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Abstract

Bottlenose dolphins (Tursiops truncatus) produce many vocalisations, including whistles that are unique to the individual
producing them. Such ‘‘signature whistles’’ play a role in individual recognition and maintaining group integrity. Previous
work has shown that humans can successfully group the spectrographic representations of signature whistles according to
the individual dolphins that produced them. However, attempts at using mathematical algorithms to perform a similar task
have been less successful. A greater understanding of the encoding of identity information in signature whistles is
important for assessing similarity of whistles and thus social influences on the development of these learned calls. We re-
examined 400 signature whistles from 20 individual dolphins used in a previous study, and tested the performance of new
mathematical algorithms. We compared the measure used in the original study (correlation matrix of evenly sampled
frequency measurements) to one used in several previous studies (similarity matrix of time-warped whistles), and to a new
algorithm based on the Parsons code, used in music retrieval databases. The Parsons code records the direction of
frequency change at each time step, and is effective at capturing human perception of music. We analysed similarity
matrices from each of these three techniques, as well as a random control, by unsupervised clustering using three separate
techniques: k-means clustering, hierarchical clustering, and an adaptive resonance theory neural network. For each of the
three clustering techniques, a seven-level Parsons algorithm provided better clustering than the correlation and dynamic
time warping algorithms, and was closer to the near-perfect visual categorisations of human judges. Thus, the Parsons code
captures much of the individual identity information present in signature whistles, and may prove useful in studies requiring
quantification of whistle similarity.
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Introduction

The complexity of dolphin vocalisations has long fascinated

scientists, and inspired numerous attempts to classify and decode

them. Dolphins and other cetaceans produce a wide range of

vocalisations, including tonal whistles, clicks, and burst pulses.

Several species, including the bottlenose dolphin (Tursiops truncatus)

produce, among others vocalisations, a call that is highly specific to

the individual. These calls have been coined ‘‘signature whistles’’

[1]. Signature whistles are particularly common during capture-

release events [2], when an animal is isolated from its group [3],

and when groups join [4]. Their presumed function is to aid

individual identification and group cohesion, and animals in

captivity have been shown to produce both their own signature

whistles and copies of those of their pool-mates [5,6]. Dolphins

respond preferentially to the signature whistles of familiar

individuals [7], and playback experiments with artificially gener-

ated sounds have shown that animals can distinguish between the

signature calls of different individuals using only the frequency

modulation profile of the tonal elements in the call [13]. This

contrasts with the mechanism of individual recognition in many

other species, in which individuals use information encoded in

acoustic parameters such as call length, scalar measures of

fundamental frequency, and harmonic composition; e.g. red deer

[8] and rock hyrax [9]. However, although it is known that

dolphins use the whistle frequency modulation as a cue in

recognition, it is not known what features of the whistle

modulation encode individual identity.

Several studies have shown that human observers can reliably

identify individual dolphins from a spectrographic representation

of their signature whistles [2,3,10]. The spectrographic represen-

tation is a very different modality (visual) to the original signal

(acoustic), yet it is possible that both dolphin acoustic inspection

and human visual inspection of the calls make use of the same cues

for individual identity. In particular, the spectrogram provides a

strong visual representation of the frequency modulation (FM) of

the whistle, but does not emphasise amplitude modulation (AM)

which is used both in birds [11] and humans [12] to convey

information. This implies that dolphin identity is encoded in FM
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rather than AM (although the possibility of the presence of

redundant information in AM cannot be excluded), and this idea

was confirmed empirically by Janik et al. [13]. Thus, similar to the

situation in bird song research, classification of whistles by eye has

been a common method in signature whistle research.

Several studies have tried to find methods that classify whistles

by other means. A variety of methods have used computer

algorithms to classify whistles in the absence of any information on

the underlying categories used by dolphins themselves. Examples

are correlation of fixed-point sampling [14] and polynomial fitting

[15,16]. However, it is unclear how the resulting whistle types map

onto the whistle categories used by dolphins. In fact, it has been

demonstrated that the correlation of fixed-point sampling cannot

find signature whistle categories [2,10]. Much more successful at

signature whistle classification have been studies that used

dynamic time warping to minimise the total square differences

between frequency profiles [17] or used time warping and an

adaptive resonance theory neural network for classification [18].

