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Development of a new toolbox
for mouse PET-CT brain image
analysis fully based on CT images
and validation in a PD mouse
model

L. Presotto?, V. Bettinardi', D. Mercatelli3, M. Picchio®*, M. Morari3, R. M. Moresco%5¢ &
Sara Belloli/%5"

Automatic analysis toolboxes are popular in brain image analysis, both in clinical and in preclinical
practices. In this regard, we proposed a new toolbox for mouse PET-CT brain image analysis including
a new Statistical Parametric Mapping-based template and a pipeline for image registration of PET-CT
images based on CT images. The new templates is compatible with the common coordinate framework
(CCFv3) of the Allen Reference Atlas (ARA) while the CT based registration step allows to facilitate the
analysis of mouse PET-CT brain images. From the ARA template, we identified 27 volumes of interest
that are relevant for in vivo imaging studies and provided binary atlas to describe them. We acquired
20 C57BL/6 mice with [*F]FDG PET-CT, and 12 of them underwent 3D T2-weighted high-resolution
MR scans. All images were elastically registered to the ARA atlas and then averaged. High-resolution
MR images were used to validate a CT-based registration pipeline. The resulting method was applied
to a mouse model of Parkinson’s disease subjected to a test-retest study (n=6) with the TSPO-
specific radioligand [*®F]VC701. The identification of regions of microglia/macrophage activation was
performed in comparison to the Ma and Mirrione template. The new toolbox identified 11 (6 after false
discovery rate adjustment, FDR) brain sub-areas of significant [!8F]VC701 uptake increase versus the

4 (3 after FDR) macro-regions identified by the Ma and Mirrione template. Moreover, these 11 areas
are functionally connected as found by applying the Mouse Connectivity tool of ARA. In conclusion, we
developed a mouse brain atlas tool optimized for PET-CT imaging analysis that does not require MR.
This tool conforms to the CCFv3 of ARA and could be applied to the analysis of mouse brain disease
models.

The definition of the brain anatomical spaces, where structures and regions are precisely localized, is at the basis
of the study of brain functionality and connectivity across different species. Brain atlases define the organization
of anatomical and functional regions in a three-dimensional (3D) volume. Stereotaxic brain atlases are mostly
used in neurological studies and are drawn on Magnetic Resonance (MR) images where voxels are grouped into
anatomical structures. Mouse and rat represent mammalian models of brain development and several rodent
atlases are available based on different strategies, i.e. haematoxylin and eosin, Nissl staining' (https://www.hms.
harvard.edu/research/brain/intro.html) or density, position and organization of cells?. The most representative
and popular atlases are those developed by Franklin, Paxinos and Watson for mouse and rat®* and by the Allen
Institute for Brain Sciences with the more recent Allen Reference Atlas (ARA) for the mouse brain (https://
atlas.brain-map.org/). Besides the differences in anatomical structures borders and ontology®, the major dif-
ference between the Franklin-Paxinos and the ARA atlases is the definition of the 3D coordinates within the
brain volume. The former is considered the reference atlas for stereotaxic surgery and is based on a classical
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neuroanatomical approach with Bregma as zero point. The latter has been developed more recently by integrating
different types of information from in vivo imaging (i.e. Positron Emission Tomography-PET), MR and post-
mortem imaging (two-photon tomography, histology) with genome-wide image database and gene expression
data®”. The ARA has higher spatial resolution compared to other atlases (10 um isotropic voxel) but the relation
of the template with anatomical landmarks as Bregma is unknown. Therefore, a spatial alignment with high
resolution images as MR is necessary to validate stereotaxic coordinates®.

