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Abstract
Acute myeloid leukemia (AML) is a hematological malignancy, which is commonly associated with high incidence and mortality
among adult patients. The standard induction regimen for AML has been substantially unchanged over the past 40 years, for which
novel nanomedicines have represented a promising strategy in AML therapies. Despite developments of multiple nanoparticles
formulated with drugs or genes, less there is not much information available about approaches in AML is available. This review
presents an overview of nanomedicines currently being evaluated in AML. First, it briefly summarized conventional che-
motherapies in use. Second, nanomedicines presently ongoing in clinical trials or preclinical researches were classified and
described, with illustrative examples from recent literatures. Finally, limitations and potential safety issues concerns in clinical
translation of AML treatment were discussed as well.
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Introduction

Acute myeloid leukemia (AML) represents as a hematologic

malignancy, which is the most common leukemia among adults

and more detrimental in older patients, with a higher incidence

rate and almost 90% mortality rate for those older than 65

years,1 as well as heterogeneous clinical presentations and

subtypes.2,3 It was estimated that there were over 20 000

new cases and 10 670 deaths of patients with AML in the

United States in 2018.4

Although progresses have been made in pathobiology and

novel therapeutics targets, the standard induction therapies for

AML have not been changed substantially for decades.4

Furthermore, with involvement of chemoresistance side

effects, such as cardiotoxicity, myelosuppression, and infec-

tions, conventional therapeutics always lead to treatment fail-

ure or relapse; hence, the overall prognosis remains poor.5,6

Therefore, it is urgent to develop new therapeutic approaches.

Nano-based drug delivery systems have potentials to

deliver drugs to specific area more efficiently and reduce side

effects.7-9 Therefore, nanomedicines have been highlighted as

a new strategy to optimize AML therapies.10-12 Moreover, by

conjugated with various ligands, drugs could actively target to

AML cell-surface receptors, which may have a tremendous

improvement in treatment response or overall survival (OS)

rates.13,14

This review attempts to present an overview of nanomedi-

cines for AML currently in experimental researches or clinical

trials from published data, with a focus on targeting ligands.

This article may not be exhaustive due to the rapid develop-

ment of new drugs. Rather, we aim to illustrate some potential

targeting ligands for nanoparticles (NPs) in AML, which could

be utilized in therapeutic nanoplatforms.
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Current Treatments in AML

Standard Chemotherapy

The standard induction therapy is the combination of cytar-

abine and anthracycline (daunorubicin or idarubincin), which

has been represented as “7þ3 regimen” for more than 40

years.15,16 This regimen is administered as a continuous infu-

sion of cytarabine for 7 days and anthracycline for the follow-

ing 3 days. Consolidation is then conducted for the next phase

after achieving complete remission (CR), which is called

postremission therapy. Currently, cladribine combined with

“7þ3 regimen” is applied as a second standard regimen,

which when received leads to an improvement in the CR rate

and a 3-year OS.17 Fludarabine and etoposide are also used as

an alternative regimen under poor heart functions.16,18

Recently, several new cytotoxic drugs have been utilized in

clinic. Azacitidine and decitabine are 2 new DNA methyl-

transferase inhibitors recommended in the National Compre-

hensive Cancer Network guidelines.19

Target Therapy

FMS-like tyrosine kinase 3 (FLT3) mutation has been the fore-

most common change in patients with AML. Midostaurin was

the first FLT3 inhibitor proved by the Food and Drug Admin-

istration (FDA) and commonly used in FLT3-mutated AML.20

According to an international randomized phase III trial, com-

bined with “7þ3 regimen,” midostaurin could significantly

improve median OS from 25.6 to 74.7 months in patients with

FLT3-mutated AML; however, a large proportion of patients

were relapsed within 2 years.21 Quizartinib and cabozantinib

were investigated as the second generation FLT3 inhibitors,

specifically targeting FLT3 wild-type and FLT3 internal tan-

dem duplications (ITDs) mutation, which achieved higher CR,

but still had inevitable drug resistance.22,23 Recently, a novel

FLT3 inhibitor gilteritinib has been approved by FDA for

relapsed or refractory AML harboring FLT3 mutation, with

an achievement of 40% overall response rate and 8% CR.24

Crenolanib is another FLT3 inhibitor enrolled within a phase

III trial currently in patients with FLT3-ITD or FLT3-TKD

mutated AML (NCT02298166).25

Approximately 20% cases of AML are detected with IDH1

and IDH2 mutations.26 The IDH1 inhibitor enasidenib and

IDH2 inhibitor ivosidenib, proved by FDA, were reported

achieving an effective overall response for 41.6%27 and

40%,28 respectively. However, acquired clinical resistances

were subsequently detected after treatment.

B-cell lymphoma 2 (BCL-2) has been considered as an

oncogene and overexpressed in patients with AML.29 A

BCL-2 inhibitor venetoclax, which is approved by FDA for

chronic lymphocytic leukemia (CLL), has been evaluated in

several clinical trials either as a single agent or combined

treatment for AML (NCT02203773, NCT02993523,

NCT02287233, and NCT03069352).

