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Muscle ring finger protein-1 inhibits PKCe activation
and prevents cardiomyocyte hypertrophy
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uch effort has focused on characterizing the sig-

nal transduction cascades that are associated

with cardiac hypertrophy. In spite of this, we still
know litle about the mechanisms that inhibit hypertro-
phic growth. We define a novel anti-hypertrophic signal-
ing pathway regulated by muscle ring finger protein-1
(MURF1) that inhibits the agonist-stimulated PKC-mediated
signaling response in neonatal rat ventricular myocytes.
MURF1 inferacts with receptor for activated protein kinase
C (RACK1) and colocalizes with RACK1 after activation
with phenylephrine or PMA. Coincident with this agonist-

Introduction

Myocardial hypertrophy is an early milestone during the clini-
cal course of pressure overload—induced heart failure and by
itself is an important risk factor for subsequent cardiac morbidity
and mortality. The heart adapts in response to mechanical and
hemodynamic stimuli by initiating a hypertrophic response
and increasing muscle mass (Hunter and Chien, 1999). At the
cellular level, cardiac myocytes respond to diverse types of
biomechanical stress by initiating several different cytoplasmic
signal transduction cascades that lead to hypertrophic gene
expression and growth of individual myocytes (Molkentin and
Dorn, 2001). Blockade of specific intracellular signaling
pathways in the heart can dramatically affect the orchestration
of the entire hypertrophic response and effectively diminish
cardiac enlargement.

Ventricular myocytes represent an excellent model sys-
tem for the study of the myocyte hypertrophic response (Chien
et al., 1991). Agonists that induce a hypertrophic response phe-
notype in cultured cells include phorbol esters (Allo et al.,
1992), endothelin-1 (Shubeita et al., 1990), and a-adrenergic
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stimulated interaction, MURF1 blocks PKCe translocation
to focal adhesions, which is a critical event in the hyper-
trophic signaling cascade. MURF1 inhibits focal adhesion
formation, and the activity of downstream effector ERK1/2
is also inhibited in the presence of MURF1. MURF1 inhibits
phenylephrine-induced (but not IGF-1-induced) increases
in cell size. These findings establish that MURF1 is a key
regulator of the PKC-dependent hypertrophic response
and can blunt cardiomyocyte hypertrophy, which may
have important implications in the pathophysiology of
clinical cardiac hypertrophy.

receptor (a-AR) agonists such as phenylephrine (PE) and norep-
inephrine (Lee et al., 1988; Iwaki et al., 1990). One mechanism
underlying a-AR—induced cardiac hypertrophy is the activation
of PKC isoforms that can be regulated by selective translocation
from the cytosolic to the membrane compartment (Mochly-
Rosen, 1995). Translocation and activation of the Ca“—dependent
PKCa and Ca?*-independent PKCe occur in response to a-AR
stimulation in rat hearts (Clerk et al., 1994; Puceat et al., 1994,
Rybin and Steinberg, 1994; Korzick et al., 2001) and are,
in turn, mediated by PKC isoform-specific associations with
membrane anchoring proteins termed receptors for activated
protein kinase C (RACKs) (Mochly-Rosen et al., 1991; Disat-
nik et al., 1994a; Mochly-Rosen and Gordon, 1998). RACK1, a
36-kD WD40 repeat protein, was originally identified in a
screen for proteins that bind activated PKCBII (Mochly-Rosen
etal., 1991). RACKI is not a substrate for PKCBII; however, in
its presence substrate phosphorylation by PKCPII is increased
(Ron et al., 1994), suggesting that the PKCBII-RACKI1 com-
plex may be the active form of the enzyme. In addition to
PKCRII, RACKI1 has also been found in association with PKCe
in hypertrophied heart lysates, demonstrating a potential func-
tional role for PKCe-RACKI interactions in the myocardium
(Mochly-Rosen et al., 2000; Pass et al., 2001a,b).

RACKI1 is also an adaptor for other signaling enzymes
including phospholipase Cvy (Disatnik et al., 1994b), Ras-GAP
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Figure 1. MURF1 interacts with RACK1 in A MURF1 B, . _ _ RACKI
vivo and in vitro. (A) In a yeast two-hybrid ~ Bait Vector Myc-MURF1
screen the NH, terminus of MURF1 was used 5 h = + . + . Y
as bait to screen an adult heart library. (B) To  « © l'i R IB: anti-RACK1
confirm the yeast two-hybrid interaction, COS & 2 o & M :
7 cells were transfected with RACK1 and/or é 9_>)" g - o ]
Myc-MURF1 as indicated. The cell lysates o a -_ - IB: anti-Myc
were immunoprecipitated with anti-Myc antfi- ‘ - _
body followed by Western blotting with T g g c IP: anti-Myc
RACK1 antibody. (C) To test the interaction % (8] '5 . -
between MURF1 and RACK1 in vitro, GST 3 & || 2 - X%  + + MycMURF1
fusion proteins (GST alone, GSTRACKI, or (g_ + é 8 - — GST-RACK1
GST-DB1 as a negative control) were incu- pGAD T7-T _ _ TR _ 3
S + GST-DB1
bated with COS 7 cell lysates that express RACK1 B o _ GsT
Myc-MURF1. The protein complexes were - s .
immunoblotted with anti-Myc or anti-RACK1 ; - JT—
antibody. (D) GST fusion proteins (GST alone : ji 1B: anti-Myc
or GST-MURF1) were incubated with COS 7 i % )
cell lysates expressing the indicated HA- . | d—— IB: anti-RACK1
tagged RACK1 deletions (The rapidly migrating D S
HA-immunoreactive bands in cell lysates prob- WD1 WD2  WD3  WD4  WD5 _ WD6 wD7
ably represent RACK1 degradation products). | RACK1
The protein complexes were immunoblotted with 13 44 61 91 103 133 146 178 190 220 231 260 281 311 i
antiHA, PKCe, or -GST antibody. (E) NRVM Two-hybrid
were infected with Ad.GFP or Ad.MURF1 at Lysate (10% input) GST Pull down Prey Clone
the indicated multiplicities of infection (MOI),
and lysates were immunoprecipitated with an B - - -~ * - = =~ + HARACK1(1-183)
antibody against PKCe. Immunoprecipitates I S - - - + - - - - + — HA-RACK1(1-225)
were then blotted for the presence of RACKI - = 4 = = = — — + - - - — + - - HA-RACK1(1-274)
and MURF1 (using an anti-Myc antibody). e - -~ _ . -~ 4+ — - — HA-RACKI
- - - - - - 4+ + 4 + + - - - - — GST-MURF1
- - - - -+ - - - - - + + + + + GST
— C—
& -
“ - IB: anti-HA
T —
- IB: anti-PKCe
E Ad. GFP_Ad. MURF1
3 5 3 5 MOI
IB: anti-RACK1