However, both are time consuming and potentially use more

information from a whistle than is necessary for successful

classification. A method that tries to minimise the information

needed to classify signature whistles correctly would be helpful for

whistle classification in large data sets and would allow us to

develop testable hypotheses regarding how dolphins may perform

classification themselves.

A fruitful field to use as a basis for this effort might be human

musical recognition and encoding. ‘‘Expert’’ recognition of

musical tunes appears to involve a ‘‘lossy’’ representation of the

original signal, i.e., one where much of the data has been

discarded [19]. A number of these techniques do not preserve the

global characteristics of the tune [20]. Prominent among these is

the Parsons code [21], which has been extensively used for the

retrieval of tunes from music databases [22]. The Parsons code

represents a frequency profile as a series of ‘‘up’’, ‘‘down’’, and

‘‘constant’’ samples, thus recording only the direction of frequency

change. Variations on the Parsons code also indicate the relative

magnitude of the frequency change as well as the direction.

Nonetheless, the Parsons code has been shown to be effective at

capturing the essential information in a tune [22].

If the individual information in dolphin signature whistles is

preserved under a Parsons-type encoding technique, then we

would expect a good clustering performance of Parsons-encoded

whistles, since most machine-learning algorithms can be expected

to benefit when the input data are pre-processed to include only

relevant features [23]. This would in turn imply that these, or

similar features, contain sufficient information to allow dolphins to

identify whistles, whether or not the Parsons-features are actually

used by the animals for decoding. Either way, it would allow us to

develop more effective algorithms for assessing whistle similarity,

by focussing on those elements that are sufficient for the task.

Methods

We reanalysed the same data described in Sayigh et al [2],

which consisted of 400 signature whistles: 20 whistles each from 20

identified individuals. The whistles were recorded in Sarasota Bay,

Florida, using suction-cup hydrophones during brief capture-

release events for health assessments described in [24]. The 20

dolphins were selected randomly from a library of over 150

individuals with at least 200 whistles for each individual, and 20 of

these whistles were selected randomly for each animal. Technical

details on the recording equipment and digitisation can be found

in Sayigh et al [2]. We used a discrete Fourier transform of length

256, with a Hamming window of 1 ms, and 50% overlap to create

spectrograms.

We also reused the visual clustering from 10 inexperienced

human observers (i.e. unfamiliar with data set), as described in the

same study. Each observer was asked to group spectrograms of all

400 whistles into classes by frequency profile similarity, without

having any information indicating how many individual dolphins

were represented, how many whistles there were for each dolphin,

or what guidelines should be used for grouping similar whistles.

For the automatic clustering, we extracted the whistle frequency

profiles obtained by sketching the course of the dominant

frequency manually on the spectrogram, using custom visualisa-

tion software to assist manual whistle tracking. This provided a set

of time-frequency points of variable length, depending on the

duration of the whistle. We then filtered these data using a cubic-

spline technique [25], to capture the essential shape of the whistle

(Figure 1).

We examined three separate metrics for whistle similarity: (1)

the correlation metric (CM) suggested by McCowan & Reiss [14],

(2) a simlarity matrix of time-warped whistles (DTW) [17], and (3)

a Parsons code-like metric (PC) as described below. We then used

three separate clustering algorithms to group together similar

whistles: (a) k-means clustering, (b) hierarchical clustering, and (c)

an adaptive resonance theory neural network ART [26]. We

performed all calculations in Matlab R2012a (Mathworks, Natick,

MA).

For each of the metrics, and each of the clustering algorithms,

we measured the success of the clustering assignment using the

Normalised Mutual Information [27,28]. Normalised mutual

information (NMI) is a single metric that measures how well a

clustering scheme matches the true classes (individual dolphin

identity); NMI takes values near 1 when clusters are each

exclusively composed of a single class, and near zero for random

clusters. NMI is defined as:

NMI~

P
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nk,c log
N:nk,c

nk
:nc
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where nc is the number of whistles from dolphin c, nk is the number

of whistles in cluster k, nk,c is the number of whistles from dolphin c

in cluster k, and N is the total number of whistles. Note that high

values of NMI do not preclude that a particular class be divided

into multiple clusters, but higher scores are obtained when the

number of clusters is close to the number of true clusters.

