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Abstract: Although pancreatic neuroendocrine neoplasms (PNENs) are relatively rare tumors, their
number is increasing with advances in diagnostic imaging modalities. Even small lesions that are
difficult to detect using computed tomography or magnetic resonance imaging can now be detected
with endoscopic ultrasound (EUS). Contrast-enhanced EUS is useful, and not only diagnosis but also
malignancy detection has become possible by evaluating the vascularity of tumors. Pathological
diagnosis using EUS with fine-needle aspiration (EUS-FNA) is useful when diagnostic imaging
is difficult. EUS-FNA can also be used to evaluate the grade of malignancy. Pooling the data of
the studies that compared the PNENs grading between EUS-FNA samples and surgical specimens
showed a concordance rate of 77.5% (κ-statistic = 0.65, 95% confidence interval = 0.59–0.71, p < 0.01).
Stratified analysis for small tumor size (2 cm) showed that the concordance rate was 84.5% and
the kappa correlation index was 0.59 (95% confidence interval = 0.43–0.74, p < 0.01). The evolution
of ultrasound imaging technologies such as contrast-enhanced and elastography and the artificial
intelligence that analyzes them, the evolution of needles, and genetic analysis, will further develop
the diagnosis and treatment of PNENs in the future.

Keywords: endoscopic ultrasound; pancreatic tumor; pancreatic neuroendocrine neoplasms

1. Introduction

Pancreatic neuroendocrine neoplasms (PNENs) are relatively rare tumors that account
for 2–3% of all pancreatic tumors. However, the number of reported cases has been
increasing, mainly because of the advances in various diagnostic imaging modalities.
Among them, endoscopic ultrasound (EUS) has a superior sensitivity for detecting PNENs
compared with computed tomography (CT) and magnetic resonance imaging (MRI). With
its high resolution, and when performed by experienced hands, EUS can detect focal
lesions as small as 2–5 mm [1]. Tissue acquisition using EUS with fine-needle aspiration
(EUS-FNA) is essential for the diagnostic and treatment decisions. Here, we review the
current literature regarding the role of EUS in the diagnosis of PNENs. Since this study
focuses on diagnosis, it does not include interventional EUS, such as EUS-ablation.

2. Types of EUS

EUS, in which the tip of the endoscope contains a high-frequency transducer, provides
high-resolution images of the pancreaticobiliary region. There are two types of scope:
radial scanning (RS) and curved linear array (CL). The wide 360◦ scanning range of an RS
scope makes it easy to grasp relationships with surrounding organs and blood vessels. It
is comparatively easier to visualize imaging in affigurelignment with the organ axis [2].
By contrast, the scanning range of the CL scope is narrow (180◦), and it is difficult to align
with the organ axis. However, a study reported the superiority of the overall imaging

Diagnostics 2021, 11, 316. https://doi.org/10.3390/diagnostics11020316 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-2136-4703
https://doi.org/10.3390/diagnostics11020316
https://doi.org/10.3390/diagnostics11020316
https://doi.org/10.3390/diagnostics11020316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11020316
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/2075-4418/11/2/316?type=check_update&version=3


Diagnostics 2021, 11, 316 2 of 19

capability of the CL scope compared with the RS scope for the pancreaticobiliary region [3].
The CL scope was superior in delineating the pancreatic head–body transition region, the
area from the hepatic portal region to the superior bile duct, and the vascular bifurcation.
The RS scope was superior in delineating the major duodenal papilla and the long axis of
the bile duct/gallbladder. In addition, the CL scope can be used to collect tissue samples.
In a pancreatic neuroendocrine neoplasm (PNEN) examination, the CL scope may be better
for diagnostic imaging for tissue collection. The RS scope can visualize the long axis of
the organ, and images similar to abdominal ultrasound, CT, and MRI can be obtained;
therefore, it is necessary to use them on a case-by-case basis.

3. EUS for Detecting PNENs

EUS enables detailed observation of the entire pancreas with high tissue resolution,
without being affected by the gastrointestinal tract or subcutaneous fat (Figure 1a). In a
systematic review, Puli et al. reported that EUS had a sensitivity of 87.2% and a specificity
of 98.0% when used for the detection of PNENs [4]. Manta et al. reported that CT failed to
detect 68.4% of PNENs < 10 mm and 15% of PNENs ≤ 20 mm in diameter [5]. Moreover,
it has been reported that the sensitivity of CT is reduced for small lesions < 1 cm and
that 91% of PNENs that are difficult to detect using multidetector-row CT can be detected
with EUS [6]. James et al. reported in a meta-analysis that preoperative EUS consistently
increased the overall PNEN detection rate by >25% after a CT scan, with or without
additional investigative modalities such as MRI or ultrasound [7]. Thus, EUS is an essential
modality for the detection of small PNENs.
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Figure 1. (a) B-mode endoscopic ultrasound (EUS): a circular hypoechoic mass is seen in the body
of the pancreas (yellow arrow). (b) Contrast-enhanced EUS: the mass shows early enhancement
compared with the surrounding pancreatic parenchyma (yellow arrow).