. W B: anti-Myc

W W ¥ ¥ B anti-PKce
IP: anti-PKCe

(Chang et al., 1998), dynamin-1 (Lin and Gilman, 1996; Rod-
riguez et al., 1999), Src (Luttrell et al., 1996, 1997; Chang et
al., 1998, 2001), and the (3 subunit of integrins (Liliental and
Chang, 1998; Buensuceso et al., 2001). Recently, Besson et al.
(2002) showed that phorbol ester stimulation of human glioma
cells increases focal adhesion formation and coimmunoprecipi-
tation of PKCe, RACKI, and 3, and 5 integrins. Interestingly,
FAK and PKCe colocalize to focal adhesions in neonatal rat
ventricular myocytes (NRVM), suggesting a functional link be-
tween these two kinases (Heidkamp et al., 2003). Like PKCe,
FAK has a requisite role in a-AR agonist-induced cardiac hy-
pertrophy (Fluck et al., 1999; Laser et al., 2000; Taylor et al.,
2000). In spite of all this, the factors that could potentially in-
hibit these pathways and thus a-AR signaling in cardiac myo-
cytes are not well known. In addition, it is undetermined what
effector molecules regulate the complex interactions between
PKC isoforms and RACKI1.
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Recently, muscle ring finger protein-1 (MURF1) was
identified as a protein up-regulated in skeletal muscle atrophy
(Bodine et al., 2001b). MURF1 expression is exquisitely re-
stricted to cardiac and skeletal muscle. MURF1 binds the sar-
comeric protein titin (Centner et al., 2001) and overexpression
of MURF]1 disrupts the portion of titin that binds MURF1, sug-
gesting that MURF]1 regulates the stability of this large struc-
tural protein (McElhinny et al., 2002). Structurally, MURF
family members contain a Zn>*-binding RING finger domain
at their extreme NH,-terminal ends, a MURF family-specific
conserved region, a B-box domain, coiled-coil motifs, and an
acidic tail (Spencer et al., 2000; Centner et al., 2001; Dai and
Liew, 2001). MURF2 and MURF3 are two other proteins that
share a high degree of homology to MURF1 (Spencer et al.,
2000; Centner et al., 2001). The RING finger B-box coiled-coil
(RBCC) family of proteins to which the MURFs belong have
critical roles in cellular processes including signal transduction,
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Figure 2.  MURF1 colocalizes with RACK1 in cultured cardiac myocytes. Rat cardiac myocytes were infected with recombinant adenovirus Ad.GFP (A and B)
or Ad.MURF1 (C and D) for 24 h in serum free medium followed by induction with PE (B and D) for 48 h. Immunostaining was done with anti-Myc and
anti-RACK1 antibodies. This was followed by secondary antibody incubation with anti-rabbit Alexa 568 (red) and anti-mouse AMCA (blue). The green

color represents GFP expression.

gene transcription, ubiquitination, and differentiation (Borden,
2000; Freemont, 2000).

To date, very little is known about the cellular roles of
MUREFI. In vitro binding studies indicate that MURF family
members homo- and hetero-oligomerize (Centner et al., 2001).
MUREF3 associates with microtubules and may participate in
myogenic differentiation and microtubule stabilization through
undetermined mechanisms (Spencer et al., 2000). MURF1 in-
teracts with small ubiquitin-related modifier3 (Dai and Liew,
2001), a member of a ubiquitin-related class of proteins impli-
cated in subcellular targeting and nuclear import (Melchior,
2000), and glucocorticoid element binding protein-1 (McEI-
hinny et al., 2002), a nuclear protein implicated in transcrip-
tional regulation (Zeng et al., 2000). Consistent with this find-
ing, MURF]1 is detected in nuclei in addition to its sarcomeric
and cytoplasmic localization (Dai and Liew, 2001). Despite
these recent studies, the exact physiological role(s) of the
MUREF family members have remained elusive.