PET is a functional molecular imaging technique that leverages on specific radiotracers to provide informa-
tion about the distribution of a specific target, e.g. a receptor, enzyme or process, within brain or peripheral
areas in pathological compared to physiological conditions®. Anatomical information is obtained through the
integration of PET imaging with different modalities as Computed Tomography (CT) and MR. PET-MR hybrid
devices are a recent development for both clinical and preclinical purposes. Technical considerations and the
high costs limit the diffusion of this equipment and to date the most common solution is represented by PET-CT
systems'’. This combination allows the localization of the molecular target in the anatomical space, even if the
reference technique for the brain anatomy is MR imaging'!. Therefore, the identification and quantification of
radioligand uptake areas within PET image volume is obtained by applying structural MR-derived templates
that segmented the brain into anatomical/functional regions. Typically, the workflow consists in a sequence of
image alignment and deformations to a reference space that make it possible to compare different subjects or
the same subject in different conditions as in longitudinal studies'>.

The MR templates included in most software used for PET images analysis (e.g. https://www.pmod.com/
web/; https://www.fil.ion.ucl.ac.uk/spm/; https://mipav.cit.nih.gov/) account for non-deformable and pre-defined
macro-regions. This entails some limitations in the identification of functional sub-areas that could be character-
ized by ligand uptake modification, also influencing the correlation analysis across the different areas. Another
limitation of MR-based templates is that they work most efficiently when a high-resolution 3D scan is present,
which is not always the case in murine studies.

In the present work, we built a brain template compatible with Statistical Parametric Mapping (SPM) software,
which exploit the ARA volume for the identification of brain structures using the same ontology and coordinate
framework. In this way, the areas where a modification of a biomarker is highlighted by PET could be matched
with the additional information provided by ARA, such as in situ hybridization, cell projection maps and in vitro
cell characterization. The gold standard procedure to achieve optimal spatial registration is based on high reso-
lution isotropic 3D MR. The acquisition of such an image however is lengthy, costly, and it might not even be
always feasible, as performing two long procedures requiring anaesthesia in the same day on the same animal can
be unethical. Therefore, to better exploit this template, we also introduced and validated a pipeline that allows
transforming individual images to this standard space using a CT image and not an MR sequence. This makes
the analysis more versatile, applicable to a wide range of PET tracers and independent on the acquisition, on
a different scanner, of a high-resolution 3D MR image. As the analysis does not depend on the availability of a
tracer-specific template, it is immediately widely applicable. Furthermore, its performance does not depend on
the contrast in the PET image, which can vary depending on the tracer target. Indeed, compared to the PET-
template based one, the CT-based spatial normalization is unbiased!?.

In this work, after a detailed description and validation of the proposed method, we provided an example
application to the analysis of a Parkinson’s disease (PD) model.

Materials and methods

Animals andimaging. Experimental procedures involving the use of animals complied with the EU Direc-
tive 2010/63/EU for animal experiments and were approved by the Ethical Committees of the San Raffacle
Research Institute (Milan) and the Italian Ministry of Health (license n. 237/2019-PR). The study was carried out
in compliance with the ARRIVE guidelines.

Study design. To optimize and build the pipeline of PET-CT template creation, we acquired twenty adult
C57BL/6 male mice with PET and the radioligand for glucose metabolism 2-Deoxy-2-['*F]-fluoroglucose (['*F]
FDG), and CT. Twelve of them were also acquired with a 3D T2-weighted high resolution MR sequence.

The template analysis was then applied to the study of microglia/macrophage activation in a PD mouse model
obtained with the subacute administration of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
(MPTP)™. Six mice were acquired with the TSPO specific radiotracer ['*F]VC701'° before and after neurotoxin
treatment and analysed using the new brain atlas template in comparison to PMOD 4.1 (PMOD TECHNOLO-
GIES LLC, Ziirich, Switzerland) VOI template'%.

Animal images acquisition and reconstruction for brain template. Three-month-old C57BL/6]Rj
male mice (n=20) were purchased from Janvier Labs (Paris, FR). The radiotracer ['®*F]FDG was prepared for
clinical use following European Pharmacopeia VIII Edition and i.v. injected in animals in fasting conditions
(mean injected activity: 4.5+ 0.3 MBq).

