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Treatment of solid tumors by ablation techniques has gained momentum in the recent

years due to their technical simplicity and reduced morbidity as juxtaposed to surgery.

Cryoablation is one of such techniques, known for its uniqueness to destroy the tumors

by freezing to lethal temperatures. Freezing the tumor locally and allowing it to remain

in situ unleashes an array of tumor antigens to be exposed to the immune system,

paving the way for the generation of anti-tumor immune responses. However, the immune

responses triggered in most cases are insufficient to eradicate the tumors with systemic

spread. Therefore, combination of cryoablation and immunotherapy is a new treatment

strategy currently being evaluated for its efficacy, notably in patients with metastatic

disease. This article examines the mechanistic fabric of cryoablation for the generation

of an effective immune response against the tumors, and various possibilities of its

combination with different immunotherapies that are capable of inducing exceptional

therapeutic responses. The combinatorial treatment avenues discussed in this article

if explored in sufficient profundity, could reach the pinnacle of future cancer medicine.
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INTRODUCTION

Percutaneous image-guided ablation techniques are playing an increasing role in the management
of patients with solid cancers. The minimally invasive nature of percutaneous ablations together
with their proven antitumor efficacy have gained a wide acceptance in the medical community.
In fact, percutaneous ablations have demonstrated to be analogous to surgery in achieving total
eradication of small tumors with the added advantage of decreased morbidity (1, 2). While surgical
resection extirpates the tumor, ablative therapies yield tumor cell death in situ. This unique feature
offers a therapeutic opportunity as it uncovers to the immune system previously shielded tumor
antigens. Indeed, the immunomodulatory abilities of percutaneous ablation therapies could be used
as in vivo vaccination tools, and combinatorial approaches with immunotherapy could be beneficial
for patients with widespread disease.

Commonly employed ablation therapies in the clinical setting are radiofrequency ablation
(RFA), microwave ablation, high-intensity focused ultrasound and cryoablation. All these
treatments operate on the principle of hyperthermia with the exception of cryoablation, which is
a hypothermic modality that induces tissue damage by a freeze-thaw process. Of all the ablation
techniques, cryoablation demonstrated the highest potential to elicit post-ablative immunogenic
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response. Chapman et al., performed cryoablation of healthy
hepatic tissue in Sprague-Dawley rats that resulted in the
appearance of pulmonary lesions, characterized by the presence
of lymphocytes, neutrophils and foamy macrophage clusters.
In contrast, these lesions were not observed in the rats
subjected to hepatic RFA. Activation of nuclear factor-κB
(NF-κB) in lung and liver tissues was prominent in the
animals subjected to cryoablation, but not RFA. Concomitantly,
higher serum cytokine levels of tumor necrosis factor (TNF)-α
and macrophage inflammatory protein-2 were observed post
cryoablation as opposed to RFA (3). In another similar
study, hepatic cryoablation induced an increase in white
blood cell counts, higher serum levels of aspartate/alanine
aminotransferases and interleukin (IL)-6 as compared to RFA
or laser induced thermotherapy, despite similar volume of
hepatic damage achieved in all the three techniques of ablation
(4). In a subsequent clinical study on tumors treated with
cryoablation or RFA or microwave ablation, patients treated with
cryoablation exhibited significantly elevated plasma IL-6 levels as
compared to patients that received RFA or microwave ablation
(5). This could be explained by the fact that heat-based therapies
can cause protein denaturation, reducing the availability of
intact immunogenic antigens, which can be circumvented by
cryoablation, as demonstrated by a recent study employing
Fourier-transform infrared spectroscopy (6).

BRIEF HISTORY OF CRYOABLATION IN
TUMORS

Cryoablation refers to the technique of ablating the tissue by
freezing to lethal temperatures followed by thawing, causing
extensive tissue destruction. This technique is widely used to treat
benign and malignant primary tumors (7, 8). Although the use of
cold temperatures to treat wounds dates back to 3000 B.C. (9),
its application to treat the tumors was first attempted by James
Arnott in the nineteenth century. He successfully attempted
the usage of cold temperatures by salt and ice solutions for
the generation of local numbness prior surgical operations, as
a replacement for chloroform inhalation. He reported that the
freezing temperatures not only acted as a local anesthetic, but
also impaired cancer cell viability that translated into patient’s
extended survival, and suggested cryoablation as an attractive
therapeutic option for treating local tumors (9, 10). In 1930s,
William Pusey started using liquid CO2 under high pressure,
which upon release and expansion at the atmospheric pressure
resulted in cooling effect and the subsequent formation of ice
crystals (10). This is famously known as the Joule-Thomson
effect, the principle underlying all the modern techniques of
cryoablation. Around the same time, Irvine and Turnacliffe
utilized liquid air and liquid oxygen to achieve the same
effect. These three liquid gases were mostly employed to treat
skin conditions like lesions, warts and keratosis (10). In 1950,
Allington replaced the above gases with liquid N2 for the
treatment of various skin diseases (11).