To identify proteins that bind to MURF1, we screened a hu-
man heart cDNA library with a GAL4 fusion construct contain-
ing aa 1-143 of MURF1 (which contains ring finger and
MURF-specific domains, but not the B-box domain known to
interact with titin) using a yeast two-hybrid approach. After se-
lection in high stringency conditions, three interacting cDNAs
were isolated and sequenced. One of the cDNAs contained the
COOH terminus of RACK1 (475-1144 nucleotides) in frame
with GAL4. The selectivity of the MURF1-RACKI interaction
in the yeast two-hybrid reaction was confirmed by retesting in
a lacZ reporter assay (Fig. 1 A).

To confirm the binding between MURF1 and RACK1
in vivo, COS 7 cells were transfected with vector alone,
RACKI1, or RACK1 with full-length Myc-MURF]1. Proteins
immunoprecipitated with anti-Myc antibody were immuno-
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Figure 3. MURF1 does not alter PE- and PMA-induced translocation of
PKCBII from cytosol to the perinuclear region in NRVM. NRVM were infected
with Ad.GFP (A-C) or Ad.MURF1 (D-F) for 24 h in serum-free medium
followed by induction with PE or PMA for 15 min. The cells were fixed
and incubated with anti-RACK1 (blue) and anti-PKCBII (red) for 2 h.
(G) Quantitative determination of perinuclear PKCBII staining under the
indicated conditions.

blotted with an antibody specific for RACK1 (Fig. 1 B).
RACKI1 was detected only in cell lysates expressing both
Myc-MURF1 and RACKI, indicating efficient association
between these two proteins in vivo. To further confirm the in-
teraction of MURF1 with RACKI1, we incubated a GST-
RACKI fusion protein together with COS 7 cell lysates ex-
pressing Myc-MURF1. Protein complexes were collected on
glutathione-agarose beads and assayed for MURF1 binding
by immunoblot analysis with anti-Myc antibody (Fig. 1 C).
MURF1 was pulled down by GST-RACK1 only, and not by
GST or GST-DBI1 (a nonspecific control).

A Ad. GFP

B Ad. GFP + PMA

C Ad. MURF1

D Ad MURF1 + PMA

anti-PKCe

anti-vinculin

merged

Figure 4. MURF1 inhibits PMA-induced translocation of PKCe from the
perinuclear region to focal adhesion complexes in NRVM. NRVM were
infected with Ad.GFP (A and B) or Ad.MURF1 (C and D) for 24 h in serum-
free medium followed by induction with PMA (B and D) for 15 min. The
cells were fixed and incubated with anti-vinculin (blue) and anti-PKCe (red)
for 2 h. Arrows indicate focal adhesions.

RACKI contains seven repeats of the WD40 motif (Ron
et al., 1994; Schechtman and Mochly-Rosen, 2001), a domain
involved in protein—protein interactions that regulates multi-
ple cellular functions (Neer et al., 1994). Because our two-
hybrid screen indicated that MURF1 binds to the COOH-ter-
minal 174-317 amino acids of RACKI1, we generated serial
COOH-terminal RACK1 deletions of WD40 repeats to delin-
eate the binding site of MURF1 on RACKI1. GST or GST-
MURFI1 fusion proteins were incubated with HA-tagged
RACKI1 deletions expressed in COS 7 cells. Using this ap-
proach, we found that MURF1 binding requires residues in
the WD5 repeat region of RACK1 (183-225 amino acids; Fig.
1 D). This stands in contrast to previous reports that impli-
cate the adjacent domain WD6 in PKC binding to RACK1
(Mochly-Rosen et al., 1991; Ron et al., 1994). Indeed, we also
found that the presence of RACKI1 markedly increases the
amount of PKCe in GST-MURF1 precipitates, but only in
constructs containing the WD6 domain. We cannot exclude
the possibility that MURF1 binds RACK1 through additional
points of contact in addition to WDS5, but its binding mechanism
appears to be distinct from that of PKCe.
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Figure 5. MURF1 inhibits adrenergic agonist-induced PKCe activity (but not
PKCBII activity) in the particulate fraction of NRVM. (A-C) After infection
with Ad.GFP or Ad.MURF1 for 24 h in serum-free medium, NRVM were
induced with PE or PMA for 15 min and subjected to subcellular fraction-
ation. The defergentsoluble (S) and particulate (P) fractions were immuno-
precipitated with anti-PKCBII (A) or anti-PKCe antibody (B and C) and were
subjected fo in vitro kinase assays using histone H1 and y[*?P]JATP. (D and
E) The results from densitometric scanning of kinase assays from three inde-
pendent experiments are presented as means = SEM of PKCe (D) or PKCBlI
(E) activity in the particulate fraction compared with soluble fraction. *, P <
0.05 compared with control.

To determine whether MURF1 forms a ternary complex
with RACKI1 and PKC isoforms, we infected cardiomyocytes
with AAMURF1 and immunoprecipitated PKCe. We then
probed these immunoprecipitates for RACK1 and MURF1 (us-
ing a Myc antibody; Fig. 1 E). MURF]1 is present in PKCe im-
munoprecipitates (indicating that a ternary complex is formed),
and the amount of RACKI1 in these immunoprecipitates is un-
affected by the amount of MURF1 that is present (which sug-
gests that there is neither cooperation nor competition among
these proteins).