CT and PET acquisitions were performed 60 min post injection using X-Cube” and B-Cube’ (Molecubes,
Gent, BE), respectively. Each animal was anesthetized with 2% isoflurane in medical air and then positioned
prone on the X-Cube scanner bed for the CT study centered on the brain (exam duration: 4 min, X-Ray beam
duration: 90 s, kVp: 40, current: 400 pA, rotation time: 60 s, angular views: 960). At the end of the CT acquisi-
tion, the bed with immobilized animal was removed and inserted in the f-Cube PET scanner for a 20 min static
acquisition. During the exam, mice were maintained under anesthesia and body temperature and respiratory
rate were constantly monitored.

Scientific Reports |

(2022) 12:15822 | https://doi.org/10.1038/s41598-022-19872-4 nature portfolio


https://www.pmod.com/web/
https://www.pmod.com/web/
https://www.fil.ion.ucl.ac.uk/spm/
https://mipav.cit.nih.gov/

www.nature.com/scientificreports/

Coregistered CT-
PET

Output
CT-PET-MR

Individual ARA
matched MR MR template

Estimated normalization
applied to all coregistered
images

> >

Non-linear
registration

Rigid
coregistration

———

Figure 1. Schematic representation of the template creation starting from the acquisition of MR and ["¥F]FDG
CT-PET images in healthy C57BL/6] male mice (n=12 and n =20, respectively). Images were normalized to the
ARA MR template.

X-Cube has a spatial resolution of 0.05 mm and B-Cube” has a spatial resolution less than 1 mm and a sensitiv-
ity greater than 10% over the field of view. CT and PET data were reconstructed using the proprietary Molecubes
software included in the system. CT images were reconstructed with a 200 um isotropic pixel size using a standard
ISRA algorithm. PET images were reconstructed using a List-Mode Ordered Subset Expectation Maximization
(OSEM) algorithm with 30 iterations and 400 pum isotropic voxel size. Tracer decay, random coincidences, well
counter and detector dead time corrections were applied. No post-reconstruction filtering was applied. Thanks
to the bed positioning system, CT and PET images were automatically co-registered.

Twelve C57BL/6JRj male mice underwent MR study using a 7 T preclinical MR scanner (Bruker, BioSpec
70/30 USR, Paravision 5.0) equipped with 450/675 mT/m gradients (slew-rate: 3400-4500 T/m/s; rise-time:
140 ps). Mice were imaged under gas anesthesia (1.5-2% isoflurane in oxygen) in prone position with brain
centered in the Field of View (FOV). During the examination, breathing rate and body temperature were moni-
tored (SA Instruments, Inc.) and maintained stable around 40 breaths per minute and 37 °C, respectively. MR
protocol included Turbo spin-echo 2D T2-weighted images (TR =3400 ms, TE =56 ms, FOV =14 x 15 mm, thick-
ness = 0.6 mm, matrix size = 256 x 160, averages =9) and 3D T2-weighted sequences (TR =2350 ms, TE =54 ms,
FOV =14 x 15 mm, matrix size =256 X 96 x 102 pixel, resolution=0.118 x0.118 x 0.118 mm°, averages=1).

Application of the brain template on the MPTP subacute mouse model: images acquisition
and reconstruction. Three-month-old C57BL/6] male mice (n=6, breeding of the University of Ferrara,
Italy) were daily treated with MPTP (30 mg/kg i.p., in saline) for 7 days, then subjected to PET-CT with the
TSPO-specific radioligand ['*F]VC701 in a test-retest study. The first acquisition was made before the onset (d0)
and the other at the end of MPTP treatment (d7).