Immunotherapy

Gemtuzumab ozogamicin, an anti-CD33 monoclonal antibody

conjugated with calicheamicin, was first approved by FDA for

CD33-positive AML. CD33 is a membrane receptor and

potential target, which is highly expressed on leukemic pro-

genitor cells but less on normal hematopoietic stem cells.30

Gemtuzumab ozogamicin was withdrawn in 2010 and ratified

again in 2017 with dose and patient population modification.

Currently, it is used in combined treatment with induction

therapies or as a single agent in relapsed cases.31 However,

toxicities in live cases still remain a concern because CD33

was also expressed on hepatocytes.32,33 Other novel anti-

CD33 monoclonal antibodies, such as vadastuximab and

AMG 330, are under clinical trials at present,34-36 which need

further evaluations for dose effect or safety. Moreover, over-

expression of CD123 has been observed in patients with resis-

tance or relapsed AML, which is a potential target for the

novel monoclonal antibody, SL-401. Currently, several phase

I/II studies associated with SL-401 are ongoing.37,38

There are some immune checkpoint inhibitors used to treat

AML as well. It has been demonstrated that immune check-

points, such as cytotoxic T-lymphocyte-associated protein 4

(CTLA4), programmed cell death 1 (PD-1), and programmed

cell death-ligand 1 (PD-L1), play unique roles in maintaining

malignancy survivals and synergistically inhibiting immune

responses against tumors.39 Inhibitors CTLA4 and PD-1/PD-

L1 pathways have shown effects on promoting immune-

medicated antileukemia responses and increasing survivals in

murine AML models.40,41 Clinical trials of the PD-1 inhibitors

nivolumab and pembrolizumab, PD-L1 inhibitors durvalumab

and atezolizumab, as well as CTLA-4 inhibitor in patients with

AML, which have shown well toleration and encouraging

response to relapsed AML, are in progress at present.42-45

Chimeric antigen receptor (CAR) T-cell therapy is a novel

antitumor immunotherapy that utilizes autologous lymphocytic

T cells modified to express CARs, which could target on spe-

cific antigen of tumor. Chimeric antigen receptor T-cell ther-

apy has received remarkable outcomes in patients with B-cell

malignancies.46 However, the approach has been restricted in

AML treatment. Although several target antigens have been

studied, there is no ideal molecule and no authority has

approved CAR T-cell therapy for AML yet.47,48 In summary,

AML is a complex hematological malignancy with high mor-

tality; more studies and clinical trials are required for current

chemotreatments to reduce toxicities and improve efficacies.

Approaches of Nanomedicines for AML

Nanoparticles have been highlighted in cancer therapies, with

advantages of enhancing permeability, reducing adverse

effects, getting around multidrug resistances (MDRs), improv-

ing bioavailability, and prolonging enhanced permeability and

retention effects with drug circulations by loading and deliver-

ing anticancer agents to tumor site, which have been providing

promising approaches to cancer therapies.49,50 Generally, NPs
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conjugate drugs are already used in AML therapies. Depending

on formulation compositions and materials, NPs are mainly

constituted with 2 types, organic NPs, such as liposomes, poly-

meric, micelle, dendrimer, carbon, and so on, and inorganic

NPs, such as silica, metal, semiconductor, and so on,51,52 as

shown in Figure 1. Generally, there are 2 kinds of classifica-

tions for NP-medicated drug deliveries. One is known as

passive targeting, which enables different types of NPs passing

across capillary endothelium of tumor vessels and accumulating

in tumor site. The other is called active targeting, which could

recognize cell-surface receptor and target tumor phenotypes

directly by utilizing specific ligands (antibodies, proteins, pep-

tides etc.) conjugating with NPs (Figure 2).53 Table 1 presents a

summary of clinical trials ongoing in AML, among the 20

Figure 1. Different classes of nanoparticles.

Figure 2. A schematic diagram of passive and active targeting. Nanoparticles incorporated with ligands could specifically active target on
receptors of blood vessel or cells (left and middle), while the other way is passively targeting and accumulating through enhanced permeability
and retention effect (right). Adapted with permission from Farokhzad and Langer.53 Copyright (2009) American Chemical Society.
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clinical trials, of which 18 were identified using liposomal for-

mulations and only 2 were based on polymeric NPs. No other

type of NPs is under clinical investigation currently in AML.

Passive Targeting Approaches in AML

Liposome-based nanomedicines. Liposomes are spherical vesicles

composed of phospholipid bilayers, which could capture either

hydrophilic agents by aqueous core or lipophilic agents by lipid

bilayer during transportation without structural changes.54,55

For the purpose of increasing solubility, bioactivities, and dis-

tributions, liposomes have been considered the most prevalent

category. At present, there are 16 liposomal drugs ratified by

FDA or/and European Medicines Agency (EMA).56,57

Liposomal nanomedicines approved in AML therapy. CPX-351

(Vyxeos) is a liposomal-encapsulated cytarabine and

Table 1. Ongoing Clinical Trials Involving Nanomedicines in Acute Myeloid Leukemia.