Rowbotham et al., developed a cannular device (a thin
tube that can be inserted into a tissue), and employed it to

perform cryoablation in patients with malignant brain tumors,
by delivering a mixture of CO2 and acetone to the targeted
region of the tissue (12). The major disadvantage with this
technique is the non-insulation of the cannula, and therefore,
passing a freezing agent through the inserted cannula not
only caused a temperature drop in the targeted tumor, but
also along the inserted tissue path. Later, Irving Cooper and
Arnold Lee published landmark studies in the early 1960s that
laid the foundation for current cryoablation technologies. They
developed an insulated cannular device that could produce
freezing effect only at the opening tip of the device, but
not along its entire length, and successfully delivered −196◦C
liquid N2 to the localized tissue areas for treating patients
(13). Later, many others used this technology to treat benign
and malignant tumors successfully in patients. Gage et al., for
example, recruited patients with benign and malignant tumors of
the oral cavity, that were not suitable to receive the conventional
modes of treatment like surgery and radiotherapy due to the
reasons of tumor location or radio-resistance. Intriguingly, none
of the patients treated with cryoablation showed local tumor
recurrence. Modern cryoablation devices have replaced liquid
N2 by an inert argon gas that produces the same effect (14–16),
due to its associated technical advantages of easier handling and
operation (9).

This review article summarizes the key cellular events
and factors influencing the effectiveness of cryoablation, and
discusses the potential combinatorial approaches of cryoablation
with different forms of immunotherapy.

CARDINALS OF CRYOABLATION

Freezing rate is one of themost important factors that determines
the kinetics and scope of tissue damage. At low freezing
rates, solvents in extracellular spaces form ice crystals, leading
to intracellular fluid loss as a compensatory mechanism for
the osmotic imbalance across the cell membrane (17). This
eventually leads to cell shrinkage, followed by damage to cell
membranes and organelles due to the increased intracellular
solute concentrations (Figure 1) (18). At high freezing rates,
intracellular ice formation ensues the formation of extracellular
crystals, because the cell does not have enough time to lose the
solvent like above (17). This results in severe physical damage to
cell membranes and intracellular organelles leading to cell death
(18). Therefore, the faster the freezing the higher the level of
intracellular ice formation, and the greater is the causation of
cryolesion and tissue damage (7, 15, 17, 19, 20). The cells in close
proximity to the cryoprobe undergo rapid freezing rates, whereas
the cells in the periphery of the ablation zone are likely to undergo
moderate or low freezing rates (7).

Different cell types undergo freezing at different temperatures,
due to the variations in their intracellular solute compositions.
For example, temperatures ranging from −4 to −7◦C is enough
to destroy the melanocytes by freezing, which can be resisted
by the keratinocytes of the skin (21). In reference to the
abundant early literature published on freezing temperatures
tested on different healthy and tumor cell types, −50◦C is the
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FIGURE 1 | Mechanisms of cell death and immunologic responses induced by cryoablation. (A) Cells in the core of the ablation zone are subjected to lethal

temperatures at rapid freezing rates, resulting in the generation of extra and intracellular ice crystals. Cells adjacent to the core zone undergo moderate or low freezing

rates. This permits the cells to lose intracellular water by exosmosis in response to the formation of extracellular ice crystals resulting in cellular dehydration and

shrinkage. In contrast, cells in the core zone cannot undergo exosmosis due to rapid freezing rates and thus, form intracellular crystals. Both intra and extracellular ice

crystals cause mechanical damage to the cells. (B) During the thawing phase, the small intracellular ice crystals, due to their thermodynamic instability, fuse to form

larger intracellular crystals (re-crystallization) that enhances the mechanical damage to the cell membranes and intracellular organelles. (C) Post-thawing, mechanically

damaged cells die by necrosis and release their contents into the surrounding milieu. Cells that have undergone exosmosis swell and burst due to osmotic shock.

Cells in the utmost periphery of the ablation zone exposed to sub-lethal temperatures undergo apoptosis, releasing apoptotic bodies. Antigens released from necrotic

cells upon uptake by antigen presenting cells like DCs, induce co-stimulatory signals that would result in the generation of anti-tumoral T-cell responses. In contrast,

antigen uptake by DCs in the form of apoptotic bodies imprints immune tolerance or anergy on T-cells due to the non-induction of co-stimulatory signals on DCs. DC,

Dendritic cell.

recommended temperature of freezing to ensure a definite tissue
destruction (7, 16, 22).

The ideal duration of freezing is not defined, as the
requirements vary based on the tissue type, vascularization, and
the volume of the tissue to be frozen (7, 23). Duration of freeze
should be evaluated in a manner that ensures the maximal
freezing of the tumor tissue while sparring the surrounding
normal tissue.

Upon thawing, the extracellular ice melts and causes
local hypotonicity in relation to the dehydrated hypertonic
intracellular environment. This leads to a high influx of solvent

into the intracellular space, causing the previously dehydrated
cells to swell and burst, releasing their intracellular contents
into the surrounding milieu. At rapid cooling rates, the ice
crystals formed are small and thermodynamically unstable; upon
thawing, these small ice crystals fuse to form large crystals,
a process known as re-crystallization (Figure 1). This process
is maximized at −20 to −25◦C during thawing. Large intra-
and extracellular crystals thus formed cause severe mechanical
damage to the lipid cell membranes. The slower the thawing,
the higher the time for re-crystallization, and thus, greater the
cellular damage by necrosis (7, 17).
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The volume of tissue necrosis is directly proportional to the
number of freeze-thaw cycles (22). The tissue that is already
damaged in the first cycle of freeze-thaw goes through a faster
cooling rate in the second cycle. In addition, there is also an
increased formation of intracellular ice crystals in the additional
cycle, all contributing to the severity of cell damage. It is
estimated that about 80% of the previously ablated tissue is
present in the succeeding cycle of ablation. Most studies employ
two or more freeze-thaw cycles (7, 22, 24, 25). However, an
increase in the number of freeze-thaw cycles and the proportional
increase in tissue damage does not always translate into improved
survival (26).