The role of EUS surveillance has been controversial in recent years. PNENs can occur
sporadically or as part of the hereditary multiple tumor syndromes: von Hippel-Lindau
(VHL) disease and multiple endocrine neoplasia type 1 (MEN1). MEN1 or VHL patients
with a PNEN may undergo imaging of the pancreas every 6 to 12 months to assess the
growth rate of the tumor. Concerning the radiation risk in younger patients, EUS and MRI
are preferred. In patients with MEN1, the superiority of EUS has been reported for the
detection of PNENs [8–11]. However, Daskalakis et al. reported that MRI is better than
EUS for the detection and subsequent surveillance of MEN1-related PNENs larger than
10 mm and it seems to be cost-effective [9]. Kappelle et al. showed that small PNENs in
patients with MEN1 grow more slowly than previously suggested. The necessity of EUS
surveillance for MEN1 patients with only small asymptomatic PNENs may be reduced [12].
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4. Precautions for EUS in Functional PNENs

Nonfunctional PNENs are often asymptomatic and undetected until the tumors have
grown large enough to cause a mass effect or until they metastasize. However, because
functioning PNENs secrete hormones that lead to symptoms, their presence is suspected
earlier, and a diagnosis is often made when the lesions are small. Functioning tumors
comprise 34.5% of all PNENs [13]. Insulinomas are the most common functional tu-
mors (20.9%), followed by gastrinomas (8.2%), glucagonomas (3.2%), vasoactive intestinal
peptide-producing tumors (0.6%), and somatostatinomas (0.3%). Insulinomas tend to be
smaller than other functioning PNENs because of the dramatic clinical syndrome caused
by insulin secretion. Insulinomas are usually small at diagnosis, with 90% of tumors <
2 cm in diameter and 40% < 1 cm [14]. Most insulinomas occur in the pancreas, and
these tumors are evenly distributed throughout the pancreatic head, body, and tail [15].
Approximately 2–10% of patients with insulinomas have multiple tumors, particularly
those with MEN1 [14,16]. Thus, it is important to evaluate the entire pancreas in detail
when observing insulinomas with EUS. Although insulinomas are usually sporadic, they
account for 10–30% of the functioning PNENs in patients with MEN1. MEN1 coexists in
4–5% of insulinomas [15].

Gastrinomas often arise in the gastrinoma triangle, an area bounded by the junctions
of the cystic duct and the common bile duct superiorly, the second and third portions of the
duodenum inferiorly, and the neck and body of the pancreas medially [14]. They are more
common in the duodenum than in the pancreas. Approximately 80% of sporadic lesions
and 90% of lesions associated with MEN1 originate from the duodenum. Previously, the
pancreas was believed to be the most common location; however, many of these masses
may have been peripancreatic nodal metastases from small duodenal tumors. Pancreatic
gastrinomas have an average diameter of 3–4 cm, and most are located in the pancreatic
head. Duodenal gastrinomas are usually < 1 cm in diameter and are often multicentric,
especially in patients with MEN1 [14]. Under EUS, it is necessary to carefully observe
not only the pancreatic head but also the duodenal wall. Although most gastrinomas
sporadically arise, they are the most common functioning PNENs in patients with MEN1
(20–25% of all gastrinomas occur in these patients).

As mentioned above, because PNENs and MEN1 are related, we must not forget
to check for the coexistence of MEN1 in PNEN patients. Examples of multiple NENs
associated with MEN-1 from our department are shown in Figure 2.
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hancement is seen in the tail of the pancreas (red arrow), but there are no other obvious lesions. (b) 
Diffusion-weighted magnetic resonance imaging (MRI): the mass in the pancreatic tail shows re-
duced diffusion. (c) Endoscopic ultrasound (EUS): in addition to the mass (☆) revealed by 
CT/MRI, many small hypoechoic masses are observed (white arrow). (d,e) Resected specimen: the 
main lesion (☆) is an 11 mm neuroendocrine neoplasm (NEN) G1, but multiple tumors with diam-
eters of 1–3 mm are observed in the surrounding pancreas (white and yellow arrow) (20×). They 
are multiple NENs associated with multiple endocrine neoplasia type 1 (MEN-1). 
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Figure 2. (a) Contrast-enhanced computed tomography (CT): a mass lesion with early hyperen-
hancement is seen in the tail of the pancreas (red arrow), but there are no other obvious lesions. (b)
Diffusion-weighted magnetic resonance imaging (MRI): the mass in the pancreatic tail shows reduced
diffusion. (c) Endoscopic ultrasound (EUS): in addition to the mass (I) revealed by CT/MRI, many
small hypoechoic masses are observed (white arrow). (d,e) Resected specimen: the main lesion (I)
is ran 11 mm neuroendocrine neoplasm (NEN) G1, but multiple tumors with diameters of 1–3 mm
are observed in the surrounding pancreas (white and yellow arrow) (20×). They are multiple NENs
associated with multiple endocrine neoplasia type 1 (MEN-1).

5. Role of EUS Elastography

Elastography measures the stiffness of the target lesion. Various types of elastogra-
phy devices utilize different mechanisms. In the clinical setting, strain and shear wave
elastography are mainly used for pancreatic diseases. The evaluation methods of strain
elastography are classified into color pattern diagnosis, strain ratio (SR), and histogram
analysis. Most of the reports so far have been on strain elastography, and there are still few
reports on shear wave elastography [17]. The elastography pattern of PNENs is described
as a homogeneous blue [18]. When comparing the strain ratio of a mass over the normal
surrounding pancreatic parenchyma, malignant pancreatic masses and neuroendocrine
tumors produce higher SR than inflammatory masses and normal parenchyma [19,20]. In
one prospective study including six patients with a PNEN, the SR for PNENs was 56.73,
higher than the SR of 17.41 seen in pancreatic adenocarcinoma [21]. In one study including
malignant and benign PNENs, 67% sensitivity and 71% specificity were observed, with a
malignant tumor SR cutoff of 4.4 [22]. However, reports on PNENs are still limited, and
there are some problems in elastography in the diagnosis of pancreatic tumors [17]. Color
pattern diagnosis is a qualitative method that depends on the operator. The cut-off values
for each method and the definition of malignant/benign tumors for SR were different in
each article. Shear wave elastography may overcome these limitations related to repro-
ducibility and intra- and inter-observer variability because the hardness of the target is
measured without a comparison area.



Diagnostics 2021, 11, 316 5 of 19

6. Role of Contrast-Enhanced EUS (CE-EUS)

CE-EUS is useful for the evaluation of pancreatic disease because it permits the
observation of the hemodynamics of masses in real time. This technique is based on the
fact that microbubbles in contrast agents are disrupted by ultrasound waves, producing
signals that are detected by the ultrasound imager. Because typical PNENs have abundant
blood vessels, these tumors show hypervascular contrast in the early phase, persisting
until the delayed phase (Figure 1b). CE-EUS has a high sensitivity (78.9–95.1%) and a high
specificity (98.7%) in the identification of PNENs [23,24].

Ishikawa et al. reported that heterogeneous ultrasonographic texture indicates a
malignant disease [23]. Furthermore, Palazzo et al. reported that contrast-enhanced
harmonic EUS (CH-EUS) can accurately predict aggressive tumor behavior by evaluating
the heterogeneous patterns of PNENs, with a sensitivity of 86% and a specificity of 96% [25].
Takada et al. reported that CH-EUS with time-intensity curve analysis is useful for PNEN
diagnosis and grading [26].

CE-EUS plays an important role in finding a specific site within a lesion that would be
more suitable for EUS-FNA. Identification of hypervascular sites in such lesions may help
avoid sampling rich fibrous areas [27].

7. Artificial Intelligence Analysis for Endoscopic Ultrasonography

There are reports using artificial intelligence (AI) for the EUS diagnosis of pancreatic
tumors. As per a recent review, there have been seven reports so far, and the diagnostic abil-
ities in these reports were approximately 85–95% [28]. However, only one study included
PNENs [29]. CE-EUS and elastography have limitations related to reproducibility and intra-
and inter-observer variability, but AI may be able to overcome these problems [30]. When
using AI for the diagnosis of diseases, many images are required. Pancreatic tumors such
as PNENs, acinar cell carcinoma, and mucinous cystic neoplasms are rarer than pancreatic
ductal carcinoma and IPMN. Many EUS images of rare diseases are required to train AI
to learn EUS diagnosis, but it is difficult to collect these images. However, AI will be an
essential technique to help doctors to improve on their diagnostic ability using endoscopy
and EUS in the near future.

8. Features of EUS Findings in PNENs

On EUS examination, PNENs typically appear as well-rounded, hypoechoic lesions
with a homogeneous pattern and clear regular margins (Figure 1a,b). However, because
PNENs grow expansively, they may cause cystic degeneration and calcification as their
size increases. In these cases, PNENs often presented a heterogeneous pattern (Table 1).

Table 1. Imaging findings and differential diseases of pancreatic neuroendocrine neoplasms (PNENs).

Findings Differential Disease

PNENs (G1, G2)

Well-rounded, hypoechoic lesions
with a homogeneous pattern and

clear regular margins

SCN (solid type), SPN,
metastic tumor, IPAS

Cystic degeneration SCN (macrocystic type), SPN
Calcification SPN

PNENs (G3, NEC)

Unclear irregular margins,
hypovascular, and internal necrosis of

the tumor

Pancreatic adenocarcinoma,
acinar cell carcinoma

Intraductal invasion of the main
pancreatic duct Acinar cell carcinoma

PNEN, pancreatic neuroendocrine neoplasm; SCN, Serious cystic neoplasm; SPN, solid pseudopapil-
lary neoplasm; IPAS, Intrapancreatic Accessory Spleen; NEC, Neuroendocrine Carcinoma.
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8.1. Cystic Degeneration

The most common cause of cystic degeneration is tumor bleeding, whereas tumor
necrosis is rarely the cause. Cystic degeneration is mostly observed in well-differentiated
PNENs. The frequency is 10–17% of all PNENs, and the larger the tumor, the higher the rate
of cystic degeneration [31]. Gaujoux et al. found no association between cystic degeneration
and tumor malignancy [31]. The biological behavior of cystic PNENs is somewhat less
aggressive than that of solid PNENs [32,33]. Cystic degeneration is visualized as a low
absorption area on contrast CT and is recognized as a nonechoic area on B-mode EUS
and as an avascular area on CE-EUS. If the cysts become larger, the imaging findings will
be similar to those of serous cystic neoplasms, and differentiation is necessary [34]. In
EUS diagnosis, it is important to identify the solid tumor part of the cyst margin as a wall
thickening or protrusion. Examples of cystic PNEN images from our department are shown
in Figure 3.
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Figure 3. (a) Contrast-enhanced computed tomography (CT): a cystic lesion is seen on the pancreatic
head. (b) Magnetic resonance imaging: fluid–fluid level formation is shown. (c) B-mode endoscopic
ultrasound (EUS): a cystic lesion with fluid–fluid level formation and a thickened wall is seen. (d)
Contrast-enhanced EUS: the wall is hyperenhanced compared with the surrounding pancreatic
parenchyma. (e,f) Resected specimen: neuroendocrine neoplasm G1 (100×).

8.2. Pancreatic Duct Stricture

Large PNENs may press the main pancreatic duct (MPD), resulting in stricture or
obstruction; however, even small PNENs may cause MPD stenosis. It has been reported
that pancreatic duct stenosis is caused not by physical compression by the tumor but by
serotonin-induced stromal fibrosis [35,36]. Massironi et al. reported that CE-EUS does not
show typical contrast-enhancement, that elastography shows a rigid pattern of the lesion,
and that it is difficult to differentiate it from a pancreatic adenocarcinoma or an intraductal
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papillary mucinous neoplasm [37]. Examples of images of PNEN with MPD stenosis from
our department are presented in Figure 4.

Diagnostics 2021, 11, 316 7 of 20 
 

 

Figure 3. (a) Contrast-enhanced computed tomography (CT): a cystic lesion is seen on the pancre-
atic head. (b) Magnetic resonance imaging: fluid–fluid level formation is shown. (c) B-mode endo-
scopic ultrasound (EUS): a cystic lesion with fluid–fluid level formation and a thickened wall is 
seen. (d) Contrast-enhanced EUS: the wall is hyperenhanced compared with the surrounding pan-
creatic parenchyma. (e,f) Resected specimen: neuroendocrine neoplasm G1 (100×). 

8.2. Pancreatic Duct Stricture 
Large PNENs may press the main pancreatic duct (MPD), resulting in stricture or 

obstruction; however, even small PNENs may cause MPD stenosis. It has been reported 
that pancreatic duct stenosis is caused not by physical compression by the tumor but by 
serotonin-induced stromal fibrosis [35,36]. Massironi et al. reported that CE-EUS does not 
show typical contrast-enhancement, that elastography shows a rigid pattern of the lesion, 
and that it is difficult to differentiate it from a pancreatic adenocarcinoma or an intraductal 
papillary mucinous neoplasm [37]. Examples of images of PNEN with MPD stenosis from 
our department are presented in Figure 4. 

 
Figure 4. (a) Contrast-enhanced computed tomography (CT): a mass lesion with early hyperen-
hancement is seen in the pancreatic body (red arrow), but there are no other obvious lesions. (b) 
Magnetic resonance imaging: the main pancreatic duct (MPD) in the pancreatic body is exten-

Figure 4. (a) Contrast-enhanced computed tomography (CT): a mass lesion with early hyperen-
hancement is seen in the pancreatic body (red arrow), but there are no other obvious lesions. (b)
Magnetic resonance imaging: the main pancreatic duct (MPD) in the pancreatic body is extensively
narrowed, and the caudal duct is dilated. (c) Endoscopic ultrasound (EUS): a circular hypoechoic
mass in the pancreatic body. Pancreatic duct stenosis is observed even in the absence of mass. (d–f)
6-mm neuroendocrine neoplasm G1 (red arrow), serotonin positive, with stromal fibrosis (40×). (g,h)
Pancreatic duct stenosis due to stromal fibrosis upstream of the tumor (40×).

8.3. Intraductal Invasion of the MPD

Intraductal growth of PNENs is rare. It has been reported that tumors with intraductal
growth are highly malignant and have a poor prognosis [38]. Intraductal invasion shows
early contrast enhancement, with a decrease during the delayed phase on CT images, and
this pattern helps differentiate pancreatic PNENs from pancreatic ductal adenocarcinomas.
Under EUS, if the tumor extends to the MPD, malignancy must be considered. Acinar
cell carcinomas and solid pseudopapillary neoplasms (SPNs) may also show intraductal
growth, and these tumors may be difficult to differentiate from PNENs.
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9. Features of Imaging Findings in PNEN G3 and Pancreatic Neuroendocrine
Carcinoma (PNEC)

Although there are histopathological differences between PNEN G3 and PNEC, their
imaging findings are similar, and both of these tumors show similarities to normal pan-
creatic cancer (pancreatic ductal carcinoma) and pancreatic acinic cell carcinoma [39]. It
has been reported that tumor blood flow correlates with prognostic factors, and the lower
the vascularity, the more advanced the malignancy [40]. Histologically, the tumor does not
have a capsule and grows invasively. Moreover, the tumor has abundant fibrous stroma,
resulting in hypovascularity. The tumor margins are irregular, unclear, hypovascular, and
there is internal necrosis of the tumor, and the above-mentioned pancreatic duct stenosis
and intraductal extension occur at a high frequency. The necrotic area is recognized as
a nonechoic area on B-mode EUS and as an avascular area on CE-EUS. It is difficult to
distinguish using diagnostic imaging alone, and pathological examination is required.
Examples of PNEN G3 images from our department are shown in Figure 5.
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(c–e) Resected specimen: Ki-67 > 20%, neuroendocrine neoplasm G3 (100×).

10. Tumors That Need to Be Differentiated from PNENs
10.1. SPNs

SPNs are mostly seen in young female patients, and most SPNs have a good prog-
nosis [41]. SPNs usually show characteristics similar to those of PNENs, such as solid
lesions with a round shape and clear borders within the pancreas, cystic degeneration, and
cystic calcification. A study comparing the EUS findings of SPNs and PNENs reported that
more SPNs had a cystic component and more PNENs had hypervascularity [42]. However,
differentiation is often difficult, and pathological diagnosis with immunostaining using
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EUS-FNA is useful for diagnosis [43,44]. Examples of images of PNENs, similar to SPNs
from our department, are presented in Figure 6.
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Figure 6. (a) Contrast-enhanced computed tomography (CT): a tumor (arrow) with calcification components is shown at the
pancreatic head. (b) Endoscopic ultrasound (EUS): a well-defined mass with a heterogeneous appearance and peripheral
rim calcification with posterior acoustic shadowing. (c,d) The imaging findings suggest a solid pseudopapillary neoplasm,
but pathologically, it is a neuroendocrine tumor G1 (100×).

10.2. Serous Cystic Neoplasm (SCN)

As mentioned above, cystic, degenerated PNENs show imaging findings similar to
those of macrocystic-type SCNs. In addition, solid-type SCNs show imaging findings
of hypervascularity and a solid appearance and need to be differentiated from typical
PNENs [34,45]. Nonenhanced CT and MRI with T2-weighted imaging and apparent
diffusion coefficient maps could be helpful for the differentiation because the cystic area
of PNENs shows bleeding, whereas SCNs are different in that they store serous fluid.
However, these tumors are difficult to distinguish using EUS alone.

10.3. Intrapancreatic Accessory Spleen (IPAS)

IPAS is a congenital ectopic spleen that mostly occurs in the pancreatic tail. IPAS
appears as a well-defined circular mass and is hypervascular with a blood flow similar
to that of the spleen [46,47]. Although it is difficult to distinguish IPAS from PNEN with
EUS alone, Bhutani et al. reported that careful observation shows a bridge sign connecting
the lesion and the spleen [48], and Ge et al. reported that EUS-elastography is useful for
distinguishing it from PNEN [49]. In T2-weighted images of superparamagnetic iron oxide
MRI, IPAS has a low signal similar to that of the spleen, thus allowing it to be distinguished
from PNENs. The usefulness of histological diagnosis with EUS-FNA when differentiation
is difficult with diagnostic imaging has been reported [50].