MURF1 colocalizes with RACK1 in
cardiac myocytes

Previous papers have shown that MURF1 localizes in the cyto-
sol, sarcomeres, and nuclei of myocytes (McElhinny et al.,
2002), whereas RACKI1 is present in the cytosol (Ron et al.,
1995, 1999). However, after activation with PMA, RACK1 is
localized in perinuclear structures (Ron et al., 1995, 1999). We
also observed similar staining of MURF1 and RACKI in

Ad.MURF1-infected NRVM (Fig. 2, A—C). In addition, we ob-
served enhanced colocalization of MURF1 with RACKI in the
perinuclear region after activation with PE (Fig. 2 D). Stimula-
tion with PMA resulted in similar colocalization of MURF1
with RACKI1 from the cytosol and sarcomere to the perinuclear
region and nucleus (unpublished data). These data indicate that
MURF]1 colocalizes with RACK1 after activation in NRVM,
placing MURF1 in the right place and time to modulate
RACKI1-dependent signaling.

MURF1 specifically inhibits the
translocation of PKCs, but not PKCgll
Because RACKI is known to regulate targeting of PKC iso-
forms, we examined the translocation of PKC isoforms in
NRVM in the presence of MURFI. In nonstimulated myo-
cytes, PKCBII is associated with fibrillar structures and after
activation it translocates to the nuclear and cell periphery,
whereas before stimulation, PKCe is observed in the nucleus
and perinucleus but translocates to cross-striated structures and
focal adhesions in stimulated cells (Disatnik et al., 1994a;
Ron et al., 1995; Johnson et al., 1996; Heidkamp et al., 2003).
PKC activation induces the association and colocalization of
RACKI1 with PKCBII (Ron et al., 1999); MuRF1 modestly in-
creased perinuclear localization of PKCBII under unstimulated
conditions and did not inhibit PE- or PMA-dependent PKCBII
translocation (Fig. 3). PKCBII moved from cytosol to perinu-
clear structures after activation with PE and PMA, and colocal-
ized with RACKI1 in control as well as Ad.MURFI-infected
NRVM. Several recent reports have also shown colocalization
of PKCe and RACKI1 in response to stimulation with PE and
PMA (Pass et al., 2001a,b; Besson et al., 2002). Using an anti-
PKCe antibody, we observed the translocation of PKCe from
perinuclear structures to focal adhesions upon activation with
PE or PMA in NRVM infected with Ad.GFP, as indicated
by costaining with the focal adhesion marker vinculin. Sur-
prisingly, this translocation was inhibited after infection with
Ad.MURF1 (Fig. 4). PKCe translocation occurred in 22 = 6%
of Ad.MURF1-infected cells treated with PMA compared with
82 + 8% of control cells. After stimulation with PMA, PKCe
was still observed in the perinuclear structures and nuclei in
these cells. Similar patterns were observed after stimulation
with PE (unpublished data). These data indicate that MURF1
specifically inhibits the movement of the PKCe isoform after
agonist-induced stimulation.

To further define the function of MURF1 in NRVM,
PKC activity was measured with an in vitro kinase assay.
NRVM were treated with PE or PMA in the presence or ab-
sence of ectopic MURFI1 expression. The lysates were subse-
quently fractionated into soluble and particulate components.
After immunoprecipitation with either anti-PKCe or anti-
PKCBII antibody, the immunocomplexes were mixed with his-
tone H1 as an exogenous substrate. Consistent with our immu-
nofluorescence data, MURF]1 did not inhibit PKCBII activity in
response to PE or PMA treatment. The majority of PKCBII
phosphotransferase activity (72.5% = 5) was observed in the
particulate fraction of Ad.GFP- and Ad.MURF1-infected cells
after PE or PMA treatment (Fig. 5 A), and there was no signifi-
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Figure 6. MURF1 inhibits focal adhesion formafion in A
NRVM. NRVM were infected with Ad.GFP (A, B, and E)
or AA.MURF1 (C, D, and F) for 24 h in serum-free medium
followed by induction with PE for 48 h (B and D). The
cells were fixed in 3.7% formaldehyde followed by incu-
bation with anti-paxillin (A-D) or anti-vinculin (E and F)
antibodies. Arrows indicate focal adhesions. (G) Quanti-
tative determination of paxillin-positive focal adhesions
per cell under the indicated conditions.
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cant effect of MURF1 on PKCRII activity (Fig. 5 E). However,
PKCe activity was observed in the soluble fraction even af-
ter PE (62.5% = 5) or PMA (68.5% = 2) treatment in
Ad.MURFl-infected cells, and translocation to the particulate
fraction was inhibited (Fig. 5, B-D). We cannot determine
whether these effects are totally dependent on the ability of
MURF]1 to interact with RACK1; nevertheless, these data indi-
cate that MURF1 specifically inhibits the translocation and ac-
tivity of PKCe in the particulate fractions of NRVM.

Previous reports indicate that PE-induced hypertrophy in iso-
lated neonatal cardiomyocytes requires signaling through FAK
(Taylor et al., 2000), and activation of FAK, in turn, depends on
PKCe (Eble et al., 2000; Heidkamp et al., 2003). To determine
whether the effects of MURF1 on PKCe translocation and acti-
vation influence focal adhesion assembly, we first examined the
localization of paxillin, a resident focal adhesion protein, by im-
munostaining with anti-paxillin antibody after PE treatment in
NRVM. Paxillin staining was dispersed in untreated cells (Fig.
6 A), but after PE treatment staining appeared in distinct focal
complexes in the Ad.GFP-infected cells (Fig. 6 B). In contrast,
the subcellular redistribution of paxillin in response to PE was
markedly inhibited in the presence of Ad.MURF1 (Fig. 6, C and
D). Similarly, vinculin staining revealed characteristic staining