IMMUNOLOGY OF CRYOABLATION

The cells in the core of ablation zone that die by osmotic
shock or physical damage (by ice crystals) die by necrosis,
releasing their intracellular contents into the extracellular space,
triggering an active immune response. In contrast, cells in the
periphery of ablation zone subjected to sub-lethal temperatures
die by a mitochondrial mediated apoptosis pathway (27, 28). The
balance between immunogenic necrosis and immune tolerant
apoptosis is one of the key factors that decides the course
of an immune response induced by cryoablation (Figure 1).
Freeze-thaw process also causes damage to the endothelial cells
of the vasculature, leading to platelet activation, aggregation,
thrombosis, and ischemia. This damage also causes edema,
vasodilation, and hyperemia (7, 18, 27, 28).

There were reports in the 1970s of isolated cases having
spontaneous regression of metastases upon cryoablation of
primary prostate tumors. Results suggested that the regression
could be immune mediated (29–32). Experiments with
preclinical models bearing tumors treated by cryoablation
exhibited an impressive resistance to tumor re-challenge (33–
35). Comparison of cryoablation and surgery in a mammary
tumor mouse model showed that 84% of the cryoablated mice
resisted tumor re-challenge as opposed to 14% of mice treated
by surgery. This enhanced protection was tumor-specific, as
the survived mice were completely susceptible to re-challenge
with an unrelated tumor cell line. Tumor rejection was immune
mediated, as T-cells from the tumor draining lymph node
(TDLN) of cryoablated mice secreted high levels of interferon-γ
(IFN-γ) (36). Adoptive transfer of T-cells from the TDLNs of
the cryoablation treated mice reduced lung metastases in the
recipient tumor bearing mice; ∼3-fold lower metastases was
found in the recipients of T-cells from the cryoablation group
as compared to the surgery group (37). These results provided a
substantial evidence of immune-mediated protective responses
evoked by cryoablation of tumors.

Den Brok et al. tested cryoablation on B16-OVA tumor-
bearing mice. 50% mice were protected against tumor re-
challenge when the cryoablated tumor was left in situ, whereas
100% death was observed when the cryoablated tumor was
resected from the mice. This suggests that the ablated tumor
tissue needs to remain in situ, where the tumor antigens will be
available for the generation of an anti-tumor immune response
(38). A study report of patients that underwent cryoablation for
hepatic tumors exhibited increased levels of serum IL-6, serum

amyloid A and C-reactive protein. A fraction of these patients
also exhibited necrosis of distant untreated tumors, and were
distinguished by increased levels of systemic IFN-γ and TNF-
α (a Th1 response) in comparison to the patients that had only
local necrosis of the cryoablated region. Interestingly, the latter
group had increased levels of systemic IL-10, indicative of a Th2
response (39).

Taken together, above data point out to the fact that tumor
cryoablation can trigger a tumor-specific protective immune
response. However, the magnitude and sustainability of this
immune response may not be adequate to protect from tumor re-
challenge or exert an abscopal regression of distant metastases.
In addition, tumors have developed sophisticated immune
suppressive mechanisms to evade the host’s immune attack (40–
42). Therefore, synergy of cryoablation and immunotherapy
to modulate and revert immunosuppressive responses presents
a fascinating opportunity to treat cancer, in particular, for
advanced metastatic cancer patients.

CRYOABLATION COMBINED WITH
IMMUNOTHERAPY: AVENUES FOR
IMMUNOMODULATION

Toll Like Receptors (TLRs)
TLRs are primarily expressed on innate immune cells like
neutrophils, macrophages and dendritic cells (DCs), although
expression on other cells has also been detected. These receptors
recognize microbial-associated molecular patterns derived from
microbiota and pathogens, and danger-associated molecular
patterns derived from damaged and necrotic cells (43, 44).
Each TLR has its own specific set of ligands; cell surface TLRs
recognize lipids, proteins and lipoproteins, whereas intracellular
TLRs recognize nucleic acid material. TLRs upon binding
to their cognate ligands initiate a cascade of intracellular
MyD88- or TRIF-mediated signaling pathways. The resultant
of these signaling pathways is the production of type-1
interferons or other inflammatory mediators, initiating an
immune response (44).

TLR agonist treatment with cryoablation in experimental
tumor models has shown substantial improvements in
survival and anti-tumor immune responses. Mice bearing
less immunogenic B16-F10 tumors treated with cryoablation
failed to survive tumor re-challenge. Fascinatingly, 50% of the
mice survived upon re-challenge when the mice were prior
treated with TLR-9 agonist CpG along with cryoablation.
Analysis of tumor draining lymph nodes (TDLNs) demonstrated
the DC maturation with an increased expression of CD80 and
CD86 co-stimulatory markers (38). Another pre-clinical study
employed imiquimod, a TLR7 agonist, along with cryoablation
to treat B16-OVA tumors. Upon re-challenge, none of the
mice survived when treated alone with imiquimod, and only
30–35% of the mice survived when treated with cryoablation.
Intriguingly, 90% of the mice survived upon combination
treatment with cryoablation and imiquimod (45). Patients with
highly relapsing basal cell carcinoma treated with a combination
of imiquimod and cryoablation demonstrated a 100% clinical
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response, with a 5% relapse rate observed at 18 months post-
therapy, indicating a synergistic effect of the combined treatment
modalities (46). Thus, TLR agonists can be employed as powerful
adjuvants along with cryoablation in order to generate an
effective antitumor immunity. Pro and anti-tumorigenic effects
of each TLR on the specific cancer type targeted should also be
taken into consideration for the selection of TLR agonists (43).

