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Abstract

Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct
chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the
setting of boundaries. The HS4 insulator element marks the 39 boundary of a heterochromatin region located upstream of
the chicken b-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-
ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive
H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4
chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A
remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 59 boundary
of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for
chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and
H4K20me3 over the entire 50 kb FOLR1 and b-globin region and silencing of FOLR1 expression. These findings show that the
HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and b-globin
gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci
employ H2Bub1-dependent boundaries to prevent heterochromatin spreading.
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Introduction

There is growing consensus that the non-random chromosomal

arrangement of genes in higher eukaryotes enables the sharing of

specific chromatin environments that facilitate co-regulation.

Recent genomic profiling of histone modifications, chromatin

factors and nuclear proximity in Drosophila and mammalian cells

have revealed prevalent organization of genes into domains, or

neighborhoods, of common chromatin state [1–5]. Genes taken

out of their natural chromosomal environment become deregu-

lated in a variety of human genetic diseases [6]. This so-called

chromosomal position effect also underlies the variable expression

of transgenes depending on their site of integration [7].

The maintenance of chromatin domain integrity can require the

setting of boundaries. Boundaries not only allow the partitioning of

gene regulation, but also may also maintain the concentration of

factors required for heterochromatin structures and normal

genome homeostasis [8]. Fixed chromatin boundaries can be

established by DNA sequence elements called insulators, which

function to protect genes from inappropriate signals emanating

from their surrounding environment [9–12]. HS4 is a well

characterized element that has served as a paradigm for the study

of insulators in vertebrates. HS4 lies at a boundary between the

chicken b-globin gene cluster and upstream region of condensed

chromatin that is enriched in the epigenetic hallmarks of

heterochromatin [13–15]. A 275 bp core of the HS4 element

has two separable activities that functionally define insulators: it

can block the action of an enhancer element on a linked promoter

when positioned between the two and it can act as a barrier to

chromosomal position effect silencing [16–18]. The enhancer

blocking and barrier activities of HS4 involve different proteins

and mechanisms and are separable in assay systems. The CTCF

binding site footprint II (FII) is necessary and sufficient for

enhancer blocking, but can be deleted from HS4 without affecting

barrier activity [18–20]. HS4 requires a USF1/USF2 binding site

(FIV) and three VEZF1 binding sites (FI, FIII and FV) for its

barrier activity, which control histone modifications and DNA

methylation, respectively [21–24].

HS4 manipulates histone modification signatures to counteract

gene silencing [22,24]. HS4 has been found to be persistently

enriched in high levels of H3 and H4 acetylation, H3-lysine 4

methylation, H4-arginine 3 methylation and acetylated histone

variant H2A.Z regardless of neighboring gene expression [13–

14,23,25]. We proposed that the active histone modifications at

HS4 collectively act as a chain terminator to heterochromatin

assembly by interfering with the propagation of repressive histone

modifications [24].

Given that chromosomal silencing has been shown to be

processive and stable, we reasoned that the HS4 element needs to

act as a constitutive barrier if it is to effectively shield the locus. In

this study, we address a hypothesis that HS4 might recruit histone

modifications that act as master controllers of the active chromatin
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state to facilitate barrier stability. Intense study in recent years has

begun to unravel the complex language of crosstalk between

histone modifications during the establishment of different

chromatin states [26]. Principal among the active histone

modifications is the monoubiquitination of H2BK120

(H2BK123 in S. cerevisiae), which is required for the tri-methylation

of H3K4 [27–30]. H3K4me3 is a pivotal mark of the active

chromatin state, by acting as a platform for the binding of multiple

histone acetyltransferase, histone demethylase and nucleosome

remodelling complexes [31–33]. We therefore investigate whether

i) H2B ubiquitination directs a cascade of active histone

modifications at the HS4 insulator, ii) this modification is required

for its barrier activity, and iii) the integrity of the 39 chromatin

boundary of the condensed chromatin located upstream of the b-

globin locus. We also extend our analysis to look at the 59

chromatin boundary of the same condensed chromatin and its role

in shielding the FOLR1 gene locus.

Results

Histone ubiquitination is a mark of chromatin boundaries
We sought to address whether histone H2B ubiquitination plays

a key role in establishing and maintaining the boundaries of a

condensed heterochromatin-like domain that separates the FOLR1

and b-globin gene loci. Firstly, we mapped the presence of

ubiquitinated nucleosomes across 50 kb encompassing the chicken

b-globin locus (Figure 1). We established native chromatin

immunoprecipitation (N-ChIP) assays using nucleosomes prepared

by micrococcal nuclease (MNase) digestion of chromatin in low

salt conditions to ensure the retention of potentially unstable

variant nucleosomes found at this locus [34]. We prepared di- and

tri-nucleosomes using a range of MNase concentrations which

ensured that they were representative of open and condensed

chromosomal regions (Figure 1A, data not shown). The N-ChIP

method strips away non-nucleosomal proteins (Figure 1B), which

allows the analysis of ubiquitinated histones using anti-ubiquitin

antibodies. The enrichment of nucleosomes containing the 25 kDa

monoubiquitinated form of H2B was confirmed by western

blotting (Figure 1C).

N-ChIP analysis of histone ubiquitination was performed on

primary red blood cells (RBC) from 10 day chick embryos, in

which the b-globin locus is highly transcriptionally active, but the 59

folate receptor (FOLR1) locus is silent [15,35]. We observe a

striking enrichment of ubiquitinated histones specifically at the

core HS4 insulator element (Figure 1D; p-value from student’s t-

test of enrichment = 2e26). Perhaps surprisingly, no enrichment

of histone ubiquitination was observed at the promoters or

enhancers of the highly active b-globin genes in RBCs. We also

mapped histone ubiquitination in 10 day embryo whole brain

tissue (Figure 1E), where both the FOLR1 and b-globin genes are

reported to be silent [15]. We also observe a specific enrichment of

ubiquitinated histones specifically at the core HS4 insulator

element in brain tissues (Figure 1E, p-value = 6e25). We also

observe significant levels of histone ubiquitination at the FOLR1

gene regulatory elements HSA and HSB in both 10 day embryo

RBCs (Figure 1D, p-value = 0.007) and whole brain (Figure 1E,

p-value = 2e25). These elements are situated between the FOLR1

gene and the condensed region and may harbor chromatin

boundary activity.

We sought to determine which of the well characterized

activities of the 275 bp core HS4 element are required for the

recruitment of histone ubiquitination. We performed N-ChIP

analyses of histone ubiquitination at HS4 insulators present on

single copy transgenes stably integrated into the early erythroid

CFU-E stage cell line 6C2 [18]. We find that transgenic HS4

insulators are enriched in histone ubiquitination at a level

equivalent to the endogenous HS4 element (WT, Figure 1G).

Histone ubiquitination is therefore likely to be recruited by one of

the factors that mediate the insulator functions of the core HS4

element. We performed N-ChIP analysis of single copy transgenic

HS4 elements that are mutated at the CTCF (FII), VEZF1 (FIII)

or USF1 (FIV) binding sites. These mutations have been

extensively characterized and disrupt HS4’s ability to mediate

enhancer blocking, protection from DNA methylation or active

histone modification, respectively [19,21,24]. We find that the

USF1/USF2 binding site, footprint IV, is required for the

recruitment of histone ubiquitination (Figure 1G). This correlates

with our previous finding that the USF site was also required for

H3K4 methylation of the HS4 insulator [24].