For the correlation metric (CM), we followed the technique

suggested by McCowan & Reiss [14], and reproduced by Sayigh et

al [2], and sampled the time-frequency curve at 60 equally spaced

time points, to produce a 400660 matrix of feature-space vectors.

We then performed principal component analysis (PCA) to extract

those eigenvectors that best capture the variation in this feature

space, selecting those eigenvectors with eigenvalues greater than

1.0, as suggested by McCowan & Reiss [14]. This led us to select

the 16 strongest features. Since the hierarchical clustering

algorithm requires a proximity matrix rather than a feature-space

matrix, we also calculated a 4006400 proximity matrix using the

Euclidean distance between pairs of the whistles in the 16-

dimensional feature space [29].

The dynamic time-warping (DTW) metric measures the

minimum distance between individual whistles, when the x-axis

(time) spacing between data points is allowed to vary freely (see

Buck & Tyack [17] for a more detailed discussion of the use of

Encoding Identity in Dolphin Signature Whistles
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DTW for cetacean vocalisations). As well as cetaceans, DTW has

been widely used for analysing the vocalisations of birds [30], and

other mammals [31]. This technique gives improved matching

particularly when salient features in the whistle profile (such as

peaks) may occur at slightly different times (Figure 2). We

calculated the DTW metric [32] for each pair of whistles, resulting

in a 4006400 proximity matrix. Since the k-means and ART

clustering algorithms require a feature-space matrix rather than a

proximity matrix, we used multidimensional scaling [33] to

generate a lower dimensional feature space in which the Euclidean

distance between points best corresponded to the proximity matrix

generated by DTW. To maintain consistency with the CM

technique, we fixed the size of this feature space at 16 dimensions.

Note that this treatment of the DTW data is not the same as that

used in ARTWARP [18], another software program used in

cetacean call classification.

To calculate the Parsons code metric, we resampled each

whistle into 10 equally spaced segments, and recorded whether the

mean frequency of each segment was higher (‘‘up’’), lower

(‘‘down’’), or within a tolerance of one pixel (‘‘constant’’) of the

previous segment. We chose 10 segments since this provided a

compromise between loss of information (few segments) and

convergence on the continuous-time analysis (many segments).

This produced a nine digit, base-3 code for each whistle. In a

preliminary investigation, we verified the choice of a 10 segment

code by measuring the clustering success (as measured by the

Normalized Mutual Information using the k-means clustering

algorithm) when the number of segments is varied between one

and 25 (Figure 3). This indicated that a number of segments below

10 or above 20 resulted in decreased performance. We then

compared each pair of whistles and measured the edit distance

using the Needleman-Wunsch algorithm [34,35]. Edit distance

measures the minimum number of insertions, deletions, and

substitutions required to convert one string into another [36], and

has been used previously [37] to create a distance metric between

syntactic sequences in animal vocalisations. As with the DTW

metric, we also generated a 16-dimensional feature-space matrix

using multidimensional scaling.

A number of authors [38,39] have proposed an extension to the

Parsons code in which the relative magnitude of the frequency

change is recorded, in addition to the direction. n-Parsons

encoding uses n levels for either rising or falling frequency. For

instance, a 1-Parsons encoding gives the original ‘‘up’’, ‘‘down’’,

and ‘‘constant’’ codes, whereas in a 3-Parsons encoding, the

frequency change in each segment is assigned to one of three

absolute magnitude groups (i.e. large, medium, and small),

providing a total of seven classes of frequency change: ‘‘large

drop’’, ‘‘medium drop’’, ‘‘small drop’’, ‘‘no change’’, ‘‘small rise’’,

‘‘medium rise’’, ‘‘large rise’’, and therefore a base-7 encoding.