Adoptive Cell Transfer Strategies
Dendritic Cells (DCs)
DCs are scattered across the body and act as a bridge between
innate and adaptive immune responses. DCs in the tissues
upon sensing TLR agonists undergo maturation, characterized
by an increased expression of co-stimulatory molecules, migrate
to the local draining lymph nodes for antigen presentation
and induction of effector T-cell responses. In the absence of
an immunogenic stimulus or a “danger signal,” DCs remain
immature, and in such cases, antigen-presentation by DCs to T-
cells can only cause T-cell tolerance (47). In the case of tumors,
DCs upon TLR activation can mature, migrate from the tumor
vicinity to TDLNs, and present the tumor antigenic peptides to
T-cells, initiating an anti-tumor T-cell response (48). Moreover,
DCs are efficient in inducing the differentiation of CD8+ T-
cells to cytotoxic T-cells (CTLs) by a well-described mechanism
known as cross-presentation (49). Generation of tumor-specific
CTLs is the goal of most cancer immunotherapies (48).

Due to the low numbers of DCs available in the peripheral
blood, they are generated in vitro from monocytes or bone
marrow-mobilized hematopoietic precursors induced by
granulocyte colony-stimulating factor administration (50).
The majority of the adoptive transfer treatments have utilized
autologous cells for the generation of DCs (51). Although the
objective clinical response rates have been low ranging from 7 to
15%, an average of 20% increase in the overall survival has been
observed (52).

The next-generation treatments aim to amalgamate DC-
based therapies with other treatment modalities to achieve
greater therapeutic responses (50, 51). In pre-clinical models of
melanoma and lung carcinoma, tumor cryoablation followed by
intra-tumoral DC transfer exhibited excellent improvements in
the overall survival and resistance to re-challenge (53). In another
study, a mouse model of colon cancer exhibited regression
of distant untreated tumors upon combinatorial treatment
of cryoablation and intra-tumoral administration of Bacillus
Calmette-Guerin (BCG)-stimulated DCs. The systemic anti-
tumor immunity that conferred protection was tumor-specific,
and was abrogated by the depletion of CD8+ T-cells (54).

Natural Killer (NK) Cells
As the name indicates, these innate immune cells are specialized
at killing virally infected or malignant cells. NK cells express
activation and inhibitory receptors. Healthy host cells deliver
equanimous activating and inhibitory signals to the NK cells. As
a result, the healthy host cells are spared from killing. Cancer
cells often lose the cell surface ligands that transmit inhibitory
signals, and thus, NK cells receive only activating signals, leading
to malignant cell killing. A surrogate mechanism of cytotoxicity
occurs when a virally infected or a damaged cell expresses

increased cell surface ligands that bind to NK cell activating
receptors. NK cells can also recognize antibody-coated target
cells owing to their expression of CD16/FcγRIIIa that binds
to the Fc region of the IgG1 antibody, leading to antibody-
dependent cell-mediated cytotoxicity (ADCC). NK cells lyse
their targets by secreting cytolytic enzymes like perforin and
granzyme. They also induce apoptosis via FAS and TNF- related
apoptosis inducing ligand signaling induction in tumor cells.
They secrete inflammatory cytokines like IFN-γ, TNF-α and IL-6
that facilitate the development of anti-tumor immune responses
(55, 56).

A landmark study suggested that patients with decreased NK
cell function exhibit increased incidence of cancers, indicating
the role of NK cell function in controlling cancer development
(57). In vitro expansion and transfusion of autologous NK cells
in cancer patients was shown to be well-tolerated, but proved
to be of no major clinical benefit (58). Later studies focused on
treating cancers with adoptively transferred allogenic NK cells;
haploidentical NK cells upon transfer did not give rise to graft-
vs.-host disease complications in the recipients. This approach
has resulted in a modest clinical success (59).

Some of the recent clinical studies tested the combination of
cryoablation and allogenic NK cell transfer in patients with solid
cancers. Although the data is preliminary, it demonstrates the
synergistic effect of allogenic NK-cell infusions and cryoablation
as compared to only cryoablation, in terms of clinical response
rates. This beneficial effect has been shown in the patients with
non-small cell lung cancer (NSCLC), hepatocellular and renal cell
carcinomas, indicating the potentiating effect of NK cell therapy
on cryoablation (60–62).

Cytokine Induced Killer (CIK) Cells
CIK cells are a heterogeneous population of cells obtained
from in vitro cultures of cord blood or peripheral blood
mononuclear cells with IFN-γ, anti-CD3 antibody and IL-
2. The CIK population consists a majority of CD3+ CD8+

CD56+ NK-T cells that can recognize and kill cancer cells in a
major histocompatibility complex (MHC)-independent manner,
similar to NK cells. (63).