The radiotracer ['®F]VC701 was prepared as previously described'® and injected i.v. under feeding conditions
(mean injected activity: 4.7 £0.3 MBq). CT and PET acquisitions were performed 100 min post injection using
X-Cube and B-Cube, respectively. Each animal was anesthetized with 2% isoflurane in medical air and then
positioned prone on the scanner bed for the CT scan centered on the brain (exam duration: 4 min, X-Ray beam
duration: 90 s, kVp: 40, current: 400 pA, rotation time: 60 s, angular views: 960). At the end of CT acquisition,
the bed with the immobilized animal was removed and inserted in the PET scanner for a 20 min static acquisi-
tion. During the exam, mice were maintained under anesthesia, body temperature and respiratory rate were
constantly monitored. CT and PET data were reconstructed and co-registered as described above. Images were
transformed voxel by voxel in Standard Uptake Values (SUVs) and scaled to the global mean uptake value to
measure modifications in radioactivity concentration between conditions. PMOD VOIs template was applied
as previously described®.

New template creation. For each animal, CT and PET images were intrinsically co-registered (PET-CT)
using the same bed in a single session, i.e. without moving the animal between the two (CT and PET) studies,
while MR images were rigidly co-registered to PET-CT images using SPM-12 (https://www.filion.ucl.ac.uk/
spm/software/). Co-registered MR images from each animal were elastically deformed to the ARA using the
multi-modal registration tool of the ANTsPy package, then averaged to create an MR template. Figure 1 sum-
marizes the main steps involved in template generation. ARA has a relatively small bounding box (11.4 x8x13.2
mm?®) and does not include any extra-cerebral structures. With the purpose to properly define the limits of the
brain, we used a larger bounding box (12.1x9.6x 16.1 mm?®) characterized by pixels dimension of 0.1 mm.
After that, each MR image was spatially normalized using the SPM-12 “old normalization” toolbox, using the
previously generated average image. This toolbox provides a regularized elastic intra-modality registration using
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Package content

Description Intended use

Allen Reference Atlas—Nifti

Facilitate comparison of coordinates between in-vivo neuroimaging

ARA converted to nifti format and ARA

MR template

Mean of 12 high-res 3D-T2 MR scans of healthy mice, aligned to

ARA Reference template for spatial normalization of mice MR images

CT template

Mean of 12 CT scans of healthy mice, aligned to ARA Reference template for the CT-based normalization pipeline

FDG-PET template

Could be used for PET-based normalization pipelines. CT-based ones

Mean of 12 FDG-PET scans of healthy mice, aligned to ARA
are encouraged however

ROI maps

Labelled image of 27 ROIs in ARA space To be used for the analysis of images after alignment in standard space

Co-registration batch script example

File containing all the optimized settings to run a rigid co-registration

Batch file for SPM-based rigid registration in SPM. Optimized for mice brains

Normalization batch script example

File containing all the optimized settings to run the elastic deforma-

Batch file for SPM-based elastic normalization tion in SPM. Optimized for mice brains

Table 1. Content of mouse brain template generated for PET-CT image analysis with description of each step
and application.

a sum of squared differences as a target metric. This strategy is expected to maximize the robustness of the
method. The obtained images were averaged to obtain the final MR atlas. Atlas was created in the same bounding
box, although the isotropic voxels were resized to 0.2 mm due to the poor resolution of the modalities.
Alignments between the result and the original atlas were visually assessed by imaging experts, using ana-
tomical landmarks.
CT and PET atlases were generated by averaging images that were spatially normalized using the deforma-
tion found on the MR image.

Validation of the proposed registration algorithms. By using the 3D MR-based normalization as
“gold standard”, we compared the effectiveness of the CT-based normalization pipeline. Due to the lack of cor-
tical gyrification in mice, we hypothesized that the registration quality, based on the bone structures and soft
tissue, would be sufficient even if internal structures are not visible in CT. For this evaluation, we normalized
the images using both a CT-based and the MR-based pipeline and measured the point-wise distance in the
deformation field. The deformation error was quantified using the Root Mean Squared Displacement. A pixel
at a location x” in the template space can correspond to either the pixel x- when the CT based deformation is
applied, or to the pixel x,;; when the MR-based one is used. All are 3 dimensional position vectors. We define the

displacement between the two deformations in every pixel x’ as||xcr — xmr . The root mean squared displace-
ment over all subjects for one pixel is then >, v/ lIxcT — xmr .