Figure 1. Examples of the spline-smoothed whistles (blue line), on top of manually extracted curves (red points).
doi:10.1371/journal.pone.0077671.g001

Figure 2. An example of the dynamic time-warping matching
of two whistle profiles. The left frame shows the original signals on
arbitrary time and frequency axes. The right frame shows the red
sample having undergone a dynamic time-warping transformation to
produce the minimum least-squares distance from the blue sample.
Note how the spacing of the points in the curve have been varied.
doi:10.1371/journal.pone.0077671.g002

Encoding Identity in Dolphin Signature Whistles
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Following Pauws [38] and Müllensiefen & Frieler [39], we defined

the groups ‘‘large rise’’ and ‘‘large drop’’ as together containing

the 10% largest magnitude changes over the data set as a whole.

Larger n values provide a more faithful encoding of the original

information, but require more storage and processing ability.

Therefore, we considered the lowest n value that results in an

improvement of identity information encoding as the optimum

encoding strategy for this technique. We calculated the n-Parsons

metric where n = [1,8], i.e. base 2n+1 encodings, n = 1 being the

original Parsons code, and selected for further analysis both the

optimum n-value encoding, and the 1-Parsons encoding. In

addition to the CM, DTW, and PC metrics, we also generated a

4006400 random proximity matrix, and its corresponding

400616 feature-space matrix as a control.

We used three separate and very different clustering algorithms

to exclude the possibility of our results arising from the

idiosyncrasy of a particular clustering algorithm; different cluster-

ing algorithms may produce different results when applied to the

same data [29]. First, we applied the k-means algorithm (Matlab

function kmeans), as proposed by McCowan & Reiss [14], and used

by Sayigh et al [2]. We chose to cluster the data into 30 groups,

50% more than the number of dolphins present, to allow for some

variation in signature whistles within individuals, but without

reducing the clustering task to triviality by allowing a very large

number of clusters. The results of the k-means algorithm can be

strongly affected by the choice of the number of clusters, so we

additionally tested the sensitivity of our results using between 5 and

50 clusters for the k-means and other algorithms. This showed

some variation in the final results, but the relative performance of

the different algorithms remained largely unchanged at reasonable

cluster sizes (Figure 4).

For hierarchical clustering, we used the Matlab function cluster,

which performs agglomerative clustering, using a complete (i.e.

longest-distance) linkage map. To retain consistency with the k-

means clustering, we restricted the hierarchical tree to 30 clusters.

We also used an unsupervised neural network clustering

algorithm based on the Adaptive Resonance Theory (ART)

approach [26]. This technique has been used successfully, e.g. by

Deecke & Janik [18], who developed software called ARTWARP,

which combines DTW and ART to cluster cetacean vocalisations.

For our purpose of comparing proximity metrics and clustering

algorithms independently, we used separate implementations of

DTW [32] and ART [40]. However, note that this study does not

include a comparison with the ARTWARP performance since

ARTWARP is generally used with contours sampled every 5–

10 ms and since we treated the DTW data differently from

ARTWARP.

Having generated cluster assignments for all 400 whistles using

each of five metrics (CM, DTW, 1-PC, optimum n-PC, and the

random proximity matrix), and each of the three clustering

algorithms (k-means, hierarchical, and ART), as well as the single

cluster assignment from the visual observers, we measured the

success of the clustering assignment using the Normalised Mutual

Information (NMI).

For analysing the human visual clustering taken from Sayigh et

al [2], we calculated the standard error of the NMI across each of

the observers. For the automatic metrics, we calculated the

standard error on a population of 100 NMI measures, generated

by bootstrapping the whistle data, each time randomly selecting

80% of the whistles. Each of these populations, and the visual

clustering population, were compared using univariate ANOVA

with a post-hoc Tukey test, in IBM SPSS v20 (IBM Corp,

Armonk, NY).

Results

The success of retrieving identity information from n-Parsons

encoded whistles rises sharply for n = 2, and saturates around n = 3

or n = 4 for all clustering algorithms (Figure 5). Although the

change in NMI from n = 1 to n = 2 is fairly small (ART: 8%,

Hierarchical: 14%, k-means: 12%), it is nonetheless quite marked,

and consistent between the different algorithms. We selected n = 3

as the optimum Parsons encoding for the remainder of the

analysis, as it appears to be the lowest n value to maximise success.