Repeated infusions of autologous CIK cells improved
progression-free and overall survival as compared to cytokine
treatments in patients with metastatic renal carcinoma (64).
Triple-negative breast cancer patients that received CIK therapy
in addition to chemotherapy exhibited improved rates of disease
free and overall survivals (65). Similar results were also observed
in a phase III clinical trial of patients with hepatocellular
carcinoma (66).

Adoptive transfer of co-cultured DC-CIK cells were
tested in combination with cryoablation in patients with
metastatic hepatocellular carcinoma. Patients who received
cryo-immunotherapy exhibited improved survival outcomes
in comparison to patients who received only cryoablation or
DC-CIK immunotherapy (67). Similar results were obtained
in patients with metastatic pancreatic cancer (68). A triple
combination regimen of cryoablation, chemotherapy and DC-
CIK immunotherapy in metastatic NSCLC patients significantly
improved survival outcomes as compared to patients who
received other treatment regimens (cryo-immunotherapy,
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chemo-immunotherapy, cryo-chemotherapy, and only
chemotherapy) (69). These clinical studies provide us with
a definitive evidence of the enhancement in the therapeutic
outcome by the inclusion of CIK immunotherapy along
with cryoablation.

γ δ-T Cells
These are a unique subset of T-cells with T-cell receptors (TCRs)
composed of γ and δ chains, and recognize their ligands in
a HLA/MHC-independent manner. They also express NK cell
receptors like FcγR-III capable of mediating ADCC, and NKG2D
capable of recognizing MHC-class I-related proteins and UL-16
binding proteins (70).

The Vγ9Vδ2-T cell population is the predominant subset
of the γδ-T cell repertoire found in human peripheral blood,
and commonly employed for γδ-T adoptive transfer treatments
in clinical trials (71, 72). These cells directly recognize
phosphorylated non-peptidic metabolites that are the byproducts
of sterol and isoprenoid biosynthetic pathways, without the
need for any intracellular processing and HLA-presentation.
The increased phosphorylated antigen (pAgs) production by
transformed or malignant cells is sufficient to activate Vγ9Vδ2-
T cells, which does not occur in physiological conditions (71, 73).
These cells can be extracted from patients and multiplied in vitro
by utilizing synthetic pAgs (74) or anti-γδ TCR antibodies (75).
Upon activation in vivo either by pAgs or by NKG2D-binding
stress ligands, γδ-T cells respond rapidly akin to innate immune
cells. Apart from exhibiting cytotoxic abilities similar to NK
cells, they also can activate NK cells. The most intriguing of all,
they acquire professional antigen presentation capabilities upon
activation (72, 76, 77).

Vγ9Vδ2-T cells isolated from patients and expanded ex vivo
exhibit excellent anti-tumor properties in vitro. Adoptive transfer
into patients with renal cell carcinoma (78) or NSCLC (79) or
other solid tumors (80) show safety and tolerability profiles, but
no objective clinical responses. The disparity between in vitro
and in vivo activities could be due to immuno-suppressive tumor
microenvironment or a polarization from an anti-tumorigenic
to a pro-tumorigenic cell type upon in vivo transfer (70, 81). It
is worthwhile exploring the mechanisms of immunosuppression
impinged on adoptively transferred Vγ9Vδ2-T cells in patients,
and the possibilities to revert those mechanisms, as these cells
already show a promise in pre-clinical settings (82, 83).

Often, tumors down regulate their MHC expression as an
adaptation from evading immune recognition (84, 85). γδ-T
cells due to their unique abilities, appear as ideal candidates
for combating tumors in combination with therapies like
cryoablation. It is encouraging to note that a recent study
demonstrated that increased intra-tumoral infiltration of γδ-T-
cells correlates with a better prognosis in a variety of human
cancers (86). Cryoablation by inducing inflammation would
create a suitable milieu for the adoptively transferred γδ-T cells
to function effectively in the tumor bearing patients.

Currently, many clinical studies are underway to test the
potential of various adoptive cell transfers along with cryoablative
regimens as listed in Table 1, and improvement in the treatment
outcomes are highly anticipated.

Immune Checkpoint Inhibitors
Following T-cell activation, an intracellular protein cytotoxic
T-lymphocyte associated protein-4 (CTLA-4) is re-localized to
the cell surface, and binds more avidly to CD80/86 molecules
on APCs out competing CD28, effectively dampening the
immune response. Thus, CTLA-4 plays the role of an immune
checkpoint inhibitor, preventing a sustained immune response,
and avoiding normal tissue injury. Genetic polymorphisms
in CTLA-4 have been shown to be linked to a number of
autoimmune diseases in humans, indicating its pivotal role
in maintaining immune homeostasis (87). Another checkpoint
inhibitor is programmed cell death-1 (PD-1), which is expressed
on CD4−CD8− thymocytes during T-cell development, CD4+

and CD8+ T-cells, B-cells and monocytes post-activation (87).
PDL-1 and PDL-2 are the ligands of PD-1. PDL-2 exhibits
a restricted expression on APCs, whereas PDL-1 is expressed
on a variety of stromal and hematopoietic cell types. PDL-1
is also expressed by multiple myeloma, renal cell carcinoma,
breast, ovarian, and pancreatic cancer types as well as many
others. Engagement of PD-1+ T-cells with its ligands causes
suppression of T-cell effector mechanisms, and induces T-cell
exhaustion, thereby successfully counteracting the anti-tumor
T-cell response (88, 89).