of Z-disc structures and peripheral focal adhesions after PE
treatment, whereas cells infected with Ad.MURF]1 lost the focal
adhesion pattern but retained Z-disc—tethered vinculin expres-
sion. A quantitative analysis of paxillin-positive focal adhesions
per cell is shown in Fig. 6 G. These data suggest that MURF1
inhibits PE-induced focal adhesion formation in NRVM.
Tyrosine phosphorylation is a major covalent modifica-
tion driving protein—protein interactions required for focal ad-
hesion assembly. To determine the kinetics and extent of tyro-
sine phosphorylation of focal adhesion—associated proteins,
FAK was immunoblotted with a phospho-FAK antibody that
specifically recognizes the phosphorylation of tyrosine 397
(Schaller et al., 1994), which is crucial for FAK activation. An
increase in tyrosine phosphorylation of FAK was observed after
15-20 min of PE treatment in control cells (Fig. 7 A). This
phosphorylation of tyrosine 397 was blocked by increasing lev-
els of MURFI. In addition, we immunoprecipitated paxillin
from PE-treated cells and tested its phosphorylation status by
Western blotting with anti-phosphotyrosine antibody. As ex-
pected, paxillin phosphorylation occurred rapidly after PE or
PMA treatment, and MuRF]1 inhibited the phosphorylation of
paxillin by PE or PMA (Fig. 7 B). Previous papers have shown
that tyrosine phosphorylation and activation of FAK can acti-
vate ERK1/2 signaling cascades (Govindarajan et al., 2000),
and that ERK2 is the downstream target of FAK that is acti-
vated during assembly of focal adhesion proteins in cardiac
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Figure 7. Effects of MURF1 on components of the FAK signaling pathway.
(A) NRVM were infected with Ad.GFP or Ad.MURF1 for 24 h followed by
induction with PE or PMA. NRVM lysates were separated by SDS-PAGE.
Blots were incubated with anti-pFAK (397Y) antibody and anti-FAK anti-
body (loading control). (B) NRVM cell lysates treated as in A were immuno-
precipitated with anti-paxillin antibody followed by immunoblotting with
anti-phosphotyrosine (PY) antibody. (C) To test for activation of MAP kinase
signaling, NRVM cell lysates were analyzed by Western blotting with anti-
pERK antibody and anti-ERK antibody (loading control). The cumulative re-
sults are presented as fold increase in ERK activity from basal level = SEM.

myocytes (Taylor et al., 2000). Similar to the inhibition of FAK
phosphorylation, we observed inhibition of ERK2 phosphoryla-
tion in Ad.MURFI-infected cardiomyocytes after 15-20 min of
PE or PMA treatment (Fig. 7 C). Together, these observations
indicate that the ability of MURF1 to inhibit activation of PKCe
leads to impaired focal adhesion assembly and arrests signaling
downstream of FAK in PE- or PMA-stimulated NRVM.

MURF1 antagonizes PE- and PMA.-
dependent cardiomyocyte hypertrophy in
vitro

Activation of both PKC and FAK leads to cellular changes in-
dicative of hypertrophy, including increased cell size, sarco-

meric organization, and induction of hypertrophic markers
such as atrial natriuretic factor (ANF). To test the hypothesis
that MURF1 antagonizes initiation of the hypertrophic re-
sponse, we infected NRVM with Ad.GFP or Ad.MURF1, fol-
lowed by stimulation with PE for 48 h. Immunohistochemical
analysis indicated that ANF was induced after PE treatment in
the perinuclear region in the Ad.GFP-infected NRVM as ex-
pected, but this effect was inhibited in Ad.MURFI1-infected
cells (Fig. 8 A). Similar results were observed after treatment
with PMA (unpublished data). Next, we examined the expres-
sion of ANF, a-actin, and -myosin heavy chain mRNA in car-
diomyocytes treated with PE, angiotensin-II, endothelin-1, in-
sulin-like growth factor 1 (IGF-1), or serum, in the presence
and absence of AA.MURFI1 by RT-PCR. The basal level of
these mRNAs was detected in myocytes as reported previously
(Sekiguchi et al., 1999). Exposure to each of these agonists re-
sulted in up-regulation of these hypertrophic markers, and in
each case (except for IGF-1) up-regulation was blocked by in-
creased expression of MURF1 (Fig. 8 B). These data indicate
that MURF1 inhibits G protein—coupled receptor-dependent
expression of hypertrophic markers in cardiomyocytes.

To further characterize the effects of MURF1 on car-
diomyocyte hypertrophy, we examined how the activity of
MURFI modulated cell size and sarcomeric organization in
NRVM. As expected, PE treatment of GFP-infected cardio-
myocytes led to increased cell size compared with untreated
cells (Fig. 9 A). In the presence of Ad.MURF]I, the response to
PE was dramatically reduced. To quantitate the extent of hy-
pertrophy, a total of 150-200 cells in each treatment were
scored for their cell surface areas. Treatment of cardiomyo-
cytes with PE for 48 h resulted in a threefold increase in cell
size. MURF1 completely abolished the PE- and PMA-induced
increase in myocyte size, but not the changes induced by IGF-I
(Fig. 9 B). The specificity of MURF1 effects on hypertrophy
was further substantiated by studying the effect of a similar
ring finger ubiquitin ligase protein, CHIP. CHIP had no effect
on agonist-induced increases in cell size (Fig. 9 B).