Class Compound
Clinical
Phase Trial Name Status Identifier

Liposomes Annamycin I/II Study of Liposomal Annamycin for the Treatment of Subjects
With AML

Recruiting NCT00430443

Doxorubicin II Bortezomib and Doxil for the Treatment of Patients With AML Not yet recruiting NCT01736943
Daunorubicin III International Randomized Phase III Clinical Trial in Children

With AML
Recruiting NCT02724163

CPX-351 (daunorubicin-cytarabine) II
Liposome-encapsulated Daunorubicin-Cytarabine and

Venetoclax in Treating Participants With Relapsed,
Refractory or Untreated AML

Recruiting NCT0362917

I/II Cytarabine and Daunorubicin in Combination With Ruxolitinib
for the Treatment of Secondary AML Transformed From
MDS

Recruiting NCT03878199

II Investigator Initiated Trial of CPX-351 for Untreated AML Recruiting NCT03335267
I A Trial to Evaluate the Potential Impact of Renal Impairment on

the Pharmacokinetics and Safety of CPX-351
Recruiting NCT03555955

II Cytarabine, Idarubicin, Liposome-encapsulated Daunorubicin-
Cytarabine or Decitabine in Treating Older Patients With
AML

Recruiting NCT03226418

I CPX-351 and Gemtuzumab Ozogamicin in Treating Patients
With Relapsed AML

Not yet recruiting NCT03904251

I CPX-351þGO in Subjects 55 Years Old, or Older, With AML Not yet recruiting NCT03878927
IV The Feasibility of Safely Managing Patients Receiving Induction

With Liposomal Daunorubicin and Cytarabine (CPX-351)
for AML in an Outpatient Environment

Not yet recruiting NCT03988205

I/II Phase I/II Trial of CPX-351 þ Palbociclib in Patients With AML Not yet recruiting NCT03844997
II CPX-351 in Treating Patients With Newly Diagnosed, High-

Risk AML
Not recruiting NCT02286726

III Phase III Study of CPX-351 Versus 7þ3 in Patients 60-75 Years
Old With Untreated High Risk (Secondary) AML

Not recruiting NCT01696084

BP1001 II Clinical Trial of BP1001(Liposomal Grb2 Antisense
Oligonucleotide) in Combination With Decitabine in AML/
High Risk MDS

Recruiting NCT02781883

I/II Clinical Trial of BP1001 (Liposomal Grb2 Antisense
Oligonucleotide) in Combination With Dasatinib in Patients
With Phþ CML Who Have Failed TKI, Phþ AML, PhþMDS

Recruiting NCT02923986

I Recruiting Clinical Trial of BP1001 (L-Grb-2 Antisense
Oligonucleotide) in CML, AML, ALL & MDS

Not recruiting NCT01159028

Vincristine I EphB4-HSA Fusion Protein and Cytarabine /or Liposomal
Vincristine in Patients With Recurrent or Refractory Acute
Leukemia

Recruiting NCT03519984

Polymeric NPs AZD2811 I A Phase I Study of Safety, Tolerability, and PK of AZD2811 in
Patients With Advanced Solid Tumors

NCT02579226

I/II Safety, Tolerability, Pharmacokinetics, and Efficacy of AZD2811
Nanoparticles as Monotherapy or in Combination in Acute
Myeloid Leukemia Patients

NCT03217838

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; MDS, myelodysplastic syndrome; NPs,
nanoparticle; Phþ, Philadelphia chromosome positive; PK, pharmacokinetics.
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daunorubicin with a fixed molar ratio (5:1), which was