RNF20 is required for H2B ubiquitination and trans
histone crosstalk

The histone ubiquitination that is enriched at the HS4 element

may occur on any of the core histones. We anticipated that histone

H2B is subject to this modification as HS4 is constantly enriched

in methylated H3K4 [13,24], and H2BK120 mono-ubiquitination

is required for proper H3K4 methylation [27–30]. Using cross-

linking ChIP with recently developed antibodies, we confirmed

that the core HS4 insulator was enriched in H2BK120ub1 in the

early erythroid CFU-E stage cell line 6C2 (Figure 2A). We were

unable to detect any enrichment of H2AK119ub1 at HS4 or other

b-globin sequences (not shown).

We sought to identify the E3 ligase responsible for H2Bub1 at

the HS4 element so that the effects of depleting H2Bub1 could be

studied. We used crosslinking ChIP analysis to show that RNF20

interacts with the core HS4 insulator element in erythroid cells

(Figure 2B). Chicken RNF20 (BRE1A), is 90% identical to human

RNF20/BRE1A, which is an E3 ligase responsible for efficient

H2B ubiquitination (Figure S1A) [36–37]. The presence of RNF20

Author Summary

The transcription of genes in eukaryotes occurs within the
context of chromatin, a complex of DNA, histone proteins,
and regulatory factors. Whole-genome profiling of chro-
matin proteins and histones that are post-translationally
modified has revealed that genomes are organized into
domains of distinct chromatin states that coordinate gene
regulation. The integrity of chromatin domains can require
the setting of their boundaries. DNA sequences known as
chromatin insulator or boundary elements can establish
boundaries between transcriptionally permissive and
repressive chromatin domains. We have studied two
chromatin boundary elements that flank a condensed
chromatin region located between the chicken FOLR1 and
b-globin genes, respectively. These elements recruit
enzymes that mediate the ubiquitination of histone H2B.
Histone H2B ubiquitination directs a cascade of so-called
‘‘active’’ histone modification events that favor chromatin
accessibility. We observe a striking collapse of the active
histone modification signature at both chromatin bound-
aries following the depletion of ubiquitinated H2B. This
loss of boundary function leads to the comprehensive
spreading of repressive chromatin over the entire FOLR1
and b-globin gene region, resulting in gene silencing. We
propose that chromatin boundaries at many gene loci
employ H2B ubiquitination to restrict the encroachment of
repressive chromatin.

H2B Ubiquitination at Chromatin Boundaries
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therefore suggests that this enzyme is required for the enrichment

of H2BK120ub1 at the HS4 insulator.

Next, we investigated whether H2Bub1 levels can be depleted

following RNAi of RNF20. It was important that we were able to

knockdown RNF20 levels for prolonged periods as this would

allow the study of progressive repression of the b-globin locus and

insulated transgenes. This was achieved in 6C2 cells using a

lentiviral vector system for doxycycline-regulated expression of

miRNA-shRNA (Materials and methods, Figure S1). After four

days of shRNA expression, RNF20 protein levels were reduced to

,20% of wild type (Figure 2C). We saw little change in the whole

cell protein levels of the HS4-binding proteins CTCF, VEZF1 or

USF1. We studied the effect of this short term knockdown of

RNF20 expression on a panel of histone modifications in total

chromatin. We found that H2BK120ub1 levels in chromatin were

reduced by ,80% (Figure 2D). RNF20 knockdown did not affect

H2AK119ub1 levels. This confirmed that chicken RNF20 is a

H2B-specific ubiquitin E3 ligase like its Bre1 orthologs. The

Figure 1. The HS4 insulator is enriched with ubiquitinated histones. A) Sucrose gradient fractionation of native MNase-digested
nucleosomes. Fractions containing di- and tri- nucleosomes (e.g., 5–7) are pooled for ChIP analysis. B) SDS-PAGE analysis of histone purity in di/tri-
nucleosome preparations from 10 day chick embryo red cells (R) and whole brain (B). C) Western blot analysis of mono-ubiquitinated H2B present in
immunoprecipitates from 6C2 cell di/tri-nucleosomes. D, E) Native ChIP of histone ubiquitination at sites across the chicken b-globin gene
neighborhood in 10 day chick embryo red cells (D) and whole brain (E). The enrichment of each sequence is normalized to the background observed
at the downstream inactive OR51M1 (COR39) gene. Significant ChIP enrichments are represented by asterisks (? = p,0.01, ?? = p,0.001 and
??? = p,0.0001). F) Scale map of the chicken b-globin gene neighborhood. The exons of the FOLR1, b-globin (r, bH, bA and e) and OR51M1 genes
are depicted by purple, red and green boxes, respectively. Grey boxes represent CR1 repeat sequences. Light blue boxes indicate ERV1 sequences.
Vertical arrows show early/late erythroid (purple/red) or constitutive (blue) DNaseI hypersensitive regulatory elements. G) The USF site is required for
histone ubiquitination at transgenic HS4 insulators stably integrated into 6C2 cells. Native ChIP enrichments normalized to the endogenous HS4
element.
doi:10.1371/journal.pgen.1002175.g001

H2B Ubiquitination at Chromatin Boundaries
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Figure 2. The ubiquitin ligase RNF20 mediates H2B ubiquitination at the HS4 insulator. Crosslinking ChIP analysis of (A) H2BK120ub1 and
(B) RNF20 enrichment at the chicken b-globin locus in 6C2 cells. The enrichment of each sequence is normalized to the background observed at the
condensed region (15.850). C–E) Analyses of early erythroid 6C2 cells following four days of doxycycline-induced knockdown of RNF20 expression. (C)
Western blotting of whole cell extracts with (+) and without (2) doxycycline-induced RNF20 knockdown. The expression levels of each factor (relative

H2B Ubiquitination at Chromatin Boundaries
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reduction of H2B ubiquitination resulted in substantial reductions

in H3K4me3 (70%) and H3K79me2 (53%) levels, and a minor

reduction in H3K4me2 (20%) (Figure 2D). This demonstrates that

chickens also employ the same trans-histone crosstalk pathways

observed in yeast and mammals [26]. H3K9acK14ac was slightly

reduced (7%), but the levels of other modifications associated with

active or repressive chromatin remained largely unchanged

(Figure 2D).

To determine whether RNF20 was responsible for all the

histone ubiquitination observed at the HS4 and FOLR1 elements,

we performed N-ChIP analysis across the FOLR1 and b-globin

region before and after RNF20 knockdown in 6C2 cells.

Consistent with our observations in primary 10 day embryo

tissues, we find that the HS4 insulator and the FOLR1 HSA/HSB

elements are substantially enriched in histone ubiquitination in

6C2 cells (Figure 2E). In addition, there is elevated histone

ubiquitination across the FOLR1 gene, which is highly active in

6C2 cells, consistent with co-transcriptional deposition (Figure 2E).

We observed a substantial depletion of histone ubiquitination at

the HS4 insulator and FOLR1 HSA/HSB elements following four

days of RNF20 knockdown (Figure 2E; p-values from student’s t-

test of difference between WT and RNF20kd are 2e25 and 0.002,

respectively). We observe similar profiles of RNF20-dependent

H2Bub1 in 6C2 cells (Figure S2). The histone ubiquitination

observed at HS4 and the FOLR1 regulatory elements is therefore

RNF20-dependent H2B monoubiquitination.

Loss of H2B ubiquitination results in a collapse of the
active chromatin signatures at the FOLR1 and b-globin
chromatin boundaries

The HS4 insulator is marked by an assemblage of histone

modifications and variants typically associated with transcription-

ally permissive open chromatin; H3K9acK14ac, H4K5acK8-

acK12acK16ac, H3K4me2, H3K4me3, H4R3me2as, H2A.Z-

K4acK7acK11ac, and H2BK120ub1 [13–14,23] and this study).