Visual clustering produced near-perfect allocation of whistles to

individual dolphins, with NMI values between 0.90 and 0.99

(mean 0.96). All of the automatic metrics produced much lower

NMI values (Figure 6), with the highest NMI obtained from the 3-

Parsons metric using the ART clustering (NMI = 0.77460.001

SE).

The automatic algorithms produced NMI values between 0.52

and 0.79, and all provided better clustering than the random

control matrix. For each of the three clustering algorithms,

analysis of variance (ANOVA) showed a significant difference

between the encoding techniques (ART: F(5,510) = 20758,

p,0.001, k-means: F(5,510) = 40718, p,0.001, Hierarchical:

F(5,510) = 19224, p,0.001). A post-hoc Tukey HSD test showed

that both Parsons code metrics performed significantly better than

the DTW or CM techniques (Figure 6) for each of the clustering

algorithms (p,0.001 in each case). Similarly, the DTW metric

performance was better than CM using the ART clustering,

slightly worse than CM using k-means, and no different with

hierarchical clustering. The post-hoc test also showed that the 3-

Parsons metric gave significantly higher NMI than all the other

metrics, including the 1-Parsons metric, for all clustering

algorithms, and visual classification was significantly better than

all of the automated metrics, for all clustering algorithms (p,0.001

in each case).

Discussion

As noted in previous studies [2], human visual comparison of

spectrograms provides an extremely accurate clustering of dolphin

whistle spectrograms. Of the three metrics we examined, the 3-

Parsons code gave consistently higher scores than the CM or the

DTW approaches, although it was still far inferior to human visual

Figure 3. Sensitivity of the algorithm performance (normalised
mutual information) as the number of Parsons segments is
varied.
doi:10.1371/journal.pone.0077671.g003
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classifications, giving results about 25% less accurate. This

difference was statistically significant in each of three unrelated

clustering algorithms: k-means, hierarchical, and adaptive reso-

nance networks. In contrast, the relative performance of both the

CM and DTW metrics varied according to which clustering

algorithm was used.

Although we do not propose that dolphins make use of a

Parsons-like comparison of whistles to identify individuals, our

bottom-up, or model-based, approach to call categorisation [41]

indicates where sufficient information is encoded, should the

animals take advantage of this mechanism. We attach particular

significance to the fact that the Parsons code provided effective

clustering with very little information. A nine digit 3-Parsons code

can differentiate 79<225 combinations (25 bits), whereas a 60-

point frequency profile on a spectrogram with a frequency

resolution of 128 can differentiate 12860 = 2420 combinations

(420 bits). When reduced by principal component analysis (PCA)

to 16 dimensions, this falls to 12816 = 2112, still far more than the

information contained in the Parsons code. As Beyer et al [23]

showed, clustering with high dimensionality is likely to fail, since

the distance between points becomes indistinguishable in high

dimensional space. Most machine learning approaches attempt to

reduce dimensionality, while retaining discriminating information.

The performance of the Parsons code algorithm strongly implies

that the information captured by this encoding is sufficient for the

differentiation between individuals in this data set. The saturation

of the n-Parsons performance at n = 3 implies that the maximum

amount of identity information that can be encoded by a Parsons

metric can be captured using the 63 notation. It is not possible to

infer biological significance directly from this; however, if animals

were to use such an encoding technique, it would be possible for

them to distinguish 75% of identity information in these signature

whistles by relying on gross segmentation of the whistle profiles

into ‘‘large drop’’, ‘‘medium drop’’, ‘‘small drop’’, ‘‘no change’’,

‘‘small rise’’, ‘‘medium rise’’, and ‘‘large rise’’ segments. Testing

this hypothesis would require playback experiments in which

signature whistles were modified to vary correlation and dynamic

time-warping characteristics, while maintaining Parsons code-like

features.