Regions definition. A template image (http://download.alleninstitute.org/informatics-archive/curre
nt-release/mouse_ccf/average_template/) and the VOIs definitions (http://download.alleninstitute.org/infor
matics-archive/current-release/mouse_ccf/annotation/ccf_2017/) were downloaded. The version with 100 pm
isotropic voxels was selected. From the ARA ontology (http://help.brain-map.org/display/api/Atlas+Drawings+
and+Ontologies), VOIs were grouped and selected according to the following criteria:

e Large compared to PET resolution (> 1.5 mm?)

® Enough regions to map the whole brain

® Representative of the main grey matter anatomical areas and according to the “Brain — Major Division” of
the ARA.

After defining the list of VOIs, the actual contour was created by including every substructure as defined by
ARA. To achieve a more regular shape, a one voxel-erosion operation was applied to each VOI.

Application of the brain template to the MPTP subacute mouse model: template-based analy-
sis. The new template developed for PET-CT images analysis purpose was applied in the study of the brain
of a PD mouse model in order to improve the analysis of the areas involved in microglia/macrophage activation.
PET-CT images of the mice undergoing MPTP treatment were analysed using the proposed pipeline, namely
warping to the ARA space using the CT template, and radioactivity extraction in the previously defined VOIs.
As for comparison, the analysis was also performed using the VOIs definitions included in the PMOD software,
based on the studies of Ma and Mirrione'>"”. PET-CT images were co-registered to this atlas, and radioactiv-
ity intensity was extracted using the VOIs included in this package. Table 1 reports the content of the provided
toolbox and the suggested use of each component.

Statistical analysis. In the MPTP experiment, ['*F]VC701 activity values were extracted from each vol-
ume of interest before and after 7 days of treatment. Radioactivity values were then scaled by the cerebral global
mean. Finally, neuroinflammation, measured as the increase of ['*F]VC701 uptake at day 7 compared to day 0,
was assessed in each brain region using the Student’s t test for paired samples. FDR adjustment was applied to
account for multiple comparisons.
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Figure 2. Representation of the VOIs defined in this work. The VOIs are superimposed to the ARA MR
volume. Left: Dorsal 3D rendering; Center: Lateral 3D rendering; Right: axial, coronal and sagittal cross-
sections.

Name Abbreviation | Laterality | Volume (for each side) (mm?)
Anterior cingulate area | ACA L/R 1.7
Auditory areas AUD L/R 1.9
Cerebellum CB Central 53.3
Hindbrain HB Central 47.1
Hippocampal region HIP L/R 8.9
Hypothalamus HY L/R 5.7
Midbrain MB Central 26.7
Olfactory areas OLF L/R 9.5
Orbital areas ORB L/R 11.3
Somatomotor areas MO L/R 2.0
Somatosensory areas SS L/R 13.2
Striatum dorsal STRd L/R 12.0
Striatum ventral STRv L/R 4.6
Thalamus TH L/R 8.2
Visual areas VIS L/R 4.8

Table 2. List of structures and abbreviations included in the template (L/R =both left and right) with each
volume indicated.

Results
Regions definition and template creation. The twenty-seven regions obtained are shown projected on
reference images in Fig. 2.

These regions include cerebral cortex, cerebellum, left/right dorsal and left/right ventral basal ganglia, thala-
mus and midbrain, as listed in Table 2. As stated above, these regions cover the anatomical structures of the whole
brain starting from ARA macro-regions and were defined according to the spatial resolution of the PET-CT
scanner (VOI range: 1.7 to 53 mm?®). An imaging expert reviewed the images to visually assess the congruence
between the VOIs and the regions defined on the registered MR scans. An example of the resulting partition is
shown in Fig. 2. Figure 3 shows the CT, MR and PET templates produced.