This active modification signature is a constant feature of HS4 in a

variety of cell types irrespective of local gene expression. A very

similar chromatin signature is observed at the FOLR1 HSA/HSB

regulatory elements in 6C2 cells. We hypothesize that H2Bub1

may be the keystone for the deposition of the active histone

signature at these elements. We therefore performed N-ChIP

analysis of active and repressive modifications across the 50 kb b-

globin gene neighborhood following short term knockdown of H2B

ubiquitination.

We found that H3K4me2 and H3K4me3 enrichments at the

HS4 insulator element were reduced by 40% and 70%,

respectively, following RNF20 knockdown (21.540, Figure 3A

and 3B). This is consistent with trans H2Bub1-H3K4me3 cross-talk

occurring at HS4 nucleosomes. The depletion of H3K4me at HS4

is specific as the levels observed at the active FOLR1 gene

promoter remain unchanged (5.613, Figure 3A and 3B).

Strikingly, the loss of H2Bub1 also considerably impacts the

hyperacetylation of multiple histones at the HS4 insulator, with

H3ac, H4ac and H2A.Zac reduced by 55%, 60% and 70%,

respectively (21.540, Figure 3C, 3D and 3F). The depletion of

histone acetylation at the HS4 insulator is in contrast to the

relatively unchanged levels of histone acetylation in bulk

chromatin (Figure 2D). We note that very similar depletions in

active modifications are also observed at the FOLR1 gene

regulatory elements HSA/HSB. These regulatory elements may

harbor functional properties similar to those of the HS4 insulator

element. H2A.Z incorporation was mostly unaffected, but there

was a 50% reduction in H2A.Z levels specifically at the core of the

HS4 insulator (21.540, Figure 3E).

We investigated whether the depletion of H2Bub1 and the

resulting loss of the active histone signatures at the HSA/HSB and

HS4 elements affected the containment of the intervening condensed

region. We determined that H3K9me2 and H3K9me3 are restricted

to the condensed region upstream of HS4 in wild type 6C2 cells (8.9

to 17.7, Figure 3G and 3H, not shown). We find that after only four

days of H2Bub1 depletion there is marked encroachment of

H3K9me2 beyond the HS4 insulator. Significant H3K9me2

spreading into the b-globin locus is observed at all sites from the

condensed region to the r-globin gene promoter (Figure 3G).

Significant H3K9me2 spreading is also observed in the other

direction, encompassing the FOLR1 promoter and gene body. No

encroachment of H3K9me3 is observed after short term depletion of

H2Bub1, but there is considerable consolidation of this mark at the

edges of the condensed region (Figure 3H). The heterochromatin

associated mark H4K20me3 is also enriched in the condensed region

and at the 39 end of the FOLR1 gene, but did not spread upon four

days of RNF20 knockdown (Figure S3). Finally, we found that the

gene silencing mark H3K27me3 was present at comparably low

levels across the condensed region and b-globin locus in 6C2 cells,

which did not alter upon RNF20 knockdown (data not shown). In

summary, short term depletion of H2Bub1 is sufficient to disrupt

H3K4me3 at the HSA/HSB and HS4 elements, which results in a

rapid loss of multiple histone acetylation and chromatin boundary

integrity. H3K9me2 appears as the first repressive mark to spread

beyond the defective boundaries of the condensed heterochromatin

region.

Insulator protein complexes remain intact despite
chromatin boundary failure

The comprehensive loss of active histone modifications at the

HS4 boundary following RNF20 knockdown may be due to

reduced binding of the insulator proteins that recruit histone

modifying enzymes. We showed above that the expression of the

insulator proteins is unaffected following RNF20 knockdown

(Figure 2C). We therefore determined the binding of the insulator

factors USF1, CTCF and VEZF1 to HS4 using crosslinking ChIP

analysis before and after the loss of active modifications following

RNF20 knockdown. We find that the binding of each factor is

unaffected following RNF20 knockdown (Figure 4A–4C). We also

discovered that the heterochromatin barrier factors VEZF1 and

USF1 are also stably bound at the FOLR1 HSA and HSB

elements, which contain binding motifs for both factors (Figure 4B

and 4C). The FOLR1 region is not bound by the enhancer

blocking and chromatin looping factor CTCF (Figure 4A). In

summary, the disruption of insulator protein binding is not

responsible for the comprehensive loss of active histone modifica-

tions at the HSA/HSB and HS4 elements.

to the loading control TBP) after RNF20 knockdown are shown. (D) Western blotting of histone modifications present on total nucleosomes with and
without RNF20 knockdown. The levels of each modification after RNF20 knockdown (relative to unmodified H3 loading control) are shown. (E) Native
ChIP of histone ubiquitination at sites across the chicken b-globin gene neighborhood in wild type (red bars) and RNF20 knockdown (blue bars) 6C2
cells. The enrichment of each sequence is normalized to the background observed downstream of the inactive r-globin gene. Significant changes in
ChIP enrichments following RNF20 depletion are represented by asterisks (? = p,0.01, ?? = p,0.001 and ??? = p,0.0001).
doi:10.1371/journal.pgen.1002175.g002
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Figure 3. Loss of H2B ubiquitination results in a rapid loss of active histone modifications at the HS4 insulator. Native ChIP analyses of
early erythroid 6C2 cells following four days of doxycycline-induced knockdown of RNF20 expression. Enrichments of A) H3K4me2, B) H3K4me3, C)
H3K9acK14ac, D) H4K5acK8acK12acK16ac, E) H2A.Z, F) H2A.ZK4acK7acK11ac, G) H3K9me2 and H) H3K9me3 at sites across the chicken b-globin gene
neighborhood in wild type (red bars) and RNF20 knockdown (blue bars) cells. The enrichment of each sequence is normalized to the background
observed downstream of the inactive r-globin gene (34.715). Significant changes in ChIP enrichments following RNF20 depletion are represented by

H2B Ubiquitination at Chromatin Boundaries
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We also addressed whether the depletion of H2Bub1 prevented

the stable recruitment of histone methyltransferase (HMT)

complexes that target H3-lysine 4. Existing models used to explain

trans-tail crosstalk between H2Bub1 and H3K4me3 propose that

the ubiquitination of H2B either regulates HMT residence by

controlling nucleosome stability or creates a binding interface for

HMT binding to chromatin (see discussion). We performed

crosslinking ChIP analysis for RBBP5, a structural component of

the SET1/COMPASS complex that interacts with USF1 [22]. We

find that RBBP5 interacts with the HS4 insulator and the FOLR1

regulatory elements, all of which are sites of H3K4me3. The

binding of RBBP5 to the HS4 or HSA/HSB boundary elements is

not significantly affected by RNF20 knockdown (Figure 4D). The

loss of H3K4me3 upon H2Bub1 depletion is therefore not due to

the decreased residence of the core SET1 complex at HS4.

H2B ubiquitination is required for chromatin barrier
activity

The ability of the HS4 element to shield genes from

chromosomal position effect silencing in a wide variety of systems

is well established [38]. This so-called barrier activity can be

scored using a well established reporter transgene assay in

erythroid cells [17–18,24]. We used this assay to monitor the

expression of a human IL-2R fragment from stably integrated

transgenes (Figure 5A) using flow cytometry over time in culture.

Non-insulated transgenes typically succumb to chromosomal

silencing by 40–60 days of culture, whereas transgenes insulated

by HS4 elements are able to maintain original levels of expression

for 80 days and beyond [18]. We took extensively characterized

stable lines that each contain a single copy of the IL-2R transgene

flanked by paired 275 bp core HS4 insulators. It was previously

determined that transgene expression from these cells remains

constant beyond 80 days of culture, the transgenic HS4 insulators

are bound by CTCF, USF1 and VEZF1 [21], and they are

enriched in H3ac, H4ac, H3K4me [18,24] and H2Bub1

(Figure 1G).