approved by FDA and EMA in 2017 for treating newly diag-

nosed therapy-related AML and/or AML with myelodysplasia-

related changes.58 CPX-351 was initially synthesized and

evaluated in in vitro and in vivo studies with leukemia cell

lines. The results indicated that the liposomal-encapsulated

cytarabine and daunorubicin could display a best synergistic

effect and minimum antagonism at the ratio of 5:1, with higher

proportions of response rates, more durable remissions, and

longer maintenances in bone marrows, compared to a free drug

cocktail of cytarabine and daunorubicin with their maximum

tolerated doses (MTD).59-61 The therapeutic efficacy and fre-

quency of CPX-351 were then examined using human leuke-

mia xenograft model.61 Moreover, a later study tested in

primary blood cells from patients with AML and normal bone

marrow donors with CPX-351 and the same ratio of free drugs

has shown that normal peripheral blood and bone marrow were

more sensitive to free drugs, which illustrated that CPX-351

could preferentially accumulate in AML cells over normal

cells.62 Subsequently, phase I study for CPX-351 was con-

ducted in patients with refractory/relapsed AML in 2011, with

a dose ranging from 32 U/m2 of the initial response dose to 101

U/m2 of MTD.63 It showed that 9 of 43 patients received CR,

accompanied with side effects such as hypertensive crisis, con-

gestive heart failure, and prolonged cytopenias.64 Further, a

phase II trial explored efficiency and safety of CPX-351 in

126 older patients with AML and those with secondary AML

(sAML) in 2014.65 This trial demonstrated that there was a

tendency of higher CR and CR with incomplete blood count

recovery for CPX-351 compared to conventional “7þ3” ther-

apy (66.7% vs 51.2%, P ¼ .07), especially in sAML subgroup,

with a trend toward improving response rate (57.6% vs 31.6%,

P ¼ .06), prolonging event-free survival (EFS; hazard ratio

[HR], 0.59; P ¼ .08), and OS (HR, 046; P ¼ .01). Although

prolonged cytopenias and higher risk of infections were

detected as well, there were lower rates in infection-related

deaths (3.5% vs 7.3%) and 60-day mortality (4.7% vs

14.6%). With the potential clinical benefit of CPX-351, another

phase II study followed up in 2015 comparing CPX-351 to

“7þ3” induction therapy in 125 patients with first relapsed

AML.66 Despite no improvement in 1-year EFS or OS, there

was also a higher response rate (39.3% vs 27.6%), lower 60-day

mortality rate (16.1% vs 24.1%), improved EFS (HR, 0.63; P¼
.08), and OS (HR, 0.55; P ¼ .02) for European Prognostic

Index–defined, poor-risk patients in CPX-351 group.

Based on these encouraging results, CPX-351 was

advanced into phase III clinical studies for further ascertain-

ment. A randomized phase III study comparing first-line

CPX-351 (100 U/m2) with “7þ3” regimen (daunorubicin,

60 mg/m2; cytarabine, 100 mg/m2) in 309 elderly patients

(60-75 years) with high-risk sAML, indicated a significantly

improved OS (9.56 months vs 5.95 months), composite

response rates (47.7% vs 33.3%), and lower early mortality

rates (5.9% and 13.7% vs 10.6% and 21.2%, through 30-day

and 60-day, respectively), whereas a comparable frequency

and severity of grade 3 to 5 adverse events.67 These

encouraging results were presented at 2016 American Society

of Clinical Oncology meeting and finally led to FDA approval

in 2017. Lancet et al68 further analyzed the data, consistent

with these observations; CPX-351 indicated a significant

improvement in survival over standard induction chemother-

apy for high-risk patients with AML, older patients with

sAML, and poor-risk subgroup of patients with AML.

Liposomal nanomedicines under clinical trials in AML therapy. As

shown in Table 1, liposomal formulations of vincristine, dox-

orubicin, annamycin, daunorubicin, and BP1001 are being

evaluated in clinical trials at phase I or II stages currently.

Liposomal doxorubicin (Doxil) and non-PEGylated liposomal

doxorubicin (Myocet) have already been approved for the treat-

ment of AIDS-related Kaposi sarcoma, multiple myeloma

(MM), ovarian cancer, and breast cancer.69-71 Melillo et al72

have assessed Myocet combined with fludarabine, cytarabine,

and granulocyte colony-stimulating factor (FLAG) in 35

elderly patients with AML, showing a median disease-free sur-

vival (DFS) at 12 months, 1-year, and 2-year DFS of 78.9% and

26.7%, and CR and partial remission of 63.8% and 8.5%,

respectively, with a 20% resistance and 17% of severe cardio-

vascular toxicity. Another clinical study utilizing the same

regimen was conducted in 18 children with refractory or

relapsed AML, which achieved a CR rate of 18% (11/18),

OR at 3 years of 38%, EFS at 3 years of 40%, and DFS at 3

years of 58% after hematopoietic stem cell transplantation,

with well tolerant and remarkable low toxicity.73 There is one

phase II clinical trial ongoing currently (NCT03059615),

which is designed to evaluate the safety and efficacy of borte-

zomib combined with liposomal doxorubicin in patients with

relapsed MM, CLL, and non-Hodgkin lymphoma as well as

elderly patients with relapsed/refractory AML who are not

candidates for standard induction therapy.

Liposomal daunorubicin (DaunoXome) is a non-PEGylated

liposomal-encapsulated anthracycline daunorubicin. A phase

III study was conducted by the International Berlin-Frank-

furt-Münster Study Group in 2013 among pediatric patients

with relapsed AML. Patients were randomly assigned to regi-

mens of FLAG and FLAG plus daunorubicin. Although OS and

grade 3 to 4 toxicities were similar, FLAG plus daunorubicin

regimen showed an improved day 28 BM status (80% vs 70%),

higher CR rate (69% vs 59%) compared to FLAG regimen.74

There is an international randomized phase III clinical trial that

enrolled liposomal daunorubicin ongoing in children with

AML (NCT02724163).