NRVM cultured in serum-free conditions displayed thin
and rudimentary sarcomeric structure (Fig. 9 C), and treatment
of myocytes with PE or PMA caused a reorganization of sar-
comeres typical of the hypertrophic response as shown by im-
munostaining with a-actinin antibody (Fig. 9 D). However,
Ad.MURF]1 expression completely abolished PE- or PMA-
induced sarcomere reorganization (Fig. 9, C and D). Together,
these morphologic, immunohistochemical, and molecular data
demonstrate that MURF1 blocks PE- and PMA-induced hyper-
trophic signaling pathways and indicate a functional role of
MUREF1 in inhibiting initiation of cardiomyocyte hypertrophy.

To demonstrate that endogenous expression of MURF1
has a role in the regulation of hypertrophy, we knocked down
MUREF1 expression in NRVM by generating small interfering
RNA (siRNA) specific to MURF1. MURF1 siRNA inhibited
expression of MURF1 in COS 7 cells by >70% (Fig. 10 A).
MUREF1 siRNA was cotransfected in NRVM along with EGFP
to mark transfected cells. A total of 150-200 cells per condition
were scored for their cell surface areas. When MURF1 expres-
sion was knocked down, cells were 2.5-fold larger than the
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control cells under quiescent conditions and 1.5-fold higher af-
ter treatment with PE or PMA (Fig. 10 B). To further confirm
the affect of endogenous MURF1 on hypertrophy, we exam-
ined the expression of ANF in cells transfected with MURF1
siRNA and counted the number of cells expressing ANF. We
observed a 20-fold increase in cells expressing ANF under
basal conditions and enhancement of PE- and PMA-induced
ANF expression (Fig. 10 C). These data indicate that endoge-
nous MURF1 regulates NRVM cell size tonically and also after
stimulation with hypertrophic agonists.

Cardiac hypertrophy is viewed as a compensatory response to
increased load common to diverse clinical settings such as hy-
pertension, valvular disease, and inherited cardiomyopathies
(Sadoshima and Izumo, 1997; MacLellan and Schneider, 2000).
Myocytes respond to pressure overload with the addition of sar-
comeres, resulting in an increase in ventricular wall thickness,
which itself is an independent risk factor for cardiovascular
mortality (Mathew et al., 2001; Verdecchia et al., 2001). Hence,
blunting hypertrophic growth might be beneficial to cardiac
function, and previous studies of genetically engineered mice
disrupting certain hypertrophic pathways confirm this predic-
tion (Esposito et al., 2002; Sano and Schneider, 2002). How-
ever, we still do not know which pathways hold greatest poten-
tial for therapeutic benefit. Although the signaling pathways that
activate hypertrophy have been described in detail (McKinsey
and Olson, 1999; Molkentin and Dorn, 2001), still very little is
known of mechanisms that attenuate hypertrophic growth. In
spite of well-defined genetic models and essential mediators of
hypertrophy (Adams et al., 1998; Molkentin et al., 1998; Bueno
et al., 2000; Antos et al., 2002; Minamino et al., 2002), the distal
effectors that execute myocyte and heart enlargement remain
uncertain. To this end, we have characterized a novel anti-
hypertrophic signaling pathway that operates in part through in-
hibition of PKC-mediated signaling in myocytes, indicating that
MUREF1 plays a critical role in tuning the balance of hyper-
trophic and anti-hypertrophic signaling within myocytes.

Evidence supports the notion that activation of PKC may
be a critical trigger of cardiac hypertrophy and failure (Waka-
saki et al., 1997; Pass et al., 2001b). Transgenic mice ex-
pressing cardiac-specific PKCBII exhibit enhanced troponin I
phosphorylation and develop hypertrophy (Takeishi et al.,
2000). Activation of PKCe also contributes to G4 overexpres-
sion-induced cardiac hypertrophy (D’Angelo et al., 1997). In
addition, PKCe association with RACKI is linked to the gene-
sis of cardiac hypertrophy and failure (Pass et al., 2001b).
Thus, our observations that MURF]1 interacts with RACK1 and
inhibits PE- and PMA-induced PKCe translocation demon-
strate the existence of a previously unrecognized anti-hyper-
trophic mechanism in cardiac myocytes. It is possible that the
ability of MURFI1 to antagonize hypertrophy may be due to
regulation of a class switch between PKCBII-RACK1 and
PKCe-RACKI interactions. Previous reports have shown that
RACKI interacts with the Gg, dimer and G,g, trimer of G pro-
tein and both Gg, and G,g, compete with the binding of acti-
vated PKC to RACKI1 (Dell et al., 2002). Thus, MURF1 may
also play a role in coordinating the interactions between PKC
isoforms and G,q with RACKI.

FAK, a primary mediator of integrin signaling, plays a
role in PE- and endothelin-1-induced hypertrophy and adhe-
sive response of NRVMs (Eble et al., 2000; Taylor et al.,
2000), and FAK is activated by PKCe (Heidkamp et al., 2003).
Moreover, increased focal adhesion association and coimmu-
noprecipitation of PKCe, RACK1, and 3, and s integrins in
human glioma cells suggest a functional and structural link be-
tween these two pathways (DePasquale and Izzard, 1991; Guan
and Shalloway, 1992; Romer et al., 1994; Defilippi et al., 1997;
Heidkamp et al., 2003). We demonstrate that in addition to in-
hibition of PKCe translocation to focal adhesions, MURF]1 in-
hibits the tyrosine phosphorylation of FAK and paxillin lead-
ing to inhibition of focal adhesion formation. Furthermore,
MUREFI significantly inhibits the adrenergic activation of
ERK1/2. This observation is consistent with reports from other
groups showing that a dominant inhibitor of FAK blunts
ERK1/2 activation and ERK-dependent hypertrophy (Ross et
al., 1998; Taylor et al., 2000). Together, our data suggest that
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MURFT1 plays a central role in regulating PKC-dependent focal
adhesion assembly and activation of downstream signaling
pathways that lead to hypertrophy.