We transduced early passage IL-2R transgenic cells with

lentiviruses that express RNF20 shRNA. The lentiviral miRNA-

shRNA system we employed allowed the stable knockdown of

RNF20 for at least sixty days (validated by Western blotting). We

observed no change in 6C2 cell morphology and only a minimal

reduction in cell doubling during this period (not shown). We

found that four days of RNF20 knockdown had no effect on

transgene expression (day 4, Figure 5B, 5D). The depletion of

H2Bub1 therefore has little direct effect on the transcription rate

of the transgene. However, transgene expression became progres-

sively silenced with continued depletion of H2Bub1, with the IL-

2R expression levels in independent transgenic lines falling by 50–

60% after long term depletion (Figure 5B, 5D). This level of

silencing is less than that observed when flanking insulators are

asterisks (? = p,0.05, ?? = p,0.01 and ??? = p,0.005). The location of the core HS4 insulator (site 21.540) is highlighted in red. Sites within the
condensed region are indicated in panels G and H.
doi:10.1371/journal.pgen.1002175.g003

Figure 4. Loss of H2B ubiquitination does not disrupt the binding of insulator protein complexes at HS4. Crosslinking ChIP analysis of
A) CTCF, B) VEZF1, C) USF1 and D) RBBP5 occupancy at the chicken FOLR1/b-globin loci in 6C2 cells before (red) and after (blue bars) the induction of
RNF20 knockdown.
doi:10.1371/journal.pgen.1002175.g004

H2B Ubiquitination at Chromatin Boundaries
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absent or mutated [18], but is comparable to that observed in cells

transfected with AUSF, a truncated form of USF1 that dominantly

inhibits USF1 function [22]. Thus, constant H2B ubiquitination is

required for HS4 to act as a stable barrier to chromosomal

silencing.

Loss of boundary function leads to comprehensive
spreading of repressive chromatin

It has been postulated that the HSA/HSB regulatory region and

the HS4 insulator might form chromatin boundaries that protect

the FOLR1 and b-globin genes from the encroachment of the

potentially repressive condensed chromatin that separates these

loci [15,24]. We have therefore studied how long term depletion of

H2Bub1 impacts on the containment of heterochromatin

associated marks at these loci. We maintained the induction of

RNF20 knockdown for forty days, which reduced proteins levels to

9% of wild type, compared to 19% seen after four days of

knockdown (Figure 6A, Figure 2C). The prolonged RNF20

knockdown resulted in the depletion of H2BK120ub1 in total

chromatin to 13% of wild type levels (Figure 6B). This in turn,

resulted in considerable reductions in total H3K4me2 and

H3K4me3, reduced by 78% and 77%, respectively (Figure 6B).

Conversely, we observe 43% and 39% increases in the

heterochromatin marks H3K9me3 and H4K20me3 in total

Figure 5. H2B ubiquitination is required for HS4 barrier activity. A) Schematic representation of the IL-2R reporter transgene flanked by
double copy HS4 insulators. B–E) FACS analyses of IL-2R expression in two independent RNF20 knockdown lines over time in culture. B, D) Mean
fluorescence intensity of IL-2R expression in two independently derived RNF20 knockdown lines (blue bars), relative to wild type parental cells (red
bars). C, E) IL-2R fluorescence in the cell lines shown in panels (B) and (D) after 80 and 60 days of RNF20 knockdown, respectively, overlaid with that of
parental wild type (WT) cells.
doi:10.1371/journal.pgen.1002175.g005
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chromatin (Figure 6B). This is in clear contrast to the unchanged

levels of heterochromatin marks after short term knockdown

(Figure 2D). Interestingly, the incorporation of the variant histone

H2A.Z in total chromatin also increased by 24% after prolonged

RNF20 depletion, perhaps to compensate for the gross shift from

active to repressive chromatin across the genome (Figure 6B).

We performed N-ChIP analyses of histone modifications across the

FOLR1 and b-globin loci to determine the effects of long term RNF20

Figure 6. Long term loss of H2B ubiquitination results in a breach of the HS4 chromatin boundary. Analyses of early erythroid 6C2 cells
following forty days of doxycycline-induced knockdown of RNF20 expression. A) Western blotting of whole cell extracts with (+) and without (2)
doxycycline-induced RNF20 knockdown. The expression level of RNF20 following knockdown (relative to the loading control TBP) is shown. B)
Western blotting of histone modifications present on total nucleosomes with and without RNF20 knockdown. The levels of each modification after
RNF20 knockdown (relative to unmodified H3) are shown. C–G) Native ChIP analyses following forty days of RNF20 knockdown. Enrichments of C)
H2BK120ub1, D) H3K4me2, E) H3K4me3, F) H3K9me3 and G) H4K20me3 at sites across the chicken b-globin gene neighborhood in wild type (red
bars) and RNF20 knockdown (blue bars) cells. The enrichment of each sequence is normalized to the background observed at the condensed region
(15.850). Significant changes in ChIP enrichments following RNF20 depletion are represented by asterisks (? = p,0.05, ?? = p,0.01 and ??? =
p,0.005). The location of the core HS4 insulator (21.540) is highlighted in red.
doi:10.1371/journal.pgen.1002175.g006
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knockdown on chromatin domain integrity. Firstly, we confirmed

that H2BK120ub1 was depleted from the HS4 insulator (Figure 6C).

The levels of H3K4me2 and H3K4me3 at HS4 were greatly depleted

(by 80% and 65%, respectively) as a result of the long term depletion

of H2BK120ub1 (Figure 6D, 6E). The loss of active modifications at

HS4 for a prolonged period results in extensive encroachment of the

heterochromatin associated marks H3K9me3 and H4K20me3,

which are normally restricted to the condensed region between the

FOLR1 and b-globin loci. Strikingly, H3K9me3 spreads beyond HS4

to encompass the entire 33 kb b-globin locus (Figure 6F). H3K9me3

spreading is likely to have occurred in the majority of cells in the

population as the enrichment levels over the b-globin locus are

comparable to those in the upstream condensed region. H3K9me3

spreading is also observed in the opposite direction, with significant

increases in this mark over the FOLR1 promoter and gene body

(Figure 6F). Furthermore, H4K20me3 is also observed to spread from

the upstream condensed region to cover the FOLR1 gene in one

direction and as far as the r-globin promoter in the other (Figure 6G).

Loss of boundary function results in FOLR1 gene
silencing

H3K9me2, H3K9me3 and H4K20me3 are widely associated

with gene silencing and heterochromatin formation. The en-

croachment of these marks over the FOLR1 and b-globin genes

following RNF20 depletion may result in the silencing of their

transcription. While the b-globin locus is becoming primed for

expression at the CFU-E progenitor stage represented by 6C2

cells, the b-globin genes themselves are not expressed until terminal

differentiation [15,35]. 6C2 cells cannot be induced to terminally

differentiate, so we are unable to study the impact of heterochro-

matin spreading on the activation of b-globin gene transcription in

this system. We therefore focused our attention on the expression

of the FOLR1 gene, which is active in 6C2 cells [15]. RT-PCR

analysis shows that FOLR1 expression is not affected by four days

of RNF20 knockdown (Figure 7). This is despite the depletion of

H2Bub1, H3K4me2/3, H3ac, H4ac, H2A.Zac at the HSA/HSB

regulatory region (Figure 3A–3D, 3F) and the encroachment of

H3K9me2 across the FOLR1 promoter and gene body (Figure 3G).

