativity of the features was ensured by subtracting the minimum value from each
property. We used 80% of the data for training of a nested SVM, while the
remaining 20% were used as a test set. We optimized the SVM by testing different
parameter combinations using a grid search.

The multiclass SVM was built using the one-against-all strategy53. To account
for the imbalance of class sizes, we balanced class sizes by downsampling the
majority class to the size of the minority class. This process was repeated ten times
for each class. For each sampling, the training data was again split into test and
training subsets using fivefold cross-validation. The resulting accuracy, precision,
and recall were calculated and averaged for each sampling and used to determine
the best-predicted class. The final multiclass SVM model was evaluated using the
test set that we put aside. After the performance evaluation of the model, we used
the entire data set to retrain the SVMs.

We used the cell outlines of the selected cells to calculate the solidity and aspect
ratio as shown in Vöfely et al.13 using the measurement tool in ImageJ and
calculated the number of lobes and relative completeness of the visibility graphs
using GraVis. The Kruskal–Wallis test was used to test whether there is a difference
in means between the clades, while Dunn’s post hoc test was used to do a pairwise
comparison.

Requirements for GraVis. GraVis can be downloaded as an executable file for all
major operating systems from Github: https://github.com/jnowak90/GraVisGUI.
We implemented the described features of GraVis in a simple-to-use graphical user
interface (GUI) using Python 3. The GUI can be launched by the downloaded
executable files (for Windows, Linux, or MacOS). The GUI is split into two major
parts: the shape description, where visibility graphs are extracted from segmented
shapes, and the shape comparison, where a distance matrix of selected visibility
graphs is computed. For the shape description part, the user can upload images of
pavement cells which are firstly preprocessed to segment the individual cells. For
each of the detected cells, visibility graphs are created and stored in a results folder.
We further implemented a pipeline for the description of shapes from other
domains, which require the input of binary images. For the shape comparison part,
the user can select visibility graphs from a single image or multiple images to
compute a distance matrix which can be used for further analysis, such as PCA or
clustering. A more detailed description of the GUI functions, as well as sample
images and example workflows, can be found on the Github page. The source code
and data of GraVis can be accessed from Github (https://doi.org/10.5281/
zenodo.4320828).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and in the
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The data sets and plant materials generated and
analyzed during the current study are available from the corresponding author upon
request or from our Github repository [https://github.com/jnowak90/GraVisGUI]. We
used publicly available datasets from the WoRMS database [http://www.marinespecies.
org]31 and from studies of Vöfely et al.13,32 [https://doi.org/10.5061/dryad.g4q6pv3]. The
source data underlying Figs. 1–4, 6, and 7, as well as Supplementary Figs. 2, 3, 5–13, 15–
17, 19, 20, and 22–24 are provided as a Source Data file, which is also available at the
associated Github repository [https://doi.org/10.5281/zenodo.4320828]54. Source data are
provided with this paper.

Code availability
The source code for the GraVis GUI is available on Github [https://github.com/
jnowak90/GraVisGUI] or [https://doi.org/10.5281/zenodo.4320828]54.
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