We found that MURF1 antagonizes the hypertrophic ef-
fects of PMA and PE, which induces cardiomyocyte hyper-
trophy in a PKCe-dependent fashion (Pass et al., 2001a,b;
Heidkamp et al., 2003). Remarkably, MURF1 overexpression
has no effect on IGF-1-dependent hypertrophic marker gene
expression (Fig. 8) or cardiomyocyte hypertrophy (Fig. 9). Be-
cause IGF-1-dependent hypertrophy requires signaling via the
phosphoinositide 3-kinase/Akt axis rather than through PKC-
dependent mechanisms (Kozma and Thomas, 2002), these ob-
servations indicate that, at least at the level of intracellular sig-
naling, there is a degree of specificity to the actions of MURF1.
In light of recent observations indicating that signaling path-
ways mediating pathological versus physiological hypertrophy
may be distinct (Wilkins et al., 2004), it is tempting to specu-
late that MURFT is better positioned to inhibit the former, but
not the latter. Further studies will be needed to address this in-
teresting possibility.

Our data and that of other groups indicate that MURF1
is localized in multiple sites within the cell. In the cytosol
MURF]1 associates with microtubules, and in the sarcomere
MURF1 is the only MURF family member that binds Titin

Ad.MURF1— phenylephrine/PMA

(Centner et al., 2001). We have also observed increased im-
munostaining of MURFT in the perinuclear region after ago-
nist stimulation in NRVM (Fig. 2). These data indicate that
MURF1 may inhibit hypertrophy at multiple steps and may
participate in discrete multiprotein complexes that reside in dif-
ferent places within the cell. In fact, MURF1 has been shown
to interact with ubiquitin-conjugating enzyme 9, isopeptidase
T-3, and glucocorticoid modulatory element binding protein-1
(McElhinny et al., 2002). In the nucleus, MURF1 may regulate
processes such as the signal-dependent transcriptional activa-
tion of cardiac genes involved in hypertrophy or the import and
export of proteins. Further studies are needed to determine
whether MuRF1 in the nuclear compartment directly regulates
the transcription of cardiac-specific genes, which might also
contribute to its anti-hypertrophic activity.

The presence of a ring finger raises the possibility that
MURF1 has E3 ubiquitin ligase activity. In fact, MURF1 cata-
lyzes the assembly of ubiquitin chains in vitro (Bodine et al.,
2001a). Our studies indicate that neither RACK1 nor PKCe are
likely to be substrates for MURF1’s ubiquitin ligase activity, as
we did not observe changes in steady-state levels or accumula-
tion of multiubiquitinated forms of RACK1 by MURF]1. These
data indicate that the anti-hypertrophic effects of MURF1 may
be mediated, at least in part, independently of ubiquitin ligase
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Figure 10. Effect of endogenous MURF1 on cardiac cell size and ANF
expression. (A) COS 7 cells were transiently transfected with pPCMV-Myc-
MURF1 and pSIREN-MURF1 siRNA or with control vectors as indicated.
The cell lysates were subjected to SDS-PAGE analysis followed by Western
blotting with anti-Myc antibody. (B) NRVM cells were transfected with GFP
and MURF1 siRNA for 36 h followed by induction with PE or PMA for 48 h.
The cells were observed with a fluorescent microscope with a 60X objective
lens. 150-200 cells per condition were measured for cell surface area us-
ing the Image) program. The data are presented as means = SEM. *, P <
0.05 compared with control. (C) After induction with PE or PMA, cells
were fixed and immunostained with rabbit anti-ANF antibody. 200 cells
per condition were counted for ANF expression. The data are presented
as means = SEM. *, P < 0.05 compared with control.

activity. However, other studies from our laboratory indicate
that MURF1 interacts with troponin I and elicits its degradation
via ubiquitin ligase activity (unpublished data), indicating that
MURF1 does have ubiquitin ligase activity in vivo. The associ-
ation with troponin I may account for the fraction of MURF1
that is localized to the sarcomere, and suggests that the anti-
hypertrophic activity of MURF1 may result from coordinated
events in several cellular compartments.

Previous studies have identified genetic pathways that are
activated during hypertrophy and induce cardiac growth. Our
studies highlight the importance of molecular pathways that re-
press hypertrophic responses. Recently, homeodomain protein
(Hop; Kook et al., 2003) and myocyte-enriched calcineurin-
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interacting protein (MCIP; Rothermel et al., 2001) have also
been demonstrated to regulate anti-hypertrophic gene responses.
Hop inhibits the expression of anti-hypertrophic genes by asso-
ciating with histone deacetylases and MCIP inhibits the cal-
cineurin signaling pathway. Moreover, both of these proteins
inhibit cardiac hypertrophy in genetic models of cardiomyopa-
thy. Our studies indicate that MURF1 may represent another
mechanism to regulate cardiac hypertrophy induced via G pro-
tein—coupled receptor signaling pathways. The extent to which
these three proteins mediate their effects through common
mechanisms is a promising topic for future research.

