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Brain development and atrophy accompany people’s life. Brain development diseases,

such as autism and Alzheimer’s disease, affect a large part of the population. Analyzing

brain development is very important in public healthcare, and image registration is

essential in medical brain image analysis. Many previous studies investigate registration

accuracy by the “ground truth” dataset, marker-based similarity calculation, and expert

check to find the best registration algorithms. But the evaluation of image registration

technology only at the accuracy level is not comprehensive. Here, we compare

the performance of three publicly available registration techniques in brain magnetic

resonance imaging (MRI) analysis based on some key features widely used in previous

MRI studies for classification and detection tasks. According to the analysis results,

SPM12 has a stable speed and success rate, and it always works as a guiding

tool for newcomers to medical image analysis. It can preserve maximum contrast

information, which will facilitate studies such as tumor diagnosis. FSL is a mature

and widely applicable toolkit for users, with a relatively stable success rate and good

performance. It has complete functions and its function-based integrated toolbox can

meet the requirements of different researchers. AFNI is a flexible and complex tool that

is more suitable for professional researchers. It retains most details in medical image

analysis, which makes it useful in fine-grained analysis such as volume estimation.

Our study provides a new idea for comparing registration tools, where tool selection

strategy mainly depends on the research task in which the selected tool can leverage its

unique advantages.

Keywords: MRI, registration technology, feature comparison, SPM, FSL, AFNI

INTRODUCTION

Image registration plays an essential role in image fusion, pattern recognition, and voