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Abstract: Gold nanoparticles are widely used in the biomedical field for the treatment of several
diseases, including cancer, inflammatory diseases, and immune system disorders, due to their distinc-
tive physicochemical characteristics. In this study, we investigated the therapeutic potential of green
synthesized gold nanoparticles using ethanolic leaf extract of Leptadenia hastata (LH-AuNPs) against
invasive pulmonary aspergillosis (IPA) in mice. UV/visible spectroscopy, Fourier transform infrared
spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-
dispersive X-ray spectroscopy (EDX), and zeta potential were used to characterize the biofabricated
LH-AuNPs. Antifungal activity of LH-AuNPs was determined by MTT assay, (3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), time-kill assay, and radial growth inhibition. TEM
and SEM were used to examine the mode of the antifungal action of LH-AuNPs. The in vivo activity
of LH-AuNPs against IPA was studied using a well-established IPA mouse model. LH-AuNPs
excreted antifungal activity against Aspergillus fumigatus with MIC 64 µg/mL and inhibited the
radial growth of A. fumigatus by 30% compared to the control. LH-AuNPs caused distortion and
collapse of fungal hyphae and deterioration of cell walls. Interestingly, LH-AuNPs did not display
any cytotoxicity on cultured primary bone marrow stem cells (BMSCs) or A549 human lung cell line
in vitro at MIC concentration. IPA mice treated with LH-AuNPs displayed significant lung tissue
repair without any in vivo cytotoxicity. LH-AuNPs administration showed significant suppression of
fungal burden and gliotoxin production in the lung. In addition, LH-AuNPs inhibited IPA-induced
pro-inflammatory cytokines production, including interleukin-1 (IL-1), interleukin-17 (IL-17), and
tumor necrosis factor-alpha (TNF-α), and reduced oxidative stress in lung. In conclusion, our data
provide LH-AuNPs as a novel nanoparticle therapy for IPA.
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1. Introduction

The incidence of life-threatening mycotic infections caused by Aspergillus species
and other fungi has increased in the past few years [1,2]. A. fumigatus is one of the most
common fungal pathogens that can cause a variety of diseases, such as invasive pulmonary
aspergillosis (IPA), aspergilloma, and allergic syndromes [3]. The clinical spectrum of
patients who are at high risk for IPA is extensive. Patients getting allogeneic bone marrow
transplants and patients with hematological malignancy have a higher risk of IPA [4].

Owing to the complications in treating IPA, it remains challenging to increase novel
insights into the distribution of infection. The antifungal drugs used for the treatment of
IPA are limited due to the eukaryotic nature of fungal cells; they have only a limited set
of specific targets that do not overlay with their mammalian counterpart. The currently
available antifungal agents have several associated problems. Amphotericin B (AMB) can
cause severe adverse effects because of its nephrotoxicity [5]. Although lipid preparations
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of AMB have decreased nephrotoxicity, renal injury is still detected, and infusion-related
toxicity might be debilitating. Itraconazole is not absorbed in adequately higher amounts
to be therapeutic and might interact harmfully with an extensive spectrum of drugs [6].

Therefore, there is a critical necessity for the development of novel antifungal drugs
with novel modes of action [7]. Gold nanoparticles have been the focus of increasing interest
in many biomedical applications due to their mechanical, chemical, thermal, optical, and
biocompatibility properties. These applications include the use of AuNPs in diagnostic
tracers, biosensing, photothermal and radiotherapy, and cell imaging [8–10]. In addition,
the approval of using AuNPs by the Food and Drug Administration (FDA) increased the
applications of AuNPs as therapeutic agents in nanomedicine, such as cancer therapy and
drug carriers [11,12].

Green synthesis of nanoparticles using biological extracts has been developed to
provide large-scale production, where mild reaction conditions without additional reducing
agents and stabilizers were applied that minimize the hazardous wastes and reduce the
costs of nanoparticle production [13]. We have recently reported that the green synthesis of
silver nanoparticles (AgNPs) using plant extracts could effectively produce nanoparticles
with antimicrobial effects against C. albicans and A. fumigatus in vitro and in vivo [14,15].

L. hastata is a member of the family Asclepiadaceae, used as a vegetable, and is con-
sidered a scarce food due to its higher content of beneficial nutrients [16,17]. It is used in
herbal medicine to treat diabetes [18] and has anti-inflammatory and antitrypanosomal ac-
tivities [19]. It is also applied as an antimicrobial agent against several fungal and bacterial
species [20,21]. In this study, we explore the antifungal action of biosynthesized AuNPs
using leaf extract of L. hastata against A. fumigatus in vitro and in vivo. LH-AuNPs showed
antifungal activity against A. fumigatus in vitro and therapeutic effect for IPA in vivo via re-
ducing fungal burden, gliotoxin production, and IPA-induced pro-inflammatory cytokines.

2. Materials and Methods
2.1. Preparation of Plant Extract

L. hastata was identified taxonomically and authenticated by the Department of Botany
and Microbiology, Cairo University, where a voucher specimen was deposited (Voucher
number N8F5). Then, 10 g of dried L. hastata leaves powder was suspended in 50 mL of
95% ethanol for 24 h at 37 ◦C. The extract was filtered and evaporated by a rotary vacuum
evaporator at 40 ◦C and stored at 4 ◦C.

2.2. Green Synthesis of LH-AuNPs

Five mL of the plant extract was added to 45 mL of 1 mM aqueous HAuCl4 solution.
The change of color from pale yellow to vivid ruby-red demonstrates the reduction of AuCl4
and the formation of AuNPs. The suspension was centrifuged at 3500 rpm for 10 min
to remove the unreacted plant extract. The biosynthesized nanoparticles were collected
by centrifugation at 12,000 rpm for 20 min and purified by washing with sterile distilled
water to obtain nanoparticles in pellet form. The purified AuNPs were then suspended in
distilled water for further study.

2.3. Characterization of LH-AuNPs

The reduction of gold ions was confirmed by measuring the UV-vis spectrum of
the reaction mixture. The spectral analysis was done using a UV-1602 Double Beam
UV/Vis spectrophotometer at a resolution of 1 nm from 300 nm to 800 nm. The selected
ratio was allowed to freeze-dry for further characterizations. The crystalline pattern of
powdered AuNPs was recorded by XDL 3000 powder X-ray diffractometer. The Fourier
transform infrared (FTIR) spectra were performed on a Perkin Elmer spectrum instrument
at a resolution of 4 cm−1 in KBr pellet. The morphology, purity, structure, and elemental
distribution of the LH-AuNPs were observed by transmission electron microscopy (TEM)
and energy-dispersive X-ray spectroscopy (EDX). TEM images were obtained by placing
droplets of the purified NPs suspended in water on a carbon-coated copper grid and
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drying them at room temperature before microscopic analysis. EDX was done by Energy
Dispersive X-ray analysis “EDX”. A double-sided carbon coated glass cover slip was used,
the lower side of which was used to be fixed to the stab, while, on upper side, sample
was loaded and was examined by EDX (Oxford, UK, Model No. INCA 200). The zeta-
potential measurements were performed with a Zetasizer Nano ZS (Malvern Instruments)
in a disposable cell at 25 ◦C, using Zetasizer 7.01 software. Zeta potential is used to study
AuNPs stability. These measurements were carried out first 2–3 h after the LH-AuNPs
were synthesized and then once a week for 3 weeks. Between measurements, all LH-
AuNPs suspensions were kept frozen at −18 ◦C. The suspension was allowed to melt and
equilibrate at room temperature for 2 h prior to measurement. Straight away after the
measurements were taken, the extracts were frozen again.

2.4. Microorganism and Culture Conditions

A strain of A. fumigatus was formerly isolated by our group from an immunocompro-
mised patient with IPA [14]. Fungal suspension was prepared by cultivating A. fumigatus
on Peptone Yeast Extract Agar (PYG) medium for 5 days at 35 ◦C, and the conidia were
harvested as described previously [22].

2.5. Antifungal Susceptibility Test

Antifungal assay was carried out by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) method with slight modifications [23]. The conidia were
counted by using a hemocytometer, adjusted to a density of 106 CFU/mL; 96-well flat-
bottom plates were used, and 90 µL of RPMI 1640 and 100 µL from LH-AuNPs were added
into the first wells. Then, LH-AuNPs were serially diluted to final concentrations ranging
from 2 to 256 µg/mL. In each well of the column, aliquots of 10 µL of the A. fumigatus
inoculum were dispensed. A positive control was prepared in the same way with the
standard antifungal drug amphotericin B (AMB). After 24 h of incubation, 20 µL of an MTT
was added to each well. The plates were then incubated at 37 ◦C for 48 h. After incubation,
the formazan assay product was extracted, and the optical density at 540 nm was measured.
Minimum inhibitory concentration (MIC) was defined as the lowest concentration of the
drug that resulted in 100% visual inhibition of growth. For the determination of radial
growth, the spores of A. fumigatus were added to the center of potato dextrose agar (PDA)
plates containing sub-MIC of LH-AuNPs (32 µg/mL). DMSO was used as negative control.
The plates were incubated at 35 ◦C, and growth of A. fumigatus was observed after 7 days.
The micrographs were obtained using an Olympus Inverted Microscope IX50 equipped
with a Lumenera Infinity camera (Olympus Corporation, Tokyo, Japan).

2.6. Pigment Inhibition

Conidial suspensions of A. fumigatus (1 × 105) were inoculated in PDA plates contain-
ing sub-MIC of LH-AuNPs (32 µg/mL) and incubated at 35 ◦C. After 72 h, the morphologi-
cal examination of the colonies was performed.

2.7. Time–Kill Curve Studies

Briefly, 10 mL of A. fumigatus conidial suspension (1 × 105 conidia/mL) was added to
10 mL of RPMI-1640 medium (negative control) with AMB (positive control) or LH-AuNPs.
Cultures were agitated at 37 ◦C. At different time intervals (0, 4, 8, 12, 16, and 24 h), a
sample of 0.1 mL was removed from each test suspension, spread on PDA plates, and
then incubated at 37 ◦C for 48 h. The time–kill curves were made by plotting the colony-
forming units (CFU) per milliliter surviving at each time interval in the presence of various
antimicrobial drugs.
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2.8. Morphological Modifications
2.8.1. Scanning Electron Microscopy (SEM)

The LH-AuNPs-treated A. fumigatus mycelia sections were collected, fixed with
formaldehyde, washed with phosphate buffer solution, dehydrated with an alcohol solu-
tion, and then submitted to critical point drying as described [24]. The fungal mycelia were
prepared for SEM using JEOL (JSM6380 LA) instrument.

2.8.2. Transmission Electron Microscopy (TEM)

A. fumigatus mycelia treated with LH-AuNPs were observed using TEM. Saline-treated
mycelia were used as a control. All samples were infiltrated with 1:1 then 1:2 ratios of
ethanol to resin in a vacuum overnight. The samples were then fixed and allowed to
evacuate overnight, then placed in an oven to polymerize for four days. The samples were
trimmed and thin sectioned. The sections were post-stained with 7.5% uranyl acetate and
Reynolds’s lead citrate. TEM images of the samples were taken using the JEM-1210 TEM
instrument (JEOL USA Inc., Peabody, MA, USA) and operated at 90 kV [25].

2.9. In Vivo Experiment Design

The procedure of in vivo IPA experiment was approved by the Cairo University, Faculty
of Science Institutional Animal Care and Use Committee (IACUC) (Egypt), (CUFS/F/10/13).
Swiss albino mice (10 weeks) were obtained from the animal house, National Research
Center. Mice were housed at a controlled temperature of 25± 2 ◦C and 12 h dark/light cycle
with a standard diet and water ad libitum. Thirty male mice were grouped into 3 groups
(n = 10), and neutropenia was induced by a single intraperitoneal (ip) administration of
cyclophosphamide (150 mg/kg) as described previously [26]. Three days post neutropenic
induction, 20 of the neutropenic mice were infected with conidia of A. fumigatus (1 × 105)
(administered by intranasal instillation), as described [27]. Mice groups were assigned as
follows: group 1 (control): control mice injected intravenously with Hank’s Balanced Salt
Solution (HBSS); group 2 (IPA control): IPA mice intravenously injected with HBSS after
24 h of fungal inoculation; group 3 (LH-AuNPs group): IPA mice intravenously injected
with one injection of LH-AuNPs (0.5 µg/g) after 24 h of fungal inoculation [28].

2.10. Measurement of Fungal Burden in Lung Tissue

Lungs were dissected from IPA mice after euthanization, weighed, and homogenized
in 2 mL of sterile saline with sterile tissue grinders. Numbers of CFU were determined by
performing serial dilutions of the homogenized tissue in sterile saline and plating 50 g of
lung homogenate on 110 mm diameter potato dextrose agar plates. Plates were incubated
at 37 ◦C, and numbers of CFU were counted at 24 and 48 h.

2.11. Measurement of Gliotoxin

Lung tissues were soddened in plastic bags and mixed with 5 mL of water. The samples
were then homogenized, and 10 mL HCl was added to homogenates on a shaker for 30 min.
Supernatants of cell cultures were exposed to solid-phase extraction by loading 1 mL of
each sample solution onto an Oasis HLB cartridge (Waters Corporation, Milford, MA, USA),
which was conditioned with 2 mL of methanol–water mixture. The cartridge was then
washed with 1 mL of 5% methanol in water, and the analyte was eluted with 1 mL of
absolute methanol. For HPLC analysis, the extract was evaporated to dryness at 50 ◦C; the
residue was added to 0.2 mL methanol and used for the gliotoxin measurement according
to the method of [29]. Briefly, 20 µL of the sample was injected at a flow rate of 1 mL min−1.
Gliotoxin was eluted from the HPLC column after 20 min, and the concentrations were
measured by interpolation from a calibration curve (25–1000 ng mL−1) prepared using the
gliotoxin powder.
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2.12. Cell Culture and Cytotoxicity Assay

The A549 human lung carcinoma epithelial-like cell line was obtained from ATCC
(#CCL-185). Cells were cultured in DMEM supplemented with 10% Fetal Bovine Serum Heat
Inactivated (FBS) (Gibco Invitrogen, Waltham, MA, USA) and 1% penicillin/streptomycin
(P/S) (Gibco Invitrogen, USA). Primary mouse bone marrow-derived mesenchymal stem
cells (BMSCs) were isolated from 2-month-old C57BL/6J mice, as described previously [30].
Cells from bone marrow were suspended in PBS and filtered through a 70 µm filter. Isolated
cells were cultured in RPMI-1640 medium supplemented with 1% penicillin/streptomycin
(P/S) and 12% FBS (Gibco Invitrogen, USA). Non-adherent cells were collected after 24 h
by centrifugation and re-cultured in a fresh medium.

For cytotoxicity assay, cells were treated with different concentrations of LH-AuNPs in
96-well plates for 48 h, and an MTT cell proliferation assay kit (Sigma-Aldrich, Darmstadt,
Germany) was used to measure the cell viability. Cells were incubated with a medium
containing 0.5 mg/mL MTT to metabolize to formazan. Optical density was measured at
550 nm using an ELISA plate reader [31]. Values were expressed as a percentage of control
non-treated cells.

2.13. Histological Study

The lung was fixed in 10% buffered formalin, embedded in paraffin, sectioned, and
stained either with hematoxylin and eosin (H & E) or periodic acid–Schiff stained (PAS).
Nikon 80i light microscope (Nikon Corporation, Tokyo, Japan) was used to take tissue
sections imaged using.

2.14. Biochemical Assays

For kidney and liver function assays: serum biochemical markers including aspartate
aminotransferase (AST) activity, alanine aminotransferase (ALT), urea, and creatinine were
measured according to the instruction manual of commercially available kits from (Abcam,
Cambridge, UK).

For antioxidant enzyme measurements: lung tissues were homogenized in HBSS,
incubated in ice bath, and centrifuged at 12,000 r/min for 15 min at 4 ◦C. The supernatants
were collected for measurements. Catalase (CAT) activity was determined by measuring
the decrease in absorbance of hydrogen peroxide at 240 nm following the method of [32].
Superoxide dismutase (SOD) activity was determined using the adrenochrome test, which
relies on the ability of SOD to inhibit the autoxidation of epinephrine in alkaline according
to the method [33], and malondialdehyde (MDA) level was measured by the thiobarbituric
acid test [34].

For pro-inflammatory cytokines assays: TNF-α, IL-1, and IL-17 were measured by ELISA
kit Assay (MyBioSource, Inc., San Diego, CA, USA) according to the manual instructions.

2.15. Statistical Analysis

All values are expressed as mean ± SD (standard deviation) of at least 3 independent
experiments. Power calculation was performed for 2 samples using an unpaired Student’s
t-test (2-tailed), assuming equal variation in the two groups. Differences were considered
statistically significant at * p < 0.05 and ** p < 0.005.

3. Results
3.1. Biosynthesis and Characterization of LH-AuNPs

LH-AuNPs were biosynthesized from an ethanolic leaf extract of L. hastate. The color
of L. hastate extract after the addition of aqueous chloroauric acid changed from pale yellow
to vivid ruby-red (Figure 1A). This red color indicated the formation of AuNPs. The
biosynthesis of LH-AuNPs was confirmed by UV/Vis spectrum. Different concentrations
(1:2 and 1:3) were used for the optimization of AuNPs. Both ratios showed surface plasmon
resonance (SPR) peaks in the range of 500–600 nm, which is specific for AuNPs. The most
extreme peak with maximum absorbance was recorded at 1:2, which showed an SPR peak
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at 544 nm (Figure 2A). TEM revealed a majority of spherical or hexagonal shapes with
lattice fringes nanoparticles and sizes ranging from 5 to 30 nm (Figure 1B). The XRD results
showed clear peaks of cubic phases at 38.2 (111), 44.3 (200), 64.9 (220), 77.5 (311), and 81.5
(222), which confirms the crystalline nature of AuNPs (Figure 2B).
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Figure 1. Biosynthesis of LH-AuNPs using L. hastate leaf extract. (A) The biosynthesis of LH-AuNPs
was performed by combining L. hastate leaves powder (10 g) with 50 mL of 95% ethanol for 24 h at
37 ◦C in a 200 mL Erlenmeyer flask; 5 mL of the plant extract was added to 1 mM aqueous HAuCl4
solution (45 mL). The solution changed color from pale yellow to vivid ruby-red, signifying the
formation of AuNPs. (B) TEM image of LH-AuNPs showed spherical or hexagonal shapes with
lattice fringes s with sizes ranging from 5 to 30 nm.

FTIR spectra of L. hastate extract were expressed in Supplementary Figure S1. Taking
the spectrum of plant extract as control, the involvement of different functional groups
of L. hastate extract in the reducing and stabilizing process of nanoparticles synthesis was
evaluated. Absorbance bands at 3430.5 could be due to the O-H stretching vibration of
the phenol groups, which might be responsible for the formation and stabilization of
nanoparticles. The peak of 1627.9 cm−1 corresponded to the C=O group. However, the
major absorption peak in the FTIR spectra of synthesized AuNPs is related to OH/NH and
C=O groups. The presence of OH group could be ascribed to a peak at 3444.6 cm−1. The
peak of 1732.0 cm−1 corresponded to the C=O group (Figure 2C). The main absorbance
band of LH-AuNPs slightly shifted in comparison with the control spectrum. This shifting
revealed that biomolecules present in plant extract were responsible for the reduction in
gold salt. EDX spectrum of the biosynthesized AuNPs showed strong signals in the gold
region that confirmed the formation of AuNPs. A clear, strong peak was observed around
2.40 keV, which is a characteristic of gold nanoparticles (Figure 2D). There were also some
weak signals for carbon and oxygen atoms, which might be due to the X-ray emittance
from the enzymes/proteins of the biomolecules involved in the formation and capping
of gold nanoparticles. Zeta-potential values are often used as a mark indicative of the
stability of colloidal particles. The absolute values replicate the net electrical charge on the
particles’ external surface that arises from the surface functional groups. Nanoparticles
are considered to exist as stable colloids if their zeta potential is more than 25 mV or less
than −25 mV [35]. The zeta potential of the LH-AuNPs was −26.1 mV ± 0.2 mV; the
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suspension of LH-AuNPs in a buffer formed a stable colloid (well-dispersed) with no
visible aggregation over 6 months (Supplementary Figure S2).
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Figure 2. Confirmation of biosynthesized LH-AuNPs. (A) UV–Vis spectrum of LH-AuNPs. Different
ratios give different absorption peaks, but the most extreme peak with maximum absorbance was
recorded 1:2 on 544 nm. (B) XRD spectrum recorded for LH-AuNPs showed clear peaks of cubic
phases at 38.2 (111), 44.3 (200), 64.9 (220), 77.5 (311), and 81.5 (222), which confirms the crystalline
nature of AuNPs. (C) FTIR spectrum of LH-AuNPs exhibited two peaks related to OH/NH and
C=O groups. The presence of OH group could be ascribed to peak at 3444.6 cm−1. The peak of
1732.0 corresponded to C=O group. (D) EDX spectrum of LH-AuNPs shows strong signals in the
gold region and confirms the formation of gold nanoparticles. A strong peak was displayed around
2.40 keV, which is the characteristic of gold nanoparticles.

3.2. In Vitro Antifungal Activity of LH-AuNPs against A. fumigatus

We examined the antifungal activity of AMB and LH-AuNPs against A. fumigatus
using an MTT assay. After 48 h of incubation, the results showed that, with increasing
concentrations, the growth of A. fumigatus was significantly inhibited. At concentrations
greater than 32 and 64 µg/mL, no fungal colonies were visible in the case of AMB and
LH-AuNPs, respectively (Figure 3A). Thus, we concluded that the MIC of LH-AuNPs
was 64 µg/mL. The inhibitory effect of AMB and LH-AuNPs was also observed using
inverted microscopy. A strong visual difference in mycelia density and growth was detected
among treatments (Figure 3B). Treatment with 64 µg/mL of LH-AuNPs severely decreased
mycelial growth when compared to control. Radial growth of A. fumigatus was repressed
by treatment with LH-AuNPs, and 64 µg/mL of LH-AuNPs decreased the relative radial
growth by 30% as compared to the control (DMSO). The treated colonies appear to be
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deficient in green pigmentation, suggesting the formation of little or no conidia (Figure 3B).
Additionally, these phenomena were also detected in liquid culture, where the green
pigmentation was completely deficient after incubation with LH-AuNPs (Figure 3C). The
time–kill curves displayed the fungistatic action of both AMB and LH-AuNPs at 32 and
64 µg/mL, respectively, on the growth of A. fumigatus cells (Figure 3D). After only 8 h of
incubation, LH-AuNPs completely inhibited the growth of A. fumigatus to zero colonies
(Figure 3D).
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layer on the cell wall surface. Conversely, there were prominent alterations in the cell wall, 
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Figure 3. Antimicrobial potential of LH-AuNPs. (A) Inverted microscope images of A. fumigatus
treated with DMSO, LH-AuNPs, and AMB at their MIC values. Visual alterations in mycelial growth
are obvious at three different treatments. (B) Radial growth of A. fumigatus was inhibited, where
LH-AuNPs reduced the relative radial growth of A. fumigatus by 30% compared to the control.
(C) Pigment formation defects after LH-AuNPs treatment. The LH-AuNPs treated colonies lacked
green pigmentation, signifying they formed few conidia. (D) Time–kill curves of A. fumigatus
following exposure to LH-AuNPs and AMB. Values are mean± SD of three independent experiments.

3.3. Ultrastructural Analysis of the Interaction between LH-AuNPs and A. fumigatus Cells Using
TEM and SEM

The effect of LH-AuNPs (64 µg/mL) on A. fumigatus hypha was studied using SEM.
Untreated filaments were smooth and intact with an identical width (Figure 4A(a,b)).
Conversely, variable degrees of cell wall deterioration and damage were observed after
treatment with LH-AuNPs. The fungal cell wall exhibited severe pitting, tearing, and
penetration in the cytoplasm, with the indication of irregular and rough cell walls, and
widespread blebbing. In addition, the hyphae looked distorted, shrunken, and lost structure
and rigidity (Figure 4A(c,d)).
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Figure 4. Electron microscopy photographs of A. fumigatus after treatment with LH-AuNPs. (A) SEM
images of A. fumigatus treated with saline (a,b) and LH-AuNPs (c,d) (64 µg/mL). Black arrows specify
pitting and tearing destruction to the cell wall. White arrows show penetration of cell wall into the
cytoplasm. Bar = 5 µm. (B) TEM images of A. fumigatus treated with saline (a,b) showing normal
growth of A. fumigatus hyphae and treated with LH-AuNPs (c,d) showing reticular accumulations
on the cell wall on the outer fibrillar layer (arrows) (c) and the outer fibrillar layer has a lattice-like
structure that is thready (thick arrows). The inner fibrillar layer is not consistently observable (thin
arrow) (d).

The TEM revealed that untreated hypha of A. fumigatus displayed cells with normal
and distinct organelles (Figure 4B(a,b)). The fungal cell membrane seemed sharp and
electron-dense. The outer fibrillary layer showed a lightly distributed, rough, electron-
dense layer on the cell wall surface. Conversely, there were prominent alterations in the cell
wall, cell membrane, and cytoplasm in LH-AuNPs treated cells (Figure 4B(c,d)). The inner
granular layer of the cell wall was severely disrupted. Aggregates of the outer surface of
the cell wall appeared, and a marked disruption of the integrity of the outer cell wall was
also observed.

3.4. LH-AuNPs Show No In Vitro Cell Toxicity on Animal and Human Cells

We further examined the cytotoxicity of LH-AuNPs on human lung cancer cell line,
A549, and primary mBMSCs using cell viability MTT assay. LH-AuNPs showed no cyto-
toxicity on mBMSCs and human A549 cells up to the concentration of 120 and 150 µg/mL,
respectively. A significant reduction in cell viability started to be observed at concentrations
of 150 and 200 µg/mL on mBMSCs and human A549 cells, respectively (Figure 5A). Thus,
LH-AuNPs showed very low cytotoxicity on animal cells up to the two folds of the MIC
concentration (64 µg/mL).



J. Fungi 2022, 8, 442 10 of 17
J. Fungi 2022, 8, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. LH-AuNPs repair lung tissue damage in IPA mice. (A) Cytotoxicity of LH-AuNPs on hu-
man lung cancer cell line, A549, and primary mBMSCs. The dose-dependent effect of LH-AuNPs 
on cell viability was measured by MTT assay after 48h of treatment. Values are mean ± SD of three 
independent experiments (** p < 0.005, compared to control non-treated cells). (B) Histological anal-
ysis of lung tissues (3 days post-LH-AuNPs treatment) from control, IPA-non-treated, and IPA-
treated mice with LH-AuNPs. Sections stained with H&E (a) and periodic acid–Schiff (PAS) (b). 
Extensive fungal growth and tissue damage are evident in the non-treated IPA mice. Arrows indi-
cate fungal balls with great density fungi and proliferating hyphae, while there is a lack of fungal 
balls and hyphae in the lungs of animals with LH-AuNPs treatment. 

3.5. LH-AuNPs Effectively Repair Lung Tissue Damage in IPA Mice without Any In Vivo 
Toxicity  

As shown in Figure 5B, compared to control mice, the IPA mice displayed severe 
pulmonary lesions described by multifocal infiltrations of macrophages and neutrophils 
connected with vascular phenomena (necrosis and hemorrhages) and necrosis of alveolar 
and bronchiolar epithelial cells (Figure 5B(a)). In addition, a higher number of proliferat-
ing hyphae and coagulation necrosis were also detected in the blood vessels, bronchioles, 
and alveoli, as revealed by the stained section with PAS (Figure 5B(b)). Interestingly, treat-
ment of IPA mice with LH-AuNPs showed to significantly repair the lung tissue damage, 
as revealed by less extensive inflammation in H&E staining of lung tissues of LH-AuNPs-
treated mice (Figure 5B(a)). Moreover, PAS staining confirmed the lack of fungal infection 
when LH-AuNPs were used (Figure 5B(a)).  

In association with the therapeutic effect of LH-AuNPs in IPA mice, LH-AuNPs did 
not show any toxicity or damage to the liver or kidney, as mentioned by H&E histological 
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Figure 5. LH-AuNPs repair lung tissue damage in IPA mice. (A) Cytotoxicity of LH-AuNPs on
human lung cancer cell line, A549, and primary mBMSCs. The dose-dependent effect of LH-AuNPs
on cell viability was measured by MTT assay after 48h of treatment. Values are mean ± SD of
three independent experiments (** p < 0.005, compared to control non-treated cells). (B) Histological
analysis of lung tissues (3 days post-LH-AuNPs treatment) from control, IPA-non-treated, and IPA-
treated mice with LH-AuNPs. Sections stained with H & E (a) and periodic acid–Schiff (PAS) (b).
Extensive fungal growth and tissue damage are evident in the non-treated IPA mice. Arrows indicate
fungal balls with great density fungi and proliferating hyphae, while there is a lack of fungal balls
and hyphae in the lungs of animals with LH-AuNPs treatment.

3.5. LH-AuNPs Effectively Repair Lung Tissue Damage in IPA Mice without Any In Vivo Toxicity

As shown in Figure 5B, compared to control mice, the IPA mice displayed severe
pulmonary lesions described by multifocal infiltrations of macrophages and neutrophils
connected with vascular phenomena (necrosis and hemorrhages) and necrosis of alveolar
and bronchiolar epithelial cells (Figure 5B(a)). In addition, a higher number of proliferating
hyphae and coagulation necrosis were also detected in the blood vessels, bronchioles, and
alveoli, as revealed by the stained section with PAS (Figure 5B(b)). Interestingly, treatment
of IPA mice with LH-AuNPs showed to significantly repair the lung tissue damage, as
revealed by less extensive inflammation in H & E staining of lung tissues of LH-AuNPs-
treated mice (Figure 5B(a)). Moreover, PAS staining confirmed the lack of fungal infection
when LH-AuNPs were used (Figure 5B(a)).

In association with the therapeutic effect of LH-AuNPs in IPA mice, LH-AuNPs did
not show any toxicity or damage to the liver or kidney, as mentioned by H & E histological
analysis (Figure 6A). Moreover, biochemical analysis of serum markers for liver function
(AST and ALT) and kidney function (Urea and creatinine) were normal and not affected by
LH-AuNPs treatment (Figure 6B).
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mice (Figure 7A–C). Measurement of antioxidant enzymes activities in the lung of non-
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Figure 6. LH-AuNPs suppress fungal burden and gliotoxin production in lung of IPA mice. In vivo
cytotoxicity of LH-AuNPs in IPA mice. (A) H & E histological sections of liver and kidney from
control, IPA-non-treated, and IPA-treated mice with LH-AuNPs. (B) Serum biochemical markers of
liver function (a) AST and ALT and (b) renal function, including urea and creatinine. Biochemical
analysis was performed after 3 days of treatment with LH-AuNPs. (C) Effect of LH-AuNPs on fungal
load in lung homogenate of IPA mice. (D) Measurements of lung gliotoxin concentration in IPA mice
after 3 days of LH-AuNPs. Values are expressed as means ± SD (n = 10 mice/group) (** p < 0.005,
compared to control non-treated mice).

3.6. LH-AuNPs Excert Significant Reduction of A. fumigatus Colonization and
Gliotoxin Production

To measure the efficiency of LH-AuNPs against A. fumigatus infection in IPA mice,
we determine the mean fungal burden in the lung of IPA-treated mice against control,
IPA-non-treated mice. As shown in Figure 6C, the mean burden of fungal cells in the lung
was 96 × 106 in LH-AuNPs versus IPA 210 × 106 in IPA-non-treated mice (Figure 6C). In
addition, LH-AuNPs significantly reduced the gliotoxin production by A. fumigatus in IPA
mice by 69% as compared to the IPA mice (Figure 6D).

3.7. LH-AuNPs Significantly Reduce Inflammation and Oxidative Stress in IPA Mice

As shown in Figure 7A–C, the elevated levels of pro-inflammatory cytokines, including
TNFα, IL-1, and IL-17, in IPA mice were significantly reduced in LH-AuNPs-treated mice
(Figure 7A–C). Measurement of antioxidant enzymes activities in the lung of non-treated
IPA mice revealed the reduced levels of both CAT and SOD enzymes while increased
levels of MDA enzyme (Figure 7A–C). In contrast, IPA mice treated with LH-AuNPs
displayed increased levels of both CAT and SOD and reduced levels of MDA as compared
to IPA-non-treated mice group (Figure 7D–F).
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Figure 7. Inhibitory effect of LH-AuNPs on pro-inflammatory cytokines production and oxidative
stress in IPA mice. Measurements of inflammatory cytokines, (A) TNF-α, (B) IL-1, and (C) IL-17
after 3 days of LH-AuNPs treatment in IPA mice. Effect LH-AuNPs on the antioxidant enzymes
production, including (D) CAT, (E) SOD, and (F) MDA in the lung of IPA mice after 3 days of LH-
AuNPs treatment. Data are expressed as means± SD (n = 10 mice/group). (* p < 0.05 and ** p < 0.005,
compared to control non-treated mice).

4. Discussion

In this study, we used for the first time the leaf extract of L. hastate to biosynthesize
AuNPs with high antifungal activity against A. fumigatus in vitro and in vivo.

We biosynthesized LH-AuNPs using ethanol extract of L. hastate as a green reductant,
which improves biocompatibility and pharmacological potential. In consistency with our
procedure, it was reported that once the AuNPs are formed in a reaction mixture, the color
changes to a ruby red occur because of the surface plasmon resonance (SPR) [36,37]. The
absorption peak of the UV spectrum for the biosynthesized LH-AuNPs was 544 nm, which
is almost the same absorbance band (at 549 nm) of synthesized AuNPs using extract of
Crocus sativus [38].

TEM displayed LH-AuNPs particles about 5–30 nm in size with spherical-, hexagonal-,
and triangular-shaped appearances. AuNPs with these distinctive structures have previ-
ously been described [39]. In addition, the EDX and XRD analyses verified the presence of
AuNPs and their typical metallic gold nano-crystalline structural configurations. It was
reported that both the hydroxyl and carbonyl groups are accountable for the stabilization
of gold nanoparticles [40]. Our FTIR spectra displayed peaks related to OH and carbonyl
groups capped the nanoparticle surfaces. These results are in agreement with reported
results of biosynthesized AuNPs using Tetraselmis suesica [41].

In this study, we examined the antifungal activity of LH-AuNPs against A. fumigatus
using an MTT assay. Our results showed that the MIC of LH-AuNPs was 64 µg/mL.
Green synthesized AuNPs using different plant extracts showed remarkable antifungal
activity against Aspergillus species. For example, the results of the serial dilution plate
counting method revealed that the biosynthesized AuNPs using Viola betonicifolia extract
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significantly inhibited the growth of A. fumigatus, A. flavus, and A. niger with efficacy greater
than 67% [42]. The results of the agar well diffusion method showed that biosynthesized
AuNPs using Mentha piperita extract were highly active against A. flavus with an inhibition
zone diameter (IZD) of 18.49 mm [43]. Similarly, the antifungal potential of licorice-
root-extract-mediated synthesis of AuNPs was very high towards A. flavus with IZD of
18 mm [44].

Our results showed that the LH-AuNPs have moderate antifungal action against
A. fumigatus when compared to AMB. Although AMB exhibited high antifungal activity
via interacting with sterols of mammalian cells, AMB caused several side effects in treated
patients, including higher rates of nephrotoxicity and hypokalemia [45]. Furthermore,
only 50% of patients with invasive fungal aspergillosis showed a promising response
to AMB treatment, and the survival rates were approximately 59%. On the other hand,
AuNPs are recommended for treatment due to their basic antifungal potential or as a drug
delivery vehicle with an emphasis on decreasing the dose of antifungal agent required for
treatment [46].

Interestingly, the leaf extract of L. hastate displayed significant antifungal potential
against different fungal species, including A. flavus and A. niger, due to the presence of bio-
logically active antifungal compounds [47,48]. These include sterols, terpenoids, alkaloids,
flavonoids, phenols, carbohydrates, tannins, Proanthocyanidins, and glycosides [49,50].

The mechanism of the antifungal action of gold ions implicates their absorption and
accumulation by the fungal cell, which in turn damages the cell membrane via inhibiting the
cell wall β-glucan synthase. Moreover, AuNPs might interact with cell wall macromolecules
and membrane proteins [51]. In this context, our SEM and TEM images showed significant
morphological alterations in A. fumigatus upon exposure to AuNPs. The ultrastructural
modifications include disturbing cell permeability by making pits and gaps in the cell
membrane, which leads to structural changes in the outer membrane and fungal cell death.
These data are consistent with the reported effects of AuNPs on C. albicans to cause collapse
and disintegration of the cytoplasm material [52,53].

In this study, A. fumigatus treated with LH-AuNPs displayed a loss of green pigmenta-
tion. Melanin pigments improve the ability of fungi to resist immune clearance, increase
virulence and drug resistance, and favor pathogenicity [54]. In A. fumigatus, piomelanins
protect hyphal cell walls from ROS and gray-green. DHN-melanins maintain the structural
integrity of the cell wall of conidia due to their adhesive properties [55]. In this context,
the reduced virulence toward mice was reported for non-melanizing (white) mutants of
A. fumigatus [56], while non-pigmented mutant of A. fumigatus was more susceptible to
being eliminated by human monocytes as compared to wild-type conidia [57].

Our data were the first to demonstrate the low cytotoxicity of LH-AuNPs on cultured
primary BMSCs and MCS5. AuNPs showed different toxicity effects on different cell
types; for example, AuNPs induced oxidative-stress-related cytotoxicity in hepatocytes [58]
and small airway epithelial cells (SAECs) [59]. On the other hand, Au-NPs caused low
long toxicity effect on several other cell lines, including MG63 cells, HeLa cells, and Vero
cells [60,61].

We demonstrated the effective treatment of IPA mice with intravenous injection of
LH-AuNPs without observing any in vivo cytotoxicity. Many reports investigated the
in vivo pharmacokinetic profile of AuNPs after intravenous administration and showed
the clearance of Au-NPs from the bloodstream and its accumulation preferentially in the
liver, kidney, and spleen. However, these accumulations of AuNPs did not cause any
hepatic or renal toxicity [62–64]. In consistent, our results demonstrated that LH-AuNPs
do not cause any acute or chronic toxicity in vivo.

Production of gliotoxin, an immune-suppressive mycotoxin, is involved in the patho-
genesis of IPA and might be a marker of infection with A. fumigatus [65,66]. In this context,
our data demonstrated the direct effect of LH-AuNPs administration on inhibiting the
A. fumigatus burden by more than 60% and suppressing their gliotoxin production.
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The mouse model of IPA demonstrated activation of inflammatory programs by
increasing inflammatory cytokine-mediated pathology, including production of IL-1, IL-
17, IL-23, and TNF by eosinophils, inflammatory monocytes, dendritic cells (DCs), and
alveolar macrophages [67–70]. Our results demonstrated the effective inhibitory effect of
LH-AuNPs on IPA-induced inflammatory cytokines. Similarly, we have recently reported
the therapeutic potential of a single dose of green synthesized AS-AgNPs to suppress
IPA-induced pro-inflammatory cytokines and lung tissue damage in mice [14]. The anti-
inflammatory properties of Au-NPs were reported in vitro and in vivo in many studies to
be mediated by antioxidant properties [71,72]. AuNPs can act to reduce the production
of reactive oxygen and display good free radical scavenging activity against antioxidant
enzymes [73]. In addition, the anti-inflammatory properties of Au compounds, which are
used for the treatment of inflammatory disorders (such as rheumatoid arthritis, stroke, and
cerebral damage), were found to be mediated by inhibiting the activation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) [74–76].

5. Conclusions

The green synthesized LH-AuNPs showed significant antifungal activity against
A. fumigatus, including the inhibition of fungal hyphae radial growth and green pigmenta-
tion and the deterioration of cell walls. Intravenous administration of LH-AuNPs in the
IPA mice model displayed obvious therapeutic potential for lung repair without showing
any in vivo cytotoxicity. The therapeutic potential of LH-AuNPs in vivo was found to be
mediated via the inhibitory effect of LH-AuNPs on the fungal burden, gliotoxin production,
and IPA-induced inflammatory cytokines production in the lung of IPA mice.
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