Antisense oligonucleotides, which refer to a class of small

interfering RNA (siRNA), microRNA, or short hairpin RNA,

have shown a great potential in cancer therapy and been

approved for ALL treatment by FDA in 2017.75 However, the

clinical application is limited due to instability circulation,

inefficiency delivery, and off-target adverse effects. BP1001

is a liposomal formulation of growth factor receptor-bound

protein-2 antisense oligodeoxynucleotide (L-Grb-2 antisense

oligonucleotide). Previously, a single-center, dose-escalation

phase I/Ib clinical trial combined with low-dose cytarabine in

Huang et al 5



patients with refractory or relapsed AML, Philadelphia chro-

mosome–positive (Phþ) chronic myeloid leukemia (CML),

Phþ ALL, or Phþ myelodysplastic syndrome (MDS) demon-

strated a well toleration with an improved therapeutic activ-

ity.76 There are 3 clinical trials underway. A phase I trial

(NCT01159028) is to evaluate the highest safe dose for patients

with AML, Phþ CML, Phþ ALL, and Phþ MDS, in addition

to the safety and toxicity in combination with low-dose Ara-C

for patients with AML. Another phase I/II trial

(NCT02923986) is to determine the efficacy with dose-

limiting toxicity and maximal tolerated dose in combination

with dasatinib in patients with Phþ AML, Phþ CML, or

high-risk Phþ MDS. The third phase II trial (NCT02781883)

is to assess the efficacy in combination with decitabine in

patients with AML or high-risk MDS.

Liposomal vincristine (Marqibo) was approval by FDA in

2012 for patients with Ph�ALL. There is also a phase I clinical

trial ongoing (NCT03519984) that enrolls liposomal vincris-

tine as part of a regimen containing EphB4-HSA fusion protein

and cytarabine, for detecting patients with different types of

acute leukemia, including AML.

Liposomal nanomedicines investigated in preclinical stage for
AML therapy. Other liposomal nanomedicines are mostly being

tested in vitro or in vivo. A liposome formulation of safingol

was designed and evaluated with antitumor activities in human

AML cell lines, patient samples, and murine xenograft models,

as well as a longer survival time in U937-inoculated mice.77

Subsequently, a liposomal coencapsulation of safingol/C2-

ceramide was developed, which indicated effectivity in vitro

and xenograft models, with a dose reduction of 33% compared

to liposomal safingol or liposomal C2-ceramide alone.78 Myh-

ren et al79 have reported a PEGylated liposome coencapsulat-

ing anthracycline daunorubicin (DNR) and emetine with folate

modification, which enhanced loading ability than DNR alone.