Tumor neo-antigen specific T-cells can be unleashed by
antagonizing CTLA-4 and PD-1 checkpoints through blocking
antibodies (90). Ipilimumab for CTLA-4, nivolumab and
pembrolizumab for PD-1 are the commonly employed antibodies
in pre-clinical and clinical settings (91).

Application of checkpoint blockers could be complemented
with cryoablation in order to achieve durable therapeutic
responses. In a murine prostate cancer model, all the mice
bearing secondary tumors died despite receiving CTLA-4
blockade or cryoablation as a monotherapy; intriguingly, 44%
of the mice survived when both therapies were given in
combination (92). In a B16-OVA melanoma tumor model,
CTLA-4 combined with cryoablation rescued 80% of the
mice post tumor re-challenge as opposed to 40% only post
cryoablation (93). These pre-clinical studies unambiguously
exhibit a superior therapeutic outcome when cryoablation is
applied along with checkpoint inhibitors. Preliminary data from
pilot studies conducted in breast cancer and melanoma patients
that received cryoablation and checkpoint inhibitors showed a
good tolerability and a promise of efficacy (94, 95). Currently,
various clinical trials are ongoing testing the potential of
cryoablation and checkpoint blockade synergy in various cancers
(Tables 1, 2).

ALLIANCE OF CRYOABLATION AND
IMMUNOTHERAPY: CRITICAL ASPECTS
TO BE ADDRESSED TO HARNESS THE
SYNERGISTIC THERAPEUTIC POTENTIAL

By cryoablating a local tumor, the immunogenic tumor antigens
are released as a result of necrotic cell death, eliciting anti-
tumor immune responses (96). However, cryoablation may
trigger apoptosis, in particular at the periphery of the ablation
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TABLE 1 | Cryoablation combined with adoptive cell immunotherapies.

NCT ID Title Type of immune therapy

combined with cryoablation

Phase

NCT02423928 Phase I clinical trial of cryoimmunotherapy against prostate Cancer (CryoIT) DC adoptive transfer + Ipilimumab Phase I

NCT03325101 Dendritic cell therapy after cryosurgery in combination with pembrolizumab in treating

patients with stage iii-iv melanoma that cannot be removed by surgery

DC adoptive transfer +

Pembrolizumab

Phase I/II

NCT03035331 Dendritic cell therapy, cryosurgery, and pembrolizumab in treating patients with

non-hodgkin lymphoma

DC adoptive transfer +

Pembrolizumab

Phase I/II

NCT02849366 Combination of cryosurgery and NK immunotherapy for recurrent sarcoma NK cell adoptive transfer Phase I/II

NCT02849327 Combination of cryosurgery and NK immunotherapy for recurrent pharyngeal cancer NK cell adoptive transfer Phase I/II

NCT02843802 Combination of cryosurgery and NK immunotherapy for advanced liver cancer NK cell adoptive transfer Phase I/II

NCT02843581 Combination of cryosurgery and NK immunotherapy for advanced esophageal cancer NK cell adoptive transfer Phase I/II

NCT02843815 Combination of cryosurgery and NK immunotherapy for advanced non-small cell lung

cancer

NK cell adoptive transfer Phase I/II

NCT02844335 Combination of cryosurgery and NK immunotherapy for advanced breast cancer NK cell adoptive transfer Phase I/II

NCT02849353 Combination of cryosurgery and NK immunotherapy for recurrent ovarian cancer NK cell adoptive transfer Phase I/II

NCT02849314 Combination of cryosurgery and NK immunotherapy for recurrent laryngeal cancer NK cell adoptive transfer Phase I/II

NCT02849379 Combination of cryosurgery and NK immunotherapy for recurrent tongue cancer NK cell adoptive transfer Phase I/II

NCT02849340 Combination of cryosurgery and NK immunotherapy for recurrent cervical cancer NK cell adoptive transfer Phase I/II

NCT02843607 Combination of cryosurgery and NK immunotherapy for advanced kidney cancer NK cell adoptive transfer Phase I/II

NCT03501056 Study of activated cytokine-induced killer armed with bispecific antibody for

advanced lung cancer

CIK cell adoptive transfer +

CD3-MUC-1 bispecific antibody

Phase II

NCT03484962 Study of activated cytokine-induced killer armed with bispecific antibody for

advanced liver cancer

CIK cell adoptive transfer +

CD3-MUC-1 bispecific antibody

Phase II

NCT03509298 Study of activated cytokine induced killer armed with bispecific antibody for advanced

pancreatic cancer

CIK cell adoptive transfer +

CD3-MUC-1 bispecific antibody

Phase II

NCT03540199 Study of activated cytokine-induced killer armed with bispecific antibody for

advanced kidney cancer

CIK cell adoptive transfer +

CD3-MUC-1 bispecific antibody

Phase II

NCT03524274 Study of activated cytokine-induced killer armed with bispecific antibody for

advanced colorectal cancer

CIK cell adoptive transfer +

CD3-MUC-1 bispecific antibody

Phase II

NCT03554395 Study of activated cytokine-induced killer armed with bispecific antibody for

advanced gastric cancer

CIK cell adoptive transfer +

CD3-MUC-1 bispecific antibody

Phase II

NCT03183219 Safety and efficiency of γδ T cell against liver cancer γδ T cell adoptive transfer Phase I/II