Validation of the CT-based registration pipeline. The root mean squared displacement observed
between the CT-based registration and the MR-based registration was small. The global average observed was
0.43 mm, with minimum (0.339 mm) in the dorsal right striatum and maximum (0.630 mm) in the left auditory
cortex (Table 3).

Results of [*®F]VC701 PET-CT in the MPTP subacute mouse model. The application of the new
VOIs template in the SPM analysis of the ['*F]VC701 PET-CT images in PD animals is able to identify which
sub-regions are involved in microglial/macrophage activation (Table 4) in comparison to the macro-regions
identified using the PMOD atlas. Figure 4 shows the two templates applied. In particular, the neurotoxin admin-
istration induced a specific increase of radioligand uptake in 11 sub-regions, including left and right dorsal
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Figure 3. Three-plane view of the CT (right), PET (center) and MR (right) image templates obtained with the
proposed normalization method, aligned to the ARA.

Area Root mean squared displacement (mm)
Anterior cingulate area left 0.359
Anterior cingulate area right | 0.344
Auditory areas left 0.546
Auditory areas right 0.630
Striatum dorsal left 0.379
Striatum dorsal right 0.339
Striatum ventral left 0.417
Striatum ventral right 0.393
Cerebellum 0.549
Hindbrain 0.503
Hippocampal region left 0.397
Hippocampal region right 0.488
Hypothalamus left 0.375
Hypothalamus right 0.380
Midbrain 0.477
Olfactory areas left 0.392
Olfactory areas right 0.386
Orbital areas left 0.402
Orbital areas right 0.346
Somatomotor areas left 0.371
Somatomotor areas right 0.365
Somatosensory areas left 0.407
Somatosensory areas right 0.477
Thalamus left 0.353
Thalamus right 0.395
Visual areas left 0.495
Visual areas right 0.656

Table 3. Displacement between regional volume (mm) found in the new VOIs template compared to the ARA
MR template.

striatum (p <0.001), left (p <0.001) and right (p <0.05) thalamus, left (p <0.05) and right (p <0.01) orbital areas,
right somatomotor and somatosensory cortex (p <0.05) and midbrain (p <0.05). The PMOD template, instead,
identified significant radiotracer increase in right and left striatum and thalamus (p <0.001) and in central gray
region (a part of the midbrain) (p <0.05) but not in the cortex, possibly due to the lack of areas partition. After
false discovery rate adjustment, 6 sub-regions remained significant with the proposed method, while only 3
survived with the PMOD atlas analysis.
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Area of the new atlas p value Area of Ma and Mirrione template | p value
Anterior cingulate area left 0.0068**" | Amygdala R 0.7648
Anterior cingulate area right | 0.0039**" | Amygdala L 0.6727
Auditory cortex left 0.5459 Cortex 0.0730
Auditory cortex right 0.4974

Striatum dorsal left 0.0007***" | Striatum R 0.0003***1
Striatum dorsal right 0.0006***T | Striatum L 0.0002%+*7
Striatum ventral left 0.7122

Striatum ventral right 0.9702

Cerebellum 0.9875 Cerebellum 0.9992
Hindbrain 0.4002 Basal forebrain septum 0.1229
Hippocampal region left 0.1113 Hippocampus L 0.3103
Hippocampal region right 0.0801 Hippocampus R 0.5574
Hypothalamus left 0.2758 Hypothalamus 0.5217
Hypothalamus right 0.7514

Olfactory areas left 0.7972 Olfactory bulb 0.2139
Olfactory areas right 0.6618 Superior colliculi 0.1677
Orbital areas left 0.0311* Inferior colliculi R 0.8842
Orbital areas right 0.0055**" | Inferior colliculi L 0.5472
Somatomotor areas left 0.0634

Somatomotor areas right 0.0392*

Somatosensory areas left 0.6806 Brain stem 0.9439
Somatosensory areas right 0.0271*

Thalamus left 0.0003**" | Thalamus 0.0040**"
Thalamus right 0.0242*

Visual areas left 0.8395 Central gray 0.0148*
Visual areas right 0.0889 Midbrain R 0.3966
Midbrain 0.0436* Midbrain L 0.4016

Table 4. T-test significance (p values) of regional increase of the ['**F]VC701 radioligand uptake after MPTP
treatment, measured using the new template (left) and the PMOD template (right). *p <0.05; **p <0.01;
***p<0.001. TSignificant after FDR adjustment.