Leukemia stem cell (LSC) with overexpression of miR-126 has

been considered as a potential therapeutic target for AML.80

Dorrance et al81 designed a liposomal formulation containing

antagomiR-126 with ligands of transferrin or antibody CD45

on surface. The formulation was tested on murine xenograft

models and showed a significant improvement in survival rate

with an interference with LSC. GTI-2040 is a 20-mer antisense

oligonucleotide complementary to a coding region in the mes-

senger RNA (mRNA) of the R2 small subunit component of

human ribonucleotide reductase. Li et al82 designed and eval-

uated an immunoliposome-encapsulated GTI-2040, grafted

with a target ligand of anti-CD33 to AML cells. It substantially

downregulated the mRNA and protein expression of R2,

reduced 15 times of IC50 than Ara-C, and decreased tumor

volumes in Kasumi-1 xenografted model. The delivery effi-

ciency of liposomes can be affected by physicochemical prop-

erties, such as particle size, zeta potential, or drug-release

kinetics. Liposomes have achieved a series of encouraging

results and are in different stages of evaluation. However, it

is still unable to predict biological interactions by

physicochemical properties accurately, which restrict convert-

ing preclinical effects to clinical benefits in AML.83-85

Polymer-based nanomedicines in AML therapy. Polymers contain-

ing polymeric particles, micelles, and dendrimers have been

mainly investigated in preclinical studies to date. With advan-

tages of biocompatible, tailored release, prolonging circulation,

and functionalizing with specific peptide targeting ligands or

antibodies, polymers have been the most intensively explored

materials in drug delivery systems.86-88

Polymeric NPs could conjugate hydrophobic drugs by

encapsulating to solid cores or water-soluble drugs by cova-

lently attaching, which could control drug release, prolong cir-

culation time, or reduce toxicity.89-92 Polylactide (PLA) and

poly(lactide-co-glycolide) (PLGA) are commonly used poly-

mers at present. AZD2811 is a polymeric NP loaded with aur-

ora kinase B inhibitor. It has been assessed in AML xenografts

model and shown an improved efficacy in inhibiting tumor

growth and inducing apoptosis compared to free aurora kinase

B inhibitor (AZD1152). Moreover, this formulation also

demonstrated a transient cellular reduction in the bone marrow,

which may have a potential agent for targeting residual dis-

ease.93 There are 2 clinical trials ongoing for evaluating the

safety, tolerability, and pharmacokinetics of AZD2811

(NCT02579226, NCT03217838). Poly(lactide-co-glycolide is

a FDA-approved polymer widely used as a nanocarrier. Simon

et al94 developed a PLGA polymeric NPs-encapsulated all-

trans-retinoic acid (ATRA), which prolonged the drug release

and induced differentiation as well as inhibited proliferation in

AML cells. A PEG-PLGA polymeric micelle loaded with edel-

fosine and conjugated with transferrin was designed by Sun and

Sun.95 This formulation prolonged blood circulation, leading to

a continuous drug release and biological activity maintenance,

which resulted in a higher cytotoxic effect and apoptosis in

K562 cells. Zhu et al96 designed a PLGA and Pluronic85 copo-

lymeric NP encapsulated with doxorubicin and grafted with

transferrin, which was further evaluated in AML cell lines and

relevant animal models. This formulation led to a reduction of

tumor volume in vivo and an enhancement of cytotoxicity in

doxorubicin-resistant cells. A polymeric NPs-loaded specific

CD-44 siRNA was designed and performed in vitro.97 It was

demonstrated to inhibit stem cells–progenitor cells interactions

and sensitize chemotherapies by silencing and decreasing

CD44 surface levels in AML cell lines, which induced apop-

tosis and decreased adherence of primary AML cells to bone

marrow mesenchymal stem cell. Chandran et al98 developed a

PLGA polymer–protein core–shell formulation, loaded with

everolimus, sorafenib, and inhibitors of mTOR, MAPK, and

STAT5, additionally conjugated with anti-CD33 antibody. The

result showed that it could cause synergistic lethality against

leukemic cells by simultaneous inhibition, without affecting

normal blood cells.98 Recently, another methoxy PEG-PLGA

polymeric NP with encapsulated idarubicin was synthesized.

The study demonstrated that, compared with free idarubicin, it

could decrease cell proliferation and induce apoptosis more

remarkable in vivo, and improve the OS more significantly in
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murine models.99 PCX is a polymeric NP loaded with

AMD3100, a FDA-approved CXCR4 inhibitor and carrying

siRNA simultaneously. This PCX/siRNA nanomedicine

exerted a higher cytotoxic effect on AML cell lines compared

to other CXCR4 inhibitors. In addition, it could deliver siRNAs

against the transcription factor RUNX1, which was typically

required in AML subtypes.100

Micelles are promising copolymers nanomaterial composed

of hydrophobic core and hydrophilic corona, which are good

candidates for encapsulating hydrophobic anticancer agents

and ensuring solubility.101
L-PLA micelle formulation of pacli-

taxel (Genexol-PM), docetaxel-loaded polymeric micelle

(NanoxelM), and paclitaxel micellar (Paclical) have been

approved and used in clinic for the treatment of various types

of cancers, such as breast cancer, ovarian cancer, and lung

cancer, however, not yet in AML.102-104 Dextran is a polymeric

micelle loaded with doxorubicin and grafted with folic and

retinoic acid. The cytotoxicity of dextran was higher in KG-1

cells than free drug, which reduced approximately half of

IC50.105 SP1049C is another micellar formulation of doxorubi-

cin based on pluronic, which has completed phase II trials in

patients with advanced esophagus and gastroesophageal junc-

tion adenocarcinoma. Alakhova et al106 compared antitumor

activities of SP1049C with doxorubicin in P388 murine leuke-

mia ascitic tumor model. The tumor formation frequency and

aggression were much more reduced in SP1049C group than

that in control group. Further evaluations are needed for clin-

ical application in AML.

Dendrimers are spherical polymers composed of a central

core, multibranches, and an outer layer with functional groups,

which could conjugate with charged polar molecules through

electrostatic interaction by outer layers and encapsulate

uncharged molecules by hydrophobic inner.107 These proper-

ties of dendrimers enable covalent attach to hydrophobic antic-

ancer agents and increase bioavailability. There is no clinical

trial and few in vivo studies for AML associated with dendri-

mer formulations. The cytotoxicity and apoptosis of a dendri-

mer NPs encapsulated with cytarabine was assessed in 1301

and HL-60 cell lines previously, which showed an enhance-

ment compared to free drug.108

Metallic nanomedicines in AML therapy. Metal NPs, such as gold

or silver, which are inorganic and nontoxic nanomaterials, have

been considered to be useful candidates in cancer therapy for

attaching and delivering drugs by use of surface plasmon reso-

nances and photophysical properties.109 There is no metallic

nanomedicine under clinical trials to date, although quite a few

preclinical studies have reported for AML indications. A gold

NP loaded with tyrosine kinase inhibitors was designed and

showed an increased efficacy compared with free drug.110

Another study newly synthesized a gold NP with adsorbed

high-density lipoprotein loaded with BMS309403 (BMS), an

AML-promoting factor fatty acid–binding protein 4 inhibitor.

The result showed this formulation could induce cell differen-

tiation and reduce progression of AML.111

Lipid-based nanomedicines in AML therapy. Lipid NPs are designed

to encapsulate lipophilic drugs.112 Currently, there is no lipid-

based nanomedicines approved in clinical trials for AML, as

some sporadic experimental reported. It is known that sparingly

water solubility has confined clinical applications of etoposide.

Khajavinia et al113 synthesized a lipid NP loaded with etoposide

and conjugated with transferrin. The result indicated an enhanced

cellular uptake and higher cytotoxicity in etoposide lipid–based

NPs compared to that in free etoposide. An ATRA-loaded lipid-

based NP was obtained and showed a significantly suppression in

AML cell lines compared with ATRA in solution.114 Previously,

fingolimod, a sphingosine analog that could activate protein

phosphatase 2A in leukemia, has been demonstrated to be a

potential treatment option for AML.115 A lipid-based NP loaded

with fingolimod was therefore designed. Results showed it could

induce a higher apoptosis and enhance the oral bioavailability

compared with bare fingolimod solution.116

Other types of nanomedicines in AML therapy. Chandran et al117

reported a silico-based nanomedicine loaded with vorinostat,

which showed a selective and superior anticancer activity

against patient with primary AML cells and AML cell lines.