Closer inspection shows that H3K4me2/3 and H4ac of the

FOLR1 promoter are unaffected following short term RNF20

depletion. FOLR1 gene transcription is therefore not directly

dependent upon RNF20 or on maximal active histone modifica-

tions at the HSA/HSB elements. However, we find that FOLR1

gene transcription is progressively silenced with prolonged RNF20

knockdown, with 94% repression observed after sixty days of

knockdown (Figure 7). The silencing of FOLR1 coincides with both

the loss of H3K4me2/3 at its promoter (Figure 6D and 6E) and

the accumulation of H3K9me3 and H4K20me3 over its promoter

and gene body upon heterochromatin spreading (Figure 6F and

6G).

Taken together, these findings demonstrate that the elements

HSA/HSB and HS4 form the boundaries of the condensed

chromatin region between the FOLR1 and b-globin gene loci. They

employ an H2Bub-dependent active chromatin signature that

protects these genes from the encroachment of multiple hetero-

chromatin associated marks. The spreading of H3K9me3 and

H4K20me3 coincides with the silencing of the FOLR1 gene.

Discussion

Similar histone signatures at the FOLR1 and b-globin loci
heterochromatin boundaries

The first high resolution maps of histone modifications across

gene loci during vertebrate development revealed that the well

characterized chromatin boundary marked by the HS4 insulator is

constitutively enriched with histone modifications associated with

open chromatin [13–14]. Here we show that the HS4 insulator is

also constitutively marked by H2BK120 mono-ubiquitination. We

show that RNF20-dependent H2Bub1 is required not only for

H3K4me2/3 at HS4, but also for multiple acetylation of H3, H4

and H2A.Z at this element (Figure 8A). A very similar H2Bub1-

dependent active histone signature is also found at the HSA/HSB

elements upstream of the FOLR1 gene. To our knowledge, this is

the first example of H2Bub1 directing such an extensive cascade of

trans histone tail modifications at specific gene regulatory elements.

HSA/HSB and HS4 mark the 59 and 39 flanks of the condensed

chromatin region between the FOLR1 and b-globin loci, which is

enriched in the epigenetic hallmarks of heterochromatin ([13–15],

this study) (Figure 8B). The loss of the active histone modification

signature at these elements following the depletion of H2Bub1 in

erythroid cells results in the progressive spreading of multiple

repressive histone marks across the entire FOLR1 and b-globin loci.

These findings clearly demonstrate that the elements HSA/HSB

and HS4 form the boundaries of the condensed chromatin region

between the FOLR1 and b-globin gene loci. The ability of the HS4

insulator to shield transgenes from chromosomal silencing in a

wide variety of systems is well established [38], but this study

provides firm evidence that HS4 functions as a chromatin

boundary element in its endogenous context. Both the endogenous

and transgenic HS4 elements require continued deposition of

H2Bub1 to maintain chromatin boundary integrity and chromo-

somal position effect protection, respectively.

It has been unclear for some years how the FOLR1 gene locus is

defended from heterochromatin spreading. An earlier study

demonstrated that a 3.7 kb region that encompasses the FOLR1

promoter and upstream regulatory elements is capable of directing

strong copy number-dependent expression of randomly integrated

transgenes in chicken erythroid cells [15]. This fragment contains

the major promoter-proximal element HSA and an additional

DHS, which we have named HSB (Figure 1F). The elements may

harbor locus control region (LCR)-like enhancer and/or chroma-

tin boundary activities. Our observations are consistent with the

latter. We find that the HSA and HSB elements are bound by the

HS4 barrier proteins USF1 and VEZF1, they recruit RNF20 and

the SET1 complex and establish an H2B-dependent active histone

Figure 7. FOLR1 expression is silenced following prolonged
RNF20 depletion. Transcript levels of RNF20 and FOLR1 in 6C2 cells
following either 4, 30 or 60 days of doxycycline-induced RNF20
knockdown. Transcript levels are normalized to b-actin (ACTB) and are
shown relative to wild type 6C2 cells treated with doxycycline.
Significant changes in mRNA levels in knockdown cells are represented
by asterisks (? = p,0.05, ?? = p,0.01 and ??? = p,0.005).
doi:10.1371/journal.pgen.1002175.g007
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modification signature. These molecular features mirror those at the

HS4 element. A key different between the HSA/HSB and HS4

boundary elements is the absence of CTCF binding at the FOLR1

boundary. This indicates that CTCF is not required to act a barrier to

the spreading of heterochromatin from the condensed region. This is

consistent with our previous findings that the CTCF binding site of

the HS4 insulator is dispensable for its ability to act as a barrier to

chromosomal silencing in different assay contexts [18,20].

The modification of histones at chromatin boundaries is

conserved across eukaryotes. It is well established that several

histone acetyltransferases (HATs) are required for heterochroma-

tin boundary integrity in budding yeast [10,39–40]. Indeed,

artificial tethering of HAT chimeras is sufficient to create synthetic

barriers to heterochromatin-mediated gene silencing [41]. It has

also recently been found that the ILB barrier element at the

Drosophila reaper locus also recruits histone acetylation [42]. Our

observations that the depletion of multiple histone acetylation

marks results in chromatin boundary failure at the chicken FOLR1

and b-globin loci adds further support for a conserved role for

active histone modification in chromatin boundary formation. The

finding that multiple active histone modifications at the HSA/

HSB and HS4 elements are directly or indirectly dependent upon

prior H2B ubiquitination is particularly striking. Given the

conservation of the factors that mediate H2B ubiquitination and

the trans-histone H2Bub1-H3K4me3 pathway, we anticipate that

this modification will be employed at boundaries across eukary-

otes. The finding that artificial tethering of Lge1, a factor required

for H2B ubiquitination and H3K4/K79 methylation, is sufficient

Figure 8. H2B ubiquitination in the establishment of a chromatin boundary. A) HS4 lies at the boundary between the b-globin locus and an
upstream region of condensed chromatin enriched in multiple repressive histone marks (blue). H2B ubiquitination at the HS4 insulator is mediated by
the E3 ligase RNF20 and is dependent upon the USF binding site. H2Bub1 is required for H3K4me3 mediated by the SET1 complex and multiple
histone acetylation at two or three nucleosomes around HS4 (green). B) Scale schematic diagram summarizing the extent of chromatin domains at
the FOLR1 and b-globin loci mapped in wild type 6C2 cells (top panel) and cells following short-term (middle panel) and long-term (bottom panel)
depletion of RNF20. Sequences enriched with H3K4me3, H4K20me3, H3K9me3 and H3K9me2 are represented by green, purple, dark blue and light
blue rectangles, respectively. Faded green depicts the depletion of H3K4me3 at the boundary elements following RNF20 knockdown. Arrowheads
depict the encroachment of heterochromatin marks.
doi:10.1371/journal.pgen.1002175.g008
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to create a synthetic barrier to heterochromatin-mediated gene

silencing in budding yeast supports this view [41,43].

A number of budding yeast boundary elements are also

associated with regions of nucleosome depletion and elevated

histone turnover [40,44–45]. This may be related to the

incorporation of the histone variant H2A.Z, which supports

heterochromatin boundary integrity [10,46]. However, we did not

observe any extensive depletion in histone density at the chicken

HSA/HSB or HS4 chromatin boundaries (not shown). Further-

more, we found that the incorporation of H2A.Z at these

boundaries remains intact following RNF20 knockdown and the

loss of active modifications. Further studies are required to

determine the role of H2A.Z at these elements, but it is clear that

H2A.Z incorporation is not sufficient to prevent the spread of

heterochromatin into the FOLR1 and b-globin loci.