Fripp et al [42] showed that signature whistles are developed by

dolphins as calves, and appear to be learned from other members

of their community, but with modifications rendering them

individually distinctive. The form of this modification, and how

differences between individuals are encoded, may indicate how

dolphins construct new vocalisations to identify themselves as a

new individual. Many animal species produce vocalisations in

which individuals can be distinguished using the acoustic features

of the call. Koren & Geffen [9] performed discriminant function

analysis on a selection of vocal characteristics, such as element

length and timing, in the calls of the rock hyrax (Procavia capensis)

and used this information to differentiate between the calls of

known individuals. Charlton et al [43] demonstrated that

individual identity is encoded in the amplitude modulation of

the calls of the giant panda (Ailuropoda melanoleuca). However, both

these and most other cases of individual vocal identity appear to

rely on voice cues, which arise as a by-product of anatomical and

physiological differences between individuals [8], usually without

the involvement of vocal learning [44]. In contrast, bottlenose

dolphins encode identity information in the learned frequency

modulation of the signature whistles [13]. Signature whistles are

therefore of particular importance in animal vocal communication

research, as they are an example of ‘‘designed individual

signatures’’ [44], and ‘‘not a by-product of individual anatomical

or physiological differences as in most other animals’’ ([2]),

Figure 4. Sensitivity of the algorithm performance (normalised mutual information) for all metrics (Parsons, DTW, correlation, and
random control), and all clustering algorithms (ART, k-means, and Hierarchical), as the number of clusters is varied.
doi:10.1371/journal.pone.0077671.g004

Figure 5. Normalised mutual information for different n-
Parsons encodings, with each of the clustering algorithms.
Error bars indicate the standard error of the 100 bootstrapped
iterations.
doi:10.1371/journal.pone.0077671.g005
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Both the ability of dolphins to recognize the modulation pattern

of the fundamental frequency [13], and the ability of human

observers to produce accurate clustering of dolphin signature

whistles by visual examination of spectrograms of the fundamental

frequency, imply that sufficient identity information is encoded in

the frequency modulation pattern. However, the mechanism by

which humans cluster whistle spectrograms is unknown. In the

acoustic domain, it has been shown [19,20] that human experts

can recognise musical patterns encoded with highly lossy

techniques such as the Parsons code, and that these encodings

are an efficient way to store the distinguishing features of musical

tunes in a compact database [22], from which retrieval is fast and

reliable. It would therefore not be surprising if animals make use of

similar lossy encodings to distinguish between the calls of

individuals, as this would require far fewer cognitive resources.

However, our current knowledge on whistle classification methods

is equivocal. Ralston & Herman [45] showed that dolphins can

learn to categorise signals by absolute parameter values or by the

frequency modulation pattern of the signal independent of the

frequency band it is in. For signature whistles, Caldwell et al [1]

suggested that dolphins can recognise signature whistles even if

only exposed to a short part of the frequency profile, while Harley

[6] was unable to reproduce this result with a trained dolphin. We

hope that our work will allow new efforts in this direction by

providing testable hypotheses of what features dolphins might use.

Cetacean vocalisations are highly varied and presumably also of

varying function. To analyse these vocalisations and to determine

their significance, it is vital to be able to classify them and

distinguish calls with biologically distinct origins or functions. Such

distinction is necessary to correlate call types with their associated

ethological function. This process is unlikely to be possible unless

we can identify elements of the signals that contain information

relevant to the animals. To develop and test classification methods

we need representative data sets of animal vocalizations. In this

study, we used a data set balanced for sample size that came from

a very specific but artificial context in which dolphins only produce

signature whistles. However, in free-swimming dolphins signature

whistles only account for around 50% [46]. We now need to

conduct further tests on more realistic sets that contain non-

signature whistles and unequal sample sizes for each individual to

evaluate the usefulness of our method in classifying dolphin signals

in the wild. Human visual classification is very successful on such

data sets but is time consuming and does not allow easy

identification of parameters that contribute to class separation.

Automatic techniques such as ARTWARP have been used

effectively in recent studies (e.g. [4,47]) but are still considerably

more cumbersome than visual classification, probably because of

the high dimensionality of the data being presented to machine

learning algorithms. In this study, we used high signal to noise

recordings of known individuals to test a new method of whistle

classification, which revealed elements of whistles that may have

relevance for the way animals perceive them. We hope that our

methods could greatly improve our ability to classify these

vocalisations, and ultimately decode the information content

contained within them.
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