It demonstrated a lower IC50, enhanced histone deacetylase

inhibition, apoptosis, and oxidative injury compared to free

vorinostat, without toxicity to healthy bone marrow. Carbon-

based materials, especially new discovery of grapheme, are

another new kind of organic NPs that possess attachment sites

on surface of ligands and deliver drugs into cytoplasm of can-

cer cells by carbon nanotubes. Currently, to our knowledge,

there is no carbon base nanomedicine detected in AML.

Active Targeting Approaches in AML

In order to improve delivery efficiency and reduce toxicity to

normal cells, there is another type of drug delivery defined as

active targeting, with surface of NPs decorated with different

ligands.53 Ligands typically include peptides, antibodies, folic

acid, retinoic acid, vitamins, and transferrins.118-123 So far,

investigations for AML are still in laboratory stage, and sum-

mary is presented in Table 2.

Table 2. Active Targeting Nanoparticles Investigated in AML.

Nanoparticle Ligand Therapeutic Agents Ref

Liposome Anti-CD33 mAb GTI-2040 16

Polymer Anti-CD33 mAb Ara-C 17

PLGA polymer Anti-CD33 mAb mTOR, MAPK, and STAT5
inhibitor

18

Liposome Anti-CD123 mAb Daunorubicin 20

Niosome Anti-CD123 mAb Daunorubicin 21

Silica Anti-B220 mAb Daunorubicin 23

Liposome Anti-CD45 mAb AntagomiR-126 24,25

Polymer Anti-CD44 mAb siRNA 8

Polymer Transferrin Doxorubicin 27

Micelle Transferrin Edelfosine 28

Abbreviations: AML, acute myeloid leukemia; PLGA, poly(lactide-co-glycolide);
siRNA, small interfering RNA.
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Cell-penetrating peptides (CPPs) are composed of 5 to 30

amino acids and able to carry a variety of cargoes, including

NPs and antisense oligonucleotides. Cell-penetrating peptides

could cross across cell membranes and deliver drugs into cells,

with the advantages of highly selective for tumor site and mul-

tivalent conjugation to anticancer agents.124 The accurate cel-

lular uptake mechanisms of CPPs remain uncertain,

accompanied with 2 major theories. One is energy-

independent endocytic process and directly through the lipid

bilayer, the other is energy-dependent endocytic process.125

There is no report published on nanomedicines equipped with

CPPs in AML to date; however, relevant experimental results

may represent potential strategies for further investigations. A

specific peptide (CP-EPS8-NLS) derived from the nuclear

localization signal of epidermal growth factor receptor path-

way substrate no.8 (EPS8) was synthesized and analyzed in

AML cells as well as related xenograft models, which showed

potential cytotoxicity effects.126 Agarwal et al127 evaluated the

specificity and efficacy of a CPP OP449 in antagonizing SET

oncoprotein in AML cells and animal models. It has been

reported the CPP inhibitor of mucin 1-C-terminal subunit

(MUC1-C) oncoprotein could arrest tumor cell growth, induce

late apoptosis, and increase the reactive oxygen species, which

resulted to induce a terminally differentiated myeloid pheno-

type in AML cell lines.128 Lastly, a research showed CPP inhi-

bitor GO-203 could depress MUC1-C aberrantly expressed in

AML and downregulate the FLT3, which conferred a poor

prognosis in AML.129 Li et al130 indicated that a TLR2-

binding peptide motif (Pep2) could target and penetrate into

AML cells in a dependent manner, thus inducing apoptosis in

AML cell lines as well as patient samples and depressing pro-

gression in TLR2high AML mice. These results indicated sev-

eral optional CPPs for further investigations in AML.