Ma and Mirrione template

Figure 4. Visual comparison between Ma and Mirrione template in red (top) and the new brain template in
green (bottom).
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Ciick Below to Choose Spatial Search Target

. Striatum dorsal region

Figure 5. High-resolution map of neural connections of dorsal region of striatum in the mouse brain, built

on an array of mice genetically engineered to target specific cell types. The colored dots indicate the position of
the regions connected to the selected one: green for motor areas, dark green for somatosensory areas, pink for
substantia nigra, orange and red for thalamic nuclei. Image credit: Allen Institute (www.alleninstitute.org).

In addition, striatal subdivision showed that the inflammatory reaction was limited to the dorsal sub-region.
This is in line with the information contained in the ARA connectivity tool (https://connectivity.brain-map.org/
projection) developed by Allen group in the same space. This tool identifies functionally connected areas based
on an array of mice genetically engineered to target specific cell types. By using the “Spatial Search” option of the
tool, it is possible to find all the regions connected in a circuit starting from a source structure. By filtering for the
dorsal part of the striatum, we observed a connection with all the cortical and subcortical regions in which we
found a significant increase of ['®*F]VC701 (Fig. 5 and Table 3). Conversely, by filtering for the ventral striatum,
a region unaffected by MPTP, we found connections with other brain regions equally unaffected by the toxin
(Supplementary Fig. 1). This confirmed the overlap of PET and connectivity data.

Discussion and conclusions

The development of brain templates enables the precise identification of the elements (sub-regions) that are
fundamental for the study of pathology progression and response to treatment in neurodegeneration and neu-
roinflammation. Three-dimensional brain atlases for small rodents are available to study neuroanatomy in
relation to gene expression, cell types and functional pathways. One of the more advanced and complete for
mouse is the Allen Brain Atlas (https://atlas.brain-map.org/) that allows a correlation of neuropathology with
behaviour or phenotype. PD is characterized by loss of dopaminergic neurons and a-synuclein aggregation in
the Substantia nigra pars compacta, a small region within the midbrain. A key and recently recognized event
in PD pathogenesis is the neuroinflammatory process triggered by a-synuclein aggregation'®'. The fact that
this process is a very early event during PD development is confirmed by different in vivo PET studies in pro-
dromal PD patients®*?!. The inflammatory response in PD is carried out by microglia and, to a minor extent,
astrocytes. Activated microglia produce detrimental cytokines and inflammatory factors, and overexpress a
variety of receptors as the translocator protein (TSPO). Using radiotracers specific for TSPO, as ['!C]PK11195,
it was possible to follow microglial activation over PD progression and find a negative correlation between the
increase of neuroinflammation and dopamine content in midbrain®?. Therefore, while MR imaging is applied
to the study of neuroanatomical changes, which are particularly evident in advanced stage of PD, PET imaging
is able to detect early biochemical modifications that are already present in pre-symptomatic/premotor phases.
Image analysis plays a fundamental role in identifying dysfunctional regions and integrating information deriving
from different sources. Different PD rodent models have been developed and studied using PET and radiotracers
that allow the identification of biomarkers of disease development and progression®. In the preclinical setting,
a major limitation is represented by the lack of standardization of image acquisition and tools for the analysis.
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We developed a brain atlas for mouse that conforms to the CCFv3 and provides regions that are optimized for
PET-CT imaging analysis and defined within its ontology. This tool enables to develop protocols independent
of high resolution 3D anatomical MR, which can be costly and difficult to perform due to anaesthesia duration
constraints. Despite of lower quality compared to MR-based registration, the average displacement measured
was < 500 um in most regions. This is significantly lower than PET spatial resolution in state-of-the art systems.