In the present paper we have demonstrated a new mecha-
nism to regulate hypertrophy. Our present observations are
limited to cultured cardiomyocytes, which limits their gen-
eralizability; nevertheless, cultured cardiomyocytes have proven
extremely effective in revealing mechanisms of cardiac hyper-
trophy (Hunter and Chien, 1999). We speculate that blunting
the hypertrophic response by MURF1-dependent inhibition of
PKCe signaling may serve as a major adaptive strategy in the
face of ongoing hypertrophic stimulation. MURF1 is a poten-
tial target for pharmacological intervention because it may reg-
ulate parallel and interconnected signaling pathways in cardiac
muscle cells. Still, several key issues remain to be understood.
How are the different signaling systems that evoke a hyper-
trophic response interconnected? When does MURF]1 regulate
the cascade of events leading to hypertrophy? The challenge
now lies in elucidating the targets of MURF1 that are upstream
of RACKI and the downstream effector molecules inside the
nucleus that regulate cardiac gene expression, and how MURF1
regulates hypertrophic responses in vivo.

Materials and methods

Cell culture

COS 7 cells were cultured in DME and transiently transfected using Fu-
GENE (Roche) as described previously (Jiang et al., 2001). NRVM were
isolated using the neonatal cardiomyocyte isolation kit (Worthington) and
were plated on laminin. NRVM cell size was measured using Image). The
calculated cell areas from 150-200 cells were used to determine the aver-
age cell size of NRVM. Adenoviruses expressing MURF1 or control viruses
were constructed with the Ad-Easy system, which express GFP and cargo
proteins from a bicistronic message. Cultures were routinely infected at a
multiplicity of infection of 3 with an infection efficiency of >98%.

Yeast two-hybrid screen

The NH, terminus of MURF1 (aa 1-143) was cloned into pGBKT7 in
frame with the GAL4 DNA binding domain and screened against human
heart library cloned into prey-vector pACT2. The candidate clones were
rescued on medium-stringency medium (SD-His, leu, Trip/X-B-gal) and
later screened on high-stringency medium (SD-Leu, Trip, His, Ade/X-a-gal).

Immunoprecipitation

COS 7 cells were harvested 36-48 h after transfection and lysed with
modified RIPA buffer (Garcia-Cardena et al., 1996) supplemented with
protease inhibitors. Cell lysates were clarified by centrifugation at 16,000 g
for 10 min and protein concentration was determined. Immunoprecipi-
tated proteins or cell lysates were mixed with SDS sample buffer and were
separated by SDS-PAGE.

GST pull-down assays

GST fusion protein beads were incubated with cell lysates of myc-MURF1 or
HA+tagged deletions of RACK1 for 3 h. Protein complexes were washed
four times in buffer containing 0.5% Nonidet P-40, 20 mM Tris, pH 8.0,
100 mM NaCl, and T mM EDTA, and were boiled in SDS sample buffer.
Proteins were resolved by SDS-PAGE and subjected to immunoblot analysis.



Ventricular myocyte subcellular fractionation and immune complex kinase
assays

Myocytes were infected with GFP or MURF1 adenovirus for 24 h in serum-
free medium before induction with PE or PMA for 15 min. Cells were frac-
tionated as described before (Clerk et al., 1994). In brief, cells were
washed in icecold PBS and lysed by extraction in 500 pl buffer A (12.5
mM Tris-HCl, 2.5 mM EGTA, 1 mM EDTA, 100 mM sodium fluoride, 5
mM DTT, and 300 uM PMSF) containing 0.05% digitonin for 5 min. The
soluble fraction was retained. The particulate fraction was washed in 500
ul buffer A, centrifuged, and resuspended in the same volume of buffer A
containing 1% Triton X-100. The PKC isozyme-specific kinase assay was
performed as described previously (Chen and Faller, 1999). The subcellu-
lar fractions (250 jug) were immunoprecipitated with the corresponding
anti-PKC antibody and collected by absorption to protein A/G-Sepha-
rose. The immunocomplexes bound to protein A/G-Sepharose were
washed with buffer A twice and kinase buffer twice (50 mM Tris-HCI, pH
7.4, 10 mM sodium fluoride, T mM Na3zVO,, 0.5 mM EDTA, 0.5 mM
EGTA, 2 mM MgCl,, 10 pg/ml leupeptin, and 1 mM PMSF). Subse-
quently, the immunocomplexes bound to the beads were resuspended in
reaction buffer (20 mM Tris-HCl, pH 7.4, 10 mM MgCl,, 10 pM cold
ATP, 0.4 mg/ml histone H1, and 2.5 puCi y[*2P]ATP [6,000 Ci/mmol])
and incubated at 30°C for 15 min.

Generation of MURF1 siRNA

MURF1 siRNA was generated using BD Knockout RNAi systems (BD Bio-
sciences). MURF1 oligonucleotide (nt 616-638) was cloned in pSIREN
vector and was sequence confirmed. pSIREN-DNR containing a scram-
bled oligo insert served as a control. COS7 cells and NRVM were trans-
fected using FUGENE 6 (Invitrogen).

Image analysis

Cells were mounted in Fluoromount G and were viewed at RT with the
60X obijective of an inverted microscope (Eclipse EBOO; Nikon) using NA
1.40. Pictures were taken with the Qlmaging RETIGA camera and digi-
tized with Qcapture software (W. Nunsbaum, Inc.) The images were then
converted to grayscale and were pseudocolored using IP Lab software
(VayTek). Goat anti-mouse aminomethylcoumarin-labeled and goat anti-
rabbit Alexa 568-labeled antibodies were used as fluorochromes.

Statistical methods
Results are presented as means = SEM. Statistical significance was tested
by two-ailed t test and was taken as being established at P < 0.05.
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