Nanomedicines conjugated with antibody can specifically

target on cell-surface receptor and delivery drugs into cells.131

GTI-2040 is an antisense oligonucleotide targeting the small

subunit R2 of ribonucleotide reductase, which is underevalua-

tion in clinical trials for AML. It has been known that CD33 is a

membrane receptor expressed by AML progenitors but absent

in normal bone marrow stem cells. GTI-2040-loaded immuno-

liposomes grafted with an anti-CD33 ligand has been synthe-

sized and observed in AML cells as well as related animal

models.82 The result indicated that it significantly downregu-

lated expression of R2 and suppressed cell viabilities in AML

cell lines. Moreover, after combining with Ara-C, there was a

strengthened inhibition in tumor growth and a prolonged sur-

vival time for this immunoliposomal nanomedicine in AML

xenograft model. A CD33-targeted pH-sensitive polymeric

liposome encapsulated with Ara-C was designed and verified

in AML cells, which obviously restrained cell viabilities and

successfully internalized into CD33-positive AML cells. On

the contrary, limited cellular internalization was found in con-

trol liposomes with an isotype antibody.132 As mentioned

above, there was also an anti-CD33 incorporated multi-

inhibitor-loaded PLGA polymer NPs developed.98 CD123,

which is overexpressed on AML cells, has been identified as

a potential target for treatment.133 An anti-CD123 PEGylated

liposomal encapsulated with daunorubicin (CD123-ILP) was

synthesized and assessed in several AML cell lines with dif-

ferent densities of anti-CD123 antibody. CD123-ILP highly

slowed down the growth of CD123þ AML cells and showed

a stable release in vitro.134 Another anti-CD123 niosome for-

mulation loaded with daunorubicin was formed as well. The

result demonstrated improved uptake efficiency than free anti-

body drug in AML cells with ligand density dependent. More-

over, it resulted in a higher cytotoxicity and prolonged survival

time in vitro and in vivo treatment of AML.135 B220, also

known as CD45R, is an isoform of CD45. It has been proved

that antigen B220 is specifically expressed on LSCs.136 A lipo-

somal formulation containing antagomiR-126 with ligands of

transferrin or antibody CD45 has been discussed in previous

section.80,81 Recently, an anti-B220-ligand mesoporous silica

NP has been designed to deliver daunorubicin. This drug selec-

tively reduced the growth of B220-positive AML LSCs and

decreased progression in mice model.137

Transferrin, a single-chain iron-transporting glycoprotein

as well as a membrane receptor, is overexpressed on a major-

ity of cancer cells and plays role in mediating intracellular

uptake and regulating cancer growth.138 It has reported a

copolymeric NP conjugated with transferrin was designed to

enhance the antileukemia efficacy of doxorubicin in AML

cell lines.96 There was also another polymeric NPs incorpor-

ating transferrin and edelfosine, which indicated a higher

cytotoxic effect in AML cells.95

Challenges in Clinical Translation of
Nanomedicines for AML Treatment

It has been proved that nanomedicines offer abundant benefits,

such as improving solubility, biocompatibility, bioavailability,

distribution, and stability, as well as reducing toxicity and

MDR, which have shown superior efficacy than conventional

therapeutics. However, it remains difficult to facilitate the

application in clinic. Despite a few nanomedicines approved

and used in solid tumors,139-142 CPX-351 is the only liposomal

formulation approved by FDA to date. There are some risks and

limitations concerning therapeutic effects and safeties due to

the intrinsic physicochemical properties of NPs. Sizes are con-

cerned with circulation time and half-life in blood or organs.

Previous studies have demonstrated that NPs <4 nm may pene-

trate vacuoles and interfere cellular processed, such as meta-

bolism, detoxification, transcription, and gene expression,

including normal cells.143,144 Particles with sizes ranging from

10 to 250 nm could stay in the liver, spleen, kidneys, or other

organs for several months.145,146 Nanoparticles ranging from

15 to 20 nm could penetrate and infiltrate through the blood–

brain barrier and blood–retinal barrier, implicating that

toxicities should be inevitably taken into a consideration.147

Pharmacokinetics, distributions, and toxicities can also be

affected by NPs. Imputable to technology limitations, it is still

difficult to evaluated efficacies in loading or release drug

exactly. After internalized into cells, NPs often face

8 Dose-Response: An International Journal



degradation due to endosomes.148 In addition, there are off-

target risks due to some of the NP–antibody ligands that are

also target on normal cells.149,150 Additionally, NPs may active

immune responses and be cleared by immune cells.151 There-

fore, assessing the toxicity and side effects should be taken

into account before approval and utilize in clinic. Besides the

biological hurdles, there are also technical challenges. It is not

an easy approach to fulfill the producing demand in a manu-

factory rather than in a laboratory, which requires special

production equipment and high manufacturing costs. More-

over, each subtype of NPs offers unique features or charac-

teristics, which means general rules could not be laid down

and massive efforts have to be made for case-by-case evalua-

tion. In vivo tests are essential for clinical translation. How-

ever, the development and progress of tumors in conventional

xenograft models are not spontaneous or humanized during

nanomedicines evaluation in animal models, which are differ-

ent from live cases and deviated from realistic situations.

Consequently, further evaluations are needed for nanomedi-

cines transferring from bench to bedside in AML.

Conclusions

Acute myeloid leukemia has been considered an intricate

hematological malignancy with poor responses and high mor-

talities. Chemotherapies, targeting therapies, and immu-

notherapies are the conventional treatment strategies for

AML. This review summarized current development and

approaches of nanomedicines in AML, including related tech-

nologic rationale, efficacies, safety profiles, and limitations,

which may provide a novel and highlighted therapeutic option

for AML treatment in future. Previous studies have demon-

strated a superior for that NPs can be superior in improving

bioavailability, reducing adverse effects, and circumventing

drug resistances. Liposomal and polymeric NPs have shown

especially promising prospects with advantages of strength-

ened loading ability and drug-release controlling. Chemical

formulations and specific ligands such as antibodies or CPPs

are also in underdevelopment. On the contrary, due to phys-

ical properties, drugs decorated with metal or silica NPs are

less biocompatible and biodegradable, which restrict their

utilization in AML. However, according to encouraging

results in clinical trials, we could inference that NPs may

finally become a promising and clinically acceptable option

in the treatment of AML.
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