Histone crosstalk and chromatin boundary formation
We have shown that the trans histone modification pathway

from H2Bub1 to H3K4me3 reported in yeast and man is also

conserved in chicken. How the mono-ubiquitination of H2B

facilitates H3K4me3 has been subject to intense study over the last

few years. Three models have arisen to explain this pathway. The

‘wedge’ model postulated that the bulky ubiquitin moiety would

increase the access of H3K4 methyltransferases by non-specifically

disrupting chromatin fiber packing in some way [47–48]. This

simple mechanism appears improbable as substitution of ubiquitin

with the bulkier SUMO moiety at the equivalent residue of H2B

does not recapitulate H2Bub1-directed trans tail crosstalk in S.

cerevisiae [49]. In contrast, a ‘stability’ model was recently put

forward in response to findings in S. cerevisiae that H2Bub1

promotes nucleosome reassembly following RNA polymerase II

transcription and enhances global nucleosome stability [49–51]. It

is proposed that H2Bub1 may restrict the eviction of the H2A/

H2B dimer from nucleosomes, thereby increasing the nucleosomal

residence of the SET1/COMPASS methyltransferase complex

which interacts with basic and acidic patches on H2A and H2B,

respectively [52–53]. In this study, we found that the interaction of

RBBP5 (SWD1), a core component of the SET1 complex remains

bound at the HS4 insulator following the depletion of H2Bub1.

The loss of H3K4me2/3 cannot be explained by the decreased

residence of SET1 complexes.

Recent studies provide compelling evidence that H2Bub1 acts

as ‘bridge’ to facilitate H3K4me3. The core SET1 complex can

interact with chromatin and mediate H3K4 mono-methylation in

the absence of H2B ubiquitination [54]. However, it has been

found that the accessory COMPASS subunit Cps35/Swd2 in yeast

(WDR82 in humans) interacts with H2Bub1 and activates the

processive H3K4 methyltransferase activity of the SET1 complex

[55–56]. While the composition of SET1 complexes in chickens

remains to be determined, our data are consistent with a

mechanism of H2Bub1-directed activation of pre-loaded SET1

complexes to facilitate processive H3K4 methylation. The loss of

H3K4me2/3 upon the depletion of H2Bub1 is likely to be the

primary reason for the subsequent losses of multiple histone

acetylation at the HS4 insulator. Methylated H3K4 is a pivotal

recognition site required by multiple histone acetyltransferase

complexes [57–60]. H3K4me3 also facilitates the recruitment of

the NURF chromatin remodelling complex via its BPTF subunit

[22,61].

Trans factor-directed H2B ubiquitination at chromatin
boundaries

The mono-ubiquitination of H2B is broadly recognized as a

mark of transcriptional activity [30]. H2Bub1 is enriched in the

bodies of expressed genes throughout yeast and mammalian

genomes [62–63], and the bulk of H2Bub1 requires many factors

involved in the early steps of transcription elongation [30]. While

the HS4 insulator has the epigenetic chromatin signature of a

housekeeping promoter, it lacks either promoter or enhancer

activity [64]. In addition, HS4 is not bound by RNA polymerase II

(Figure S4) and is not a source of transcripts [22,65]. It therefore

appears most likely that HS4 recruits H2Bub1 through a process

that is not linked to transcription. We found that the recruitment

of H2Bub1 to HS4 is dependent upon the USF1/USF2 binding

site. While we have been unable to detect RNF20 in stable

complexes with USF1 or USF2 (data not shown) [22], this is

reminiscent of activator-dependent recruitment of Bre1/RNF20 to

yeast and human promoters [66].

In addition to the recruitment of the E3 ubiquitin ligase RNF20,

the HSA/HSB and HS4 boundary elements also require sufficient

activity levels of the E2 conjugase RAD6 to enable sufficient levels

of H2Bub1 for chromatin boundary stability. There are two broad

mechanisms that could result in the persistent H2B ubiquitination

of the HS4 insulator. Firstly, the HSA/HSB and HS4 elements

might not be subject to the rapid turnover of H2Bub1 associated

with promoter clearance and transcription elongation [66–67].

Such a scenario would negate the need for the co-transcriptional

stimulation of RAD6 conjugase activity [68], as low efficiency

H2B ubiquitination may be sufficient for high steady state levels of

H2Bub1 at HS4. Alternatively, HS4 may recruit factors that

mediate RAD6 phosphorylation in the absence of RNA

polymerase to stimulate efficient H2B ubiquitination of this

element.

Heterochromatin spreading beyond defective
boundaries

Depletion of H2Bub1 disrupts the assembly of the active histone

modification signatures at the HSA/HSB and HS4 boundary

elements. This results in progressive spreading of heterochroma-

tin-associated histone marks into the FOLR1 and b-globin loci

either side of the condensed region. We find that the heterochro-

matin-associated marks H3K9me2, H3K9me3 and H4K20me3

are propagated in a continuous manner from the upstream

condensed region into the FOLR1 and b-globin loci. The

heterochromatin domain expands from a ,10 kb domain of the

condensed region to cover the entire ,50 kb FOLR1 and b-globin

region given time (Figure 8B).

Intriguingly, each of the three repressive marks at the b-globin

locus spreads in a different temporal manner, suggesting that

different enzyme complexes are involved in propagating these

marks. The first repressive mark to spread is H3K9me2, which

propagates over the entire FOLR1 locus and extends 14 kb into the

b-globin locus after only four days of H2Bub1 depletion (Figure 8B).

Conversely, H3K9me3 and H4K20me3 do not extend beyond the

upstream condensed region at this early stage, but H3K9me3

appears to consolidate at the borders of the condensed region.

However, both H3K9me3 and H4K20me3 spread into the FOLR1

and b-globin loci upon longer periods of H2Bub1 depletion.

H3K9me3 uniformly spreads to encompass the entire ,50 kb

FOLR1 and b-globin region, while H4K20me3 spreads into a ,
30 kb region covering the entire FOLR1 locus to the rho gene

promoter (Figure 8B).

Several mechanisms have been proposed to explain the

spreading of repressive chromatin [69]. Given that the de novo

repressive marks in the FOLR1 and b-globin loci manifest as

continuous domains with consistent modification levels through-

out, we speculate that the marks are propagated via linear cis-

spreading mechanisms. The simplest way to rationalize all our
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findings is that the spreading occurs using a classical stepwise

assembly mechanism, where sequential iterations of repressor

protein binding and methyltransferase recruitment propagate the

repressive methyl mark onto neighboring nucleosomes. The ability

of HP1 adaptor proteins to recognize H3K9me3, interact with

H3K9 and H4K20 methyltransferases and spread from sites of

recruitment is a potential example of the self-reinforcing repressor

interactions that may occur at the FOLR1 and b-globin loci [70–

72]. Stepwise assembly mechanisms are consistent with the

observed sequential pathway of repressive chromatin modification.

It is possible that the propagation of H4K20me3 might require

prior H3K9me3, which requires prior H3K9me2 at this locus.

While further investigations will be required to define the exact

pathway of repressive mark assembly, it is clear that HS4 acts a

chain terminator to heterochromatin spreading by using a panel of

active histone modifications, which collaborate to block and

inhibit repressive histone methylation.

There may be a role for RNA-directed heterochromatin

assembly at the FOLR1 and b-globin loci. It was recently shown

that the maintenance of heterochromatin region’s condensed

conformation requires RNAi factors [65]. This suggests conserva-

tion with mechanisms employed in fission yeast where RNAi

factors work together with heterochromatin proteins including the

HP1 homolog Swi6 to mediate heterochromatin establishment [8].

However, RNAi factors are dispensable for the maintenance of

heterochromatin [73]. It remains to be investigated whether RNA

and RNAi factors play a role in heterochromatin spreading in

higher eukaryotes.