10.4. Pancreatic Metastasis

Metastatic pancreatic tumors are relatively rare, and their imaging findings vary
depending on the primary lesion. Renal cell carcinoma is the most common primary tumor
of pancreatic metastasis. Metastatic pancreatic tumors from renal cell carcinoma become
hypervascular tumors and show imaging findings similar to those of PNENs. Although
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information on the history of renal cell carcinoma is useful, these tumors are difficult to
distinguish using imaging alone, and pathological histological diagnosis is required [51].
Examples of images of metastatic pancreatic tumors of renal cell carcinoma from our
department are presented in Figure 7.
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Figure 7. (a) Contrast-enhanced computed tomography (CT): many lesions with early hyperenhance-
ment are seen in the head, body, and tail of the pancreas (red arrow). (b) Endoscopic ultrasound
(EUS): many small hypoechoic masses are observed (white arrow). (c,d) Resected specimen: multiple
tumors are observed throughout the pancreas (white arrow); they were clear cell carcinomas (400×).
The patient had undergone left radical nephrectomy for renal cell carcinoma eight years ago.

11. Role of EUS-FNA in PNENs

Tissue diagnosis and malignancy diagnosis using EUS-FNA are crucial for PNENs.
Typical neuroendocrine tumors (NETs) need to be differentiated from SCNs, SPNs, and
hypervascular pancreatic metastases. Atypical NETs, G3, and neuroendocrine carcinomas
(NECs) need to be differentiated from normal pancreatic cancer and acinar cell carcinoma.
These discriminations are difficult with diagnostic imaging alone, and tissue diagnosis
plays a crucial role. The sensitivity and specificity of EUS-FNA for the diagnosis of PNENs
are reported to be 73.2–100% and 83.3–93%, respectively [34–37,52–55]. Hijioka et al.
reported that the location of the tumor in the pancreatic head and the presence of rich
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stromal fibrosis negatively affect the sampling adequacy of EUS-FNA [56]. In recent years,
fine-needle biopsy (FNB) needles have been used, which are expected to improve diagnostic
ability [57–63].

11.1. Grading Diagnosis

The grading of PNENs according to the World Health Organization (WHO) patholog-
ical classification (G1, G2, G3, and NEC according to the mitotic index and Ki-67 index)
is essential for determining the treatment strategy. NEC in the WHO 2010 classification
has been subdivided into G3 and NEC according to the WHO 2017 classification [64]. The
treatment differed greatly between G3 and NEC.

In recent years, studies have shown that low-grade neuroendocrine neoplasms with a
small diameter can be followed up without surgery [65,66]. As described above, grading
diagnosis is important for the development of appropriate treatment strategies. The
grading diagnosis requires a Ki-67 labeling index (LI) of the mitotic index. Mitoses were
counted in 50 high-power fields (HPFs, 0.2 mm2) in areas of higher density and expressed
as numbers per 10 HPFs (2.0 mm2). However, it is almost impossible to count in 50 HPFs
with FNA samples, and the Ki-67 proliferation index is usually used in clinical practice. The
concordance rate of the Ki-67 index between PNENs measured from EUS-FNA samples
and surgical specimens was reported to be 54–100% [55,61–63,67–85] (Table 2), whereas a
previous systematic review reported a rate of 83% [86]. Since the details of the data were
unknown in a previous systematic review, we conducted a study by pooling the data of
the studies that compared the Ki-67 LI grades obtained both in EUS-FNA samples and in
surgical specimens. An extensive bibliographical search was performed in PubMed with
the following search terms: “pancreas,” “pancreatic,” “neuroendocrine,” “NET,” “NEN,”
“Ki-67,” “EUS,” and “endoscopic ultrasound” from January 2008 (according to the past
review, the first report that studied cytological and surgical specimen was published in
2008) to October 2020. Additionally, the references of the selected studies and review articles
were manually searched. The search was limited to human studies written in English.

Table 2. Previous reports showing the concordance rates between EUS- fine-needle aspiration biopsy specimens and surgical
specimens.

First Author Year Study
Design

Number of Patients
Analyzed for the

Concordance Rate, n

Ki-67
Concordance

Rate

Mean
Lesion Size

(Range), mm

Percentage of
Functioning

Tumor
Needle

Piani C [67] 2008 Retrospective 18 78–89% a 30 (10–100) 38.9% 22-, or 25-gauge
EUS-FNA needles

Kaklamatos
M [68] 2011 Retrospective 26 54% n.r. n.r. n.r.