NCT03183232 Safety and efficiency of γδ T cell against lung cancer γδ T cell adoptive transfer Phase I/II

NCT03180437 Safety and efficiency of γδ T cell against pancreatic cancer γδ T cell adoptive transfer Phase I/II

NCT03183206 Safety and efficiency of γδ T cell against breast cancer γδ T cell adoptive transfer Phase I/II

NCT02380443 Increased frequency of allostim® immunotherapy dosing in combination with

cryoablation in metastatic colorectal cancer

Adoptive transfer of activated

allogenic Th1 memory cells

expressing high levels of type 1

inflammatory cytokines,

immunomodulatory molecules, and

coated with CD3/CD28 microbeads

Phase II

NCT01741038 AlloStim® in-situ vaccine in pre-treated metastatic colorectal cancer Adoptive transfer of activated

allogenic Th1 memory cells

expressing high levels of type 1

inflammatory cytokines,

immunomodulatory molecules, and

coated with CD3/CD28 microbeads

Phase II/III

zone where sub-lethal temperatures may be achieved, leading
to anergy and clonal deletion. Factors influencing the balance
between immunogenic necrosis and immunotolerant apoptosis
induced upon cryoablation are ill-defined. Moreover, recent
clinical studies report a fraction of patients that experience
local tumor progression despite cryoablation, indicating the
inadequacy of the local ablation in these patients (97, 98). Thus,
it is critical to investigate the various aspects that are responsible
to generate optimal local tumor control and anti-tumor immune

responses by cryoablation. The aspects to be probed into include:
the type of tumor (primary vs. metastasis) and the volume
of tumor to be ablated, temperature, duration and number of
freeze-thaw cycles, optimal number of ablations (one vs. multiple
tumors and spacing between ablations), and to characterize the
molecular pathways that are triggered by cryoablation in tumor
and surrounding healthy tissues located within the treatment
zone. It has been convincingly shown that despite the application
of same ablation protocol on different organs, the zone of ablation
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TABLE 2 | Cryoablation combined with immune checkpoint inhibitors.

NCT ID Title Type of immune therapy

combined with cryoablation

Phase

NCT02833233 A study of pre-operative treatment with cryoablation and immune therapy in early

stage breast cancer

Ipilimumab and nivolumab Not applicable

NCT03546686 Peri-operative ipilimumab + nivolumab and cryoablation vs. standard care in women

with triple-negative breast cancer

Ipilimumab and nivolumab Phase II

NCT02489357 Pembrolizumab and cryosurgery in treating patients with newly diagnosed,

oligo-metastatic prostate cancer

Pembrolizumab Not applicable

NCT02626130 Pilot study of presurgical tremelimumab with or without cryoablation in patients with

metastatic renal cell carcinoma

Tremelimumab Phase I

NCT03189186 Phase-I Trial of pembrolizumab and percutaneous cryoablation combination followed

by nephron-sparing surgery or cytoreductive nephrectomy in locally advanced and

metastatic renal cell carcinomas

Pembrolizumab Phase I

NCT02821754 A pilot study of combined immune checkpoint inhibition in combination with ablative

therapies in subjects with hepatocellular carcinoma (hcc) or biliary tract carcinomas

(btc)

Tremelimumab and durvalumab Phase II

NCT03457948 Pembrolizumab and liver-directed therapy in treating patients with well-differentiated

neuroendocrine tumors and symptomatic and/or progressive liver metastases

Pembrolizumab Phase II

differs from organ to organ due to their intrinsic attributes
(99, 100). Hence, optimization of all the above listed parameters
should be performed for each tissue or organ to be treated
by cryoablation.

Systemic immune responses induced by local tumor
cryoablation, in most cases, is not of magnitude enough to cause
regression of untreated distant tumors. However, the systemic
immune responses generated by cryoablation can be exploited
for the application of various immunotherapies (Figure 2).
Checkpoint inhibitors such as anti-CTLA-4, anti-PD-L1, and
anti-PD-1 combined with cryoablation appear particularly
appealing. Other checkpoint inhibitors against molecules like
Tim-3, Vista, Lag-3, TIGT, CD276, and BTLA should also
be tested in combination with cryoablation (101). Moreover,
immune agonistic antibodies directed at molecules such as CD27,
CD40, OX40, 4-1BB, and ICOS should also be experimented
(101, 102). Various immunotherapies must be screened in
combination with cryoablation on different tumor pre-clinical
models in order to perceive which labyrinth combinations will
yield the best outcome for each tumor type. Some facets of crucial
importance to be delved into are: (a) the optimal dosage of each
immunotherapy, (b) the ideal route of administration, and (c) the
right timing or scheduling of each treatment to achieve maximal
anti-tumor effects, while minimizing treatment toxicities.