It is also conceivable that the continuous spreading of

heterochromatin is dictated by the three dimensional organization

of the FOLR1 and b-globin loci. If these gene loci are insulated from

the upstream condensed region by positioning into different

nuclear compartments, disruption of the active signature at the

HSA/HSB and HS4 boundaries may result in the transfer of most

or all the FOLR1 and b-globin loci into a repressive compartment.

Such a scenario appears complex, however, as it would require the

sequential transfer of these loci into different compartments rich in

H3K9me2, H3K9me3 and H4K20me3 methyltransferases.

There is a paucity of information about the elements that form

chromatin boundaries in vertebrates. Our finding that the HSA/

HSB and HS4 boundary elements employ H2B ubiquitination to

direct a cascade of active histone modifications suggests that

genomic profiling of chromatin signatures will be a useful

approach to identifying boundary elements. We note that there

was a gross increase in total heterochromatin marks results when

H2Bub1 is depleted for long periods. This observation suggests

that many loci employ H2Bub1-dependent boundaries to

heterochromatin spreading. It will be interesting to see whether

other chromatin boundaries in vertebrate genomes also require

such a large complement of active marks or employ a more

restricted palette to deal with locus-specific threats.

Materials and Methods

Antibodies
Antibodies against H3K4me2 (07-030), H3K4me3 (05-745R),

H3K9me3 (07-523), H3K27me3 (07-449), H3 (07-690),

H3K9acK14ac (06-599), H4K5acK8acK12acK16ac (06-598),

H2AK119ub (05-678), H2A.Z (07-594) and CTCF (06-917) were

obtained from Millipore. Antibodies against H3K9me2 (ab1220),

H3K79me2 (ab3594), H3K79me3 (ab2621), H2A.ZK4acK7-

acK11ac (ab18262), PAF1 (ab20662), RPB1 (ab5408) and TBP

(ab51841) were obtained from Abcam. Antibodies against

H4K20me3 were a kind gift from Judd Rice [74]. Antibodies

against ubiquitin (sc-8017), (BML-PW8805) and USF1 (H00007391-

A01) were obtained from Santa Cruz, Enzo Life Sciences and

Abnova, respectively. Antibodies against RNF20 (A300-715A) and

RBBP5 (A300-109A) were obtained from Bethyl Laboratories. Anti-

H2BK120ub1 antibodies were initially a kind gift from Moshe Oren

[62] then purchased from Médimabs (MM-0029) or Millipore (17-

650). Anti-VEZF1 antibodies were raised as described [21]. PE

conjugated anti-CD25 (IL-2R) was obtained from Dako.

Crosslinking chromatin immunoprecipitation
Chicken 6C2 erythroleukaemia cells were grown in aMEM

supplemented with 10% FCS, 2% chicken serum, 1 mM HEPES,

25 mM b-mercaptoethanol and 1% Penicillin/Streptomycin

solution. Crosslinking chromatin immunoprecipitation was per-

formed as described previously [Litt et al, 2001]. Briefly, 6C2 cells

(26107 cells/ml) were crosslinked in fresh growth medium with

1% formaldehyde at room temperature for 20 minutes (RNF20,

PAF1 and RBBP5), 10 minutes (CTCF, USF1 and VEZF1) or 2

minutes (H2Bub). Reactions were quenched by adding glycine to a

final concentration 0.125 M. The crosslinked cells were washed by

PBS twice and then lysed (0.25% Triton X-100, 10 mM EDTA,

0.5 mM EGTA and 10 mM Tris pH 8). Cell nuclei collected by

centrifugation were washed (0.2 M NaCl, 1 mM EDTA, 0.5 mM

EGTA and 10 mM Tris pH 8) followed by chromatin solubiliza-

tion (0.5% SDS, 10 mM EDTA and 50 mM Tris pH 8).

Chromatin was fragmented by sonication (Misonix) for a total

time of 10 minutes in regular 10 second pulses. Insoluble material

was removed by centrifugation at 15,000 g for 10 minutes at 4uC.

Sizes of chromatin fragments were ,500 bp on average.

Soluble chromatin was diluted by X-ChIP buffer (1.1% Triton X-

100, 1.2 mM EDTA, 167 mM NaCl, 0.01% SDS and 16.7 mM Tris

pH8) to obtain chromatin from 16107 cells per ml. 1 ml of chromatin

was pre-cleared with 5 mg of non-immune IgG and 100 ml (50%

slurry in X-ChIP) of protein A/G agarose at 4uC for 3 hours. 10 mg

of specific antibody was incubated with pre-cleared chromatin at 4uC
with agitation overnight. Binding of protein A/G agarose was carried

out at 4uC for 2 hours. The agarose was washed extensively with

buffer 1 (1% Triton X-100, 0.1% SDS, 2 mM EDTA, 150 mM

NaCl and 20 mM Tris pH 8), buffer 2 (1% Triton X-100, 0.1%

SDS, 2 mM EDTA, 500 mM NaCl and 20 mM Tris pH 8), buffer 3

(0.25 M LiCl, 1% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA,

10 mM Tris pH 8) and twice with TE buffer (10 mM Tris pH 8,

1 mM EDTA). The bound chromatin was eluted into elution buffer

(1% SDS, 0.1 M NaHCO3), crosslinks reversed and protein digested.

DNA was extracted by phenol/chloroform and ethanol precipitated

in the presence of 10 mg of glycogen for quantitative PCR (qPCR)

analysis.

Low-salt native chromatin immunoprecipitation
Circulating red blood cells and whole brain tissue (without

major vasculature) were collected from 10 day fertilized chick

embryos kindly provided by Aviagen, Ltd. Native nucleosomes

were prepared in low salt conditions to ensure retention of all

nucleosomes, as described [34]. In brief, cells were collected in the

presence of inhibitors (25 mg/ml AEBSF, 0.5 mg/ml Leupeptin

and 0.7 mg/ml Pepstatin, 10 mM N-ethylmaleimide and 10 mM

sodium butyrate) and nuclei were isolated by lysis buffer (10 mM

NaCl, 3 mM MgCl2, 0.4% NP-40 and 10 mM Tris pH 7.5) for

MNase (Sigma) digestion in the presence of 1 mM CaCl2. The

MNase concentration (X) required to yield mostly di- and tri-

nucleosomes was firstly determined. For ChIP experiments, three

equal aliquots of nuclei were incubated with KX, 1X and 2X

MNase at 37uC for 17 minutes to obtain representative di- and tri-

nucleosomes [14]. Digestion was stopped with 10 mM EDTA.
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Soluble chromatin was collected by centrifugation at 2,500 g for 5

minutes. The three supernatants were combined (S1). The

remaining pellets were combined and resuspended in lysis buffer

supplemented with 10 mM EDTA and left on ice for 15 minutes.

Chromatin was released by passing through 20 then 25 gauge

needles, and collected by centrifugation at 10,000 g for 10

minutes. The supernatant (S2) was combined with S1 for sucrose

gradient fractionation. ,1.5 mg of S1–S2 chromatin was

fractionated on 13.5 ml 5,25% linear sucrose gradients (Biocomp

gradient master) in a SW40Ti rotor at 31,000 rpm for 14 hours at

4uC. 1 ml fractions were collected and 10 ml aliquots were

extracted for checking DNA fragment sizes. Fractions containing

di- and tri-nucleosomes were pooled and fixed with 0.1%

formaldehyde at room temperature for 10 minutes. The cross-

linking reaction was stopped with 0.125 M glycine. Nucleosomes

were exchanged into N-ChIP buffer (50 mM NaCl, 5 mM EDTA,

10 mM Tris pH 7.5) buffer using P-6DG Bio-Gel (BioRad).