Larghi A [69] 2012 Prospective 12 83.3% 16.9 (7–100) 0% 19-gauge EUS-FNA
needles

Hasegawa T
[70] 2014 Retrospective 27 77.8% 28.1 (5–130) 10.3% 25-, or 22-gauge

EUS-FNA needles
Weynand B

[71] 2014 Retrospective 33 57.6% 33 (2–110) n.r. 22-gauge EUS-FNA
needles

Carlinfante
G [72] 2014 Retrospective 53 86.8% 17 (n.r.) n.r.

25-, 19-, or 22-gauge
EUS-FNA or EUS-FNB

needles

Farrell JM
[73] 2014 Retrospective 22 86% 30 (15–82) 24%

25-, 22-, or 19-gauge
needles (details

unknown)

Unno J [74] 2014 Retrospective 19 89.5% 22.3 (7–100) 31.6% 22-gauge EUS-FNA
needles

Sugimoto M
[75] 2015 Retrospective 8 87.5% 25.7 (4.4–10) n.r. 25-, 22-, or 19-gauge

EUS-FNA needles
Fujimori N

[76] 2016 Retrospective 13 69.2% 20.5 (8–67) 13.1% 25-, or 22-gauge
EUS-FNA needles

Díaz Del
Arco C [77] 2016 Retrospective 10 70% 32 (12–120) 20% n.r.

Laskiewicz L
[78] 2018 Retrospective 26 84.6% 21 (8–140) n.r. n.r.

Boutsen L
[79] 2018 Retrospective 57 72% 28.5 (2–110) 18.9% n.r.
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Table 2. Cont.

First Author Year Study
Design

Number of Patients
Analyzed for the

Concordance Rate, n

Ki-67
Concordance

Rate

Mean
Lesion Size

(Range), mm

Percentage of
Functioning

Tumor
Needle

Weiss VL
[80] 2018 Retrospective 49 61% 30 (n.r.) 6.1% n.r.

Hwang HS
[61] 2018 Retrospective 33 75.8% 33 (n.r.) 0% 25-, 22-, or 19-gauge

EUS-FNB needles
Grosse C [81] 2019 Retrospective 15 100% 39 (9–75) 0% n.r.

Di Leo M
[62] 2019 Retrospective 25 84% 21 (n.r.) n.r.

25- or 22-gauge
EUS-FNA or 25-gauge

EUS-FNB needles

Cui Y [82] 2020 Retrospective 37 73% 40 (7–170) 0
25-, 22-, or 19-gauge

needles (details
unknown)

Heidsma CM
[55] 2020 Retrospective 63 81% 13 (n.r.) 14% NA

Kalantri S
[83] 2020 Retrospective 6 b 100% b n.r. (11–70) n.r. 22-gauge needles

(details unknown)

Paiella S [84] 2020 Prospective 77 81.8% 24.5 (n.r.) 11.8% 25-gauge EUS-FNA
needle

Kamata K
[63] 2020 Prospective 23 82.6% 12.8 (n.r.) n.r. 25-gauge EUS-FNB

needle
a: Cut-off values of 2% and 89%. Cut-off values of 2%, 10%, and 78%. b: 11 cases including non-surgical biopsy specimens were reported,
with a concordance rate of 91%. n.r.: not reported. FNA, fine-needle aspiration; FNB, fine-needle biopsy.

We extracted 25 articles comparing the Ki-67 LI grades obtained both in EUS-FNA sam-
ples and in surgical specimens [55,61–63,67–85,87,88]. Among them, Boutsen’s report was
an additional study of Weynand’s report; therefore, Weynand’s report was excluded [71,79].
The number of articles that were graded according to the WHO 2010 or 2017 classifica-
tion and whose detailed classification could be confirmed, or the articles in which the
Ki-67 value was displayed and could be reclassified by us, was 22. Stratified analysis
for tumors ≤ 2 cm was also performed; of the 22 articles, 10 reports showed the indi-
vidual size or details of the classification ≤ 2 cm. Pooling the data of the studies, the
concordance rate was 77.5% and the kappa correlation index was 0.65 (95% confidence
interval (CI) = 0.59–0.71, p < 0.01) (Table 3) [55,61–63,67–70,72–84,87]. The sensitivity of G1
was good at 91.4% (338/370), but it was poor in G2 and G3 at 55.7% and 59.5%, respectively.
The cause of this discrepancy was identified as intratumoral heterogeneity of Ki-67, and
hot spots (areas with the highest fraction of positive tumor cells) were not observed. It is
recommended to count more than 2000 cells to improve the grading diagnosis by EUS-
FNA [89], and the WHO recommends counting more than 500 cells from hot spots [64]. It
has also been reported that increased tumor size may contribute to increased intratumoral
heterogeneity [74,76]. Stratified analysis of small tumor sizes showed that the concordance
rate was 84.5% and the kappa correlation index was 0.59 (95% CI = 0.43–0.74, p < 0.01)
(Table 4) [55,61,62,67,69,73,75–77,81,84]. The concordance rate of < 2 cm is higher, which is
also proof that the larger the tumor size, the higher the intratumoral heterogeneity. On the
contrary, a recent study reported that tumor differentiation and Ki-67 could be determined
by EUS-FNA in only 26.4% and 20.1% of cases, respectively [55]. It is difficult to obtain
enough tissue from a small tumor, which may be resolved using FNB needles.