Despite the beneficial effects of systemically applied
immunotherapies, many of them have their associated toxicities
due to the systemic disruption of immune homeostasis.
If a treatment consists of one or more immunotherapies
administered systemically along with local cryoablation, it
could lead to toxicity due to the cumulative toxic off-target
effects of each therapy. An alternative method of therapy highly
promising is to apply both cryoablation and immunotherapy
in a local manner, with an aim of achieving a systemic
abscopal effect. Local application will empower the clinicians
to exercise various immunotherapies in combination, while
evading toxicities. The idea here is that the locally initiated
anti-tumor immune responses will disseminate systemically

to regress the distant untreated tumors (103, 104). A key
aspect to be evaluated is whether to restrict multiple rounds
of local immunotherapy to a single tumor site or to deliver
each round of therapy to a different tumor site. Although
preliminary, encouraging data from patients demonstrated that
by treating the primary tumors with cryoablation combined
with intratumoral injections of anti-CTLA4 and anti-PD-1,
distant metastasized tumors exhibited regression (105). Future
cancer treatments might constitute an application of both local
and systemic immunotherapies alongside cryoablation, in order
to minimize the toxicities while enhancing the anti-tumor
immune responses.

Tumors that have a low mutational burden and are non-
immunogenic are often referred to as cold tumors (106). Local
delivery of cryo-immunotherapy might not be sufficient to
generate distant abscopal anti-tumor effects. In such cases, there
is a need for an increased exploration of adoptive CIK cell,
NK cell, and γδ-T cell immunotherapies in combination with
cryoablation. These alternatives have been less explored in solid
cancers as opposed to the adoptive transfers of chimeric antigen
receptor (CAR) T-cells and tumor immune infiltrating T- cells
(TILs). TILs have an obligation of MHC/HLA restriction, which
limits their functional ability when the tumor cells downregulate
MHC expression (85, 107). CARs, although being not MHC
restricted, require a homogenous expression of the targeted
tumor antigen on the entire tumor cell population, a prerequisite
not met in most cases, unlike hematologic neoplasms (108).
The anti-tumor functions of CIK cells, NK cells, and γδ-T cells
are neither curtailed by MHC downregulation nor by the lack
of homogenous antigen expression on tumors. Thus, these cell
types present as attractive and contemporary alternatives to
be considered into the treatment planning in future. Further
research is required to identify the conditions that make these
cell populations exert their anti-tumoral capacities at their
optimum in vivo, and then coalesce with cryoablation modality
to reap better objective clinical responses than the currently
available treatments.
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FIGURE 2 | Cryo-immunotherapy: the patient with metastases is treated with local cryoablation of one of them combined with systemic immunotherapies. (A)

Administration of low dose toll like receptor (TLR) agonists will cause the activation and maturation of DCs. (B) Cryoablation of a tumor induces tumor necrosis and

release of tumor antigens into the surrounding milieu, which are taken up by mature DCs located near the tumor or TDLN. These DCs present tumor antigens to naive

T-cells in the TDLN in the presence of agonistic antibodies (for example, CD27) leading to enhanced activation and differentiation into effector T-cells. (C) The effector

T-cells thus generated will migrate to the cryoablated tumor site encountering the tumor cells and DCs presenting tumor antigens on their surface MHC molecules.

Introduction of checkpoint inhibitors (for example, anti-CTLA-4 and anti-PD-1) will allow the T-cells to execute tumor cell killing without being inhibited by the

checkpoint signaling. Eventually, the effector T-cells with blocked checkpoint molecules will also migrate to the distant metastasized tumor sites, leading to the

regression of metastases. TLR, toll like receptor; DC, dendritic cell; TDLN, tumor draining lymph node; TCR, T-cell receptor; MHC, major histocompatibility complex.

The regimen of cryoablation and the combinatorial choice
of immunotherapies should be personalized with respect to
the individual patient’s constitution. The two key components
to be considered are the tumor mutational burden with
its corresponding immunogenicity and the patient’s immune
constitution. Immune signatures vary across patient populations.
For example, due to a difference in the immunogenetic
constitution, one patient treated with a cryo-immunotherapy
protocol might generate an optimal systemic anti-tumor immune
response, and another might generate a sub-optimal or in
the worst cases, a pro-tumorigenic response. Therefore, to
address the problem of inter-patient variability, blood and
tissue samples should be analyzed in-depth for their overall
immune constitution prior and at different time points post
treatment, and for the corresponding changes, if any, in the
systemic and locoregional immune make-up post treatment.
This will provide a peek into the kind of immune infiltrate
that congregates at the tumor site as a response to a specific
therapy delivered. Besides, tumors are heterogeneous and exhibit
different clonal evolution patterns within a patient during disease
progression (109). Hence, differences may exist across tumors
lesions (intra-patient variability) and a treatment, which works
on a group of metastases, may prove to be innocuous for
other lesions. Thus, tumor biopsies should be taken at every

treated site (and in lesions evading treatment) at the time
of cryoablation to account for biologic variability and adapt
subsequent treatments accordingly.

In conclusion, the use of cryoablation as an in vivo
vaccination tool has far-reaching implications beyond the
treatment of local tumors. Owing to its ability to elicit anti-
tumor immune responses and occasional abscopal regression
of tumor metastases, cryoablation combined with targeted
immunotherapies could evolve as the best modus operandi to
treat the patients with advanced tumor metastases. Meticulous
efforts to determine the optimal conditions for cryoablation in
the context of generating an effective immune response, along
with identifying its ideal immunotherapy consorts are the need
of the hour. Eventually, refining the cryo-immuno regimen to a
crux where it will be tailor made for each patient should be a part
of our future endeavors to achieve improved treatment outcomes
for cancer patients.
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