50 mg of nucleosomes were pre-cleared with 5 mg of non-

immune IgG and 100 ml (50% slurry in N-ChIP buffer) of protein

A/G agarose at 4uC for 3 hours. 10 mg of specific antibody was

incubated with pre-cleared chromatin at 4uC with agitation

overnight. Binding of protein A/G agarose was carried out at 4uC
for 2 hours. Immunoprecipitated chromatin was collected and

washed 5 times with 1 ml N-ChIP wash buffer (150 mM NaCl,

0.2 mM EDTA, 0.1% Tween-20 and 20 mM Tris pH 7.4).

Chromatin was eluted with N-ChIP buffer supplemented with 1%

SDS followed by 0.5% SDS. Eluates were digested with Proteinase

K at 45uC for 2 hours and DNA extracted by phenol/chloroform

and precipitated for qPCR analysis.

Quantitative PCR analysis
Relative DNA enrichments were quantified in triplicate by

TaqMan real-time PCR on a Roche 480 Lightcycler. The primers

used in this study were described previously [14,21]. The

comparative Ct method (with correction for primer efficiencies)

was used to calculate fold enrichments and their standard

deviations, as described previously [24]. Two sample equal

variance Student’s t-tests using a two-tailed distribution were

applied to ChIP enrichment values to assess the significance of

enrichments over controls, or changes following RNF20 knock-

down. The calculated p-value ranges for enriched sites are

indicated in the figure legends.

RNA interference
The pSLIK micro RNA-based lentiviral expression system was

used to mediate long term conditional knockdown of RNF20 in

chicken cells [75]. Gene-specific shRNAs are embedded into the

primary transcript of human miR30, which is located in the

39UTR of a doxycycline-regulated GFP transgene. The psm2

shRNA design tool was used to identify 20 potential shRNA

targets (http://hannonlab.cshl.edu). These were scored and four

targets were cloned into pEN_hUmiRc2, packaged into lentivirus

particles and tested for performance as previously described [21].

GgRNF20-2628, which targets CAGAGTAACTAGAGAGAAA,

was the most potent miR-shRNA and was used throughout this

study. Wild type or 8103 (containing a single copy HS4 flanked IL-

2R reporter transgene, [24]) 6C2 cells were transduced with

GgRNF20-2628 lentiviral particles and cloned following flow

sorting or serial dilution. GFP-miRNA expression was induced

with 2 mg/ml doxycycline. GFP expression was monitored by

FACS analysis to confirm expression of the miRNA cassette and

RNF20 protein levels were monitored by Western blotting during

prolonged knockdown time courses.

Western blotting
Nuclear extracts were prepared from cells harvested and washed

with PBS and then lysed with hypotonic buffer (0.2% NP-40,

0.1 mM EDTA and 20 mM HEPES pH 8). Cell nuclei were

collected by centrifugation at 2,500 g for 5 minutes. Nuclear

proteins were extracted by incubation in high salt buffer (0.2%

NP-40, 0.4 M NaCl, 13.3% glycerol and 20 mM HEPES pH 8) at

4uC for 30 minutes. Insoluble debris was removed by centrifuga-

tion at 16,000 g for 10 minutes at 4uC. Soluble nuclear extract was

quantified by Bradford assay (Bio-Rad). 25 mg of nuclear extract

or 7 mg of native S1–S2 nucleosome preparations were used for

separation by SDS-PAGE. Proteins were then transferred to a

PVDF membrane and imaged with HRP-conjugated secondary

antibodies on a LAS-3000 imager (Fujifilm). Band intensities

corrected for background were quantified using AIDA software.

FACS analysis
106 cells were harvested by centrifugation at 1,000 g for 5 minutes.

Cells were washed twice in 1 ml of Hank’s buffered saline solution

(Sigma) supplemented with 0.1% BSA and 0.1% NaN3 (HBSS+).

Cells were resuspended in 100 ml of HBSS+ and incubated with 10 ml

of anti-CD25-PE (Dako) antibody in the dark at 4uC for 30 minutes.

Excess antibody was removed by washing twice with 1 ml of HBSS+.

After the last wash, cells were resuspended in 500 ml of HBSS+ for

FACS analysis. Flow cytometry was performed on a FACSCalibur

flow cytometer (BD Biosciences) using CELLQuest software. RNF20

knockdown cells express GFP upon induction with doxycycline.

Color compensation was used to correct for GFP fluorescence in the

FL2 (585 nm) filter; it was set as FL1 – 1% FL2 and FL2–20% FL1.

Data was acquired for 10,000 viable or GFP-expressing cells (FL1 =

530 nm). Histograms were generated using FlowJo software (Tree

Star, Inc). Mean IL-2R fluorescence intensities of RNF20 knockdown

cells were determined and normalized to those of parental reporter

transgene cells with wild type RNF20 levels.

RT-PCR
Total RNA was isolated from 6C2 cells using TRI reagent

(Sigma) and cDNA prepared using SuperScript III (Invitrogen)

and random hexamers. The following primers were used SYBR

green real time PCR assays:

59 TGCTGCGCTCGTTGTTGA

59 CATCGTCCCCGGCGA

59 ATGCGTCATCTCATCAGCAG

59 TTGGGAAGAAGGGTCATCAG

59 GATTCTGCATGTGCCACTGT

59 AAGACCTGGGTGAAGGGTCT

Supporting Information

Figure S1 Knockdown of chicken RNF20. A) Pairwise align-

ment (http://multalin.toulouse.inra.fr/multalin) of human (NP_

062538.5) and chicken (NP_001026605.1) RNF20/BRE1A. The

conserved RING domain is boxed. The RNF20 antibodies used in

this study were raised against a conserved epitope between

residues 125 and 175. B) RT-PCR analysis of RNF20 knockdown

following doxycycline induction of shRNA expression. C) Western

blotting of 6C2 whole cell extracts before and after doxycycline-

induced RNF20 RNAi. Blots probed with anti-RNF20 (expected

size of 120 kDa) or anti-TBP (expected size of 38 kDa) are shown

with the positions of molecular weight markers (kDa).

(TIF)

Figure S2 The ubiquitin ligase RNF20 mediates H2B ubiquitina-

tion at the HS4 insulator. Native ChIP of H2BK120 monoubiquitina-
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tion at sites across the chicken b-globin gene neighborhood in wild type

(red bars) and RNF20 knockdown (blue bars) 6C2 cells. The

enrichment of each sequence is normalized to the background

observed downstream of the inactive r-globin gene. Significant changes

in ChIP enrichments following RNF20 depletion are represented by

asterisks (? = p,0.01, ?? = p,0.001 and ??? = p,0.0001).

(TIF)

Figure S3 Loss of H2B ubiquitination does not initially affect

H4K20me3 containment. Native ChIP analyses of early erythroid

6C2 cells following four days of doxycycline-induced knockdown of

RNF20 expression. Enrichments of H4K20me3 at sites across the

chicken b-globin gene neighborhood in wild type (red bars) and

RNF20 knockdown (blue bars) cells. The enrichment of each

sequence is normalized to the background observed at the condensed

region (15.850). The location of the core HS4 insulator (21.540) is

highlighted in red. Significant changes in ChIP enrichments following

RNF20 depletion are represented by asterisks (? = p,0.05, ?? =

p,0.01 and ??? = p,0.005). The location of the core HS4

insulator (site 21.540) is highlighted in red.

(TIF)

Figure S4 RNA polymerase II binding at the transcriptionally

active FOLR1 gene in 6C2 cells Crosslinking ChIP analysis of

RNA polymerase II (RPB1 CTD, all forms) occupancy at the

chicken FOLR1/b-globin loci in 6C2 cells. Significant ChIP

enrichments are represented by asterisks (? = p,0.01, ?? =

p,0.001 and ??? = p,0.0001).

(TIF)
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