Table 3. Concordance of PNEN grading between EUS-FNAB specimens and surgical specimens in
pooling data [55,61–63,67–70,72–84,87].

Resected Tumor Grade

EUS-FNAB
Tumor Grade Grade 1 Grade 2 Grade 3 Total

Grade 1 338 88 5 431
Grade 2 32 111 12 155
Grade 3 0 0 23 23

Total 370 199 40 609
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Table 4. Concordance of PNEN grading between EUS-FNAB specimens and surgical specimens in
pooling data with small tumor sizes (2 cm or less) [55,61,62,67,69,73,75–77,81,84].

Resected Tumor Grade

EUS-FNAB
Tumor Grade Grade 1 Grade 2 Grade 3 Total

Grade 1 102 15 0 117
Grade 2 7 23 1 31
Grade 3 0 0 0 0

Total 109 38 1 148

11.2. EUS-FNA for Cystic PNENs

There are limited reports of EUS-FNA for cystic PNENs. The target of the puncture in
cystic PNENs is a solid or cystic component. The cyst fluid was thin and clear, with low
carcinoembryonic antigen (CEA) and amylase levels. Dhaliwal reported that the sensitivity
of EUS-FNA for cystic P-NENs was 62.5%, which required FNA of both the solid and
cystic components [18]. The cyst wall and septations should be targeted with FNA to
maximize cytologic diagnosis [19]. In recent years, the usefulness of EUS-guided needle-
based confocal laser endomicroscopy (nCLE) offering real-time microscopic imaging of
the cyst epithelium providing virtual biopsies with high resolution (1–3.5 µm) has been
reported [90,91]. It has also been reported to be useful in PNENs [92]. In addition, the
efficacy of EUS-guided through-the-needle forceps biopsy (TTNB) for pancreatic cystic
lesions has been reported [93–96]. The micro forceps, which is 0.8 mm in diameter, facilitates
easy passage through a 19-gauge EUS-FNA needle and has a jaw-opening width of 4.3 mm,
allowing for direct pancreatic cyst wall biopsy sampling. It is also possible to measure
ki-67 in the TTNB specimens [97]. A recent study found that the combination of cyst fluid
chemistry and cytology along with TTNB and/or nCLE results in a significantly higher
diagnostic yield in pancreatic cystic lesions than any singular modality, although this was
not statistically significant [98]. However, no large multicenter studies have specialized in
cystic PNENs, even though these are necessary.

11.3. Genetic Analysis in PNENs

There are increasing reports on the use of next-generation sequencing with EUS-FNA
samples in pancreatic tumors [99,100]. Recent studies have reported that alternative length-
ening of telomeres, which are described as prognostic markers for resected PNENs, can
be accurately performed on FNA specimens [101,102]. Genetic analysis of PNENs is also
progressing [103]. A study with PNENs less than 3 cm identified genomic patterns of small
PNENs associated with a different risk for liver metastases [104]. Cejas et al. elaborated
on non-functional PNENs, which can predict the disease’s course and can give informa-
tion on postoperative clinical decisions where enhancer maps that infer gene regulatory
programs were used to classify the nonfunctional PNENs [105]. Young et al. performed a
comprehensive analysis of the immune response and showed that immunotherapy may be
clinically beneficial for patients with the metastasislike primary (MLP)-1 subtype [106]. In
addition, Simon et al. performed multi-omics on PNENs of various grades and revealed
the mechanisms involved in PNENs [107]. If PNENs can be further genetically analyzed
and subdivided into Ki-67 grading before surgery, it will become an attractive option for
the management and preoperative risk stratification of patients with PNENs.

12. Conclusions

The evolution of ultrasound imaging technologies such as contrast-enhanced and
elastography and the AI that analyzes them, the evolution of FNB needles, and genetic
analysis will further develop the diagnosis and treatment of PNENs in the future.
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