The present work has some limitations. A full study on the effect of the CT image quality on the image reg-
istration precision was not performed. However, it can be expected that any acquisition protocol with a good
spatial resolution (e.g.: 200 um? pixel or smaller) and visualization of the cortical bone, should perform identi-
cally. In addition, this pipeline was not validated against animals with uncommon anatomies, such as after major
surgeries to the skull or extreme degrees of atrophy.

When applied to the PD model, the template allowed the recognition of the sub-regions involved in response
to a neuronal insult, such as subacute MPTP. In particular, we found that after 7 days of MPTP treatment, the
uptake of the TSPO-specific radiotracer ['®F]VC701 was significantly increased in dorsal part of striatum, thala-
mus and midbrain, a region including substantia nigra. These regions are directly affected by the neurodegenera-
tive process (substantia nigra and striatum) or are involved in PD motor dysfunction (thalamus)***. In fact, we
found a significant radiotracer uptake increase also in somatomotor, somatosensory, anterior cingulate and orbital
cortex areas, which undergo structural and functional alteration during PD, as measured by MR and PET?.

Subacute MPTP' increased the expression of different pro-inflammatory cytokines and induce microglia
activation in different brain regions such as anterior cortex, striatum and midbrain*-?’. We successfully meas-
ured this phenomenon in vivo with the TSPO-specific radioligand [**F]VC701, which has been already used
by our group for the study of different neurodegeneration models®*’!. The two areas with maximal elevation
of ['®F]VC701 uptake were striatum and thalamus, and were consistent between the two templates, even after
FDR adjustment. The application of PMOD template failed to reveal significant changes of radiotracer uptake in
cortical regions sampled as a whole, although microglial activation was observed in selected cortical areas such
as orbital or cingulate cortex in PD*. In addition, the adaptation of the PET-CT volume to the ARA volume and
the definition of anatomical regions that are superimposable offer the possibility to apply all the advanced tools
developed for ARA, such as the connectivity tool (https://connectivity.brain-map.org/projection) that allows to
reconstruct the different neuronal circuits within the brain. Therefore, when we selected the dorsal part of the
striatum using this tool, we observed that this region is connected to cortical and subcortical areas in which we
observed ['®F]VC701 uptake increase, suggesting that the whole circuit was affected by the neurotoxin.

In mouse brain, cell body of dopaminergic neurons are mainly localized in three distinct subcortical regions:
substantia nigra (A9 region), ventral tegmental area (A10) and retrorubral field*’. The A9 region that projects to
the dorsal part of the striatum is more susceptible to MPTP administration in comparison with A10 that, instead,
projects to the ventral part of striatum?*. In line with these findings, we found no neuro-inflammatory response
in the ventral part of the striatum and other limbic cortical and subcortical regions.

As expected, when the connectivity tool was applied to the ventral part of the striatum we failed to find any
association with brain regions with increased levels of radioligand. This example shows the value of the ARA
association with Allen connectivity tools in the evaluation of the regional distribution of PET radiopharmaceu-
ticals or interpretation of brain metabolic studies.

Moreover, different tools for gene expression have been developed and adapted to the ARA, increasing the
possibility of integrating omics information for a given phenomenon®.

In conclusion, the brain template developed here represents an efficient tool for mouse PET-CT image quanti-
fication, making MR acquisition unnecessary and offering the unique advantage to merge molecular or structural
data deriving from in vivo preclinical imaging with genetic, molecular and cell information present in ARA tools.

Information sharing statement. The same animals and their PET-CT datasets were used for the prepa-
ration of the following articles: “In vivo susceptibility to energy failure parkinsonism and LRRK2 kinase activity”
by Salvatore Novello and colleagues'®.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request. The whole package will be made freely available for download on the NITRC
repository when the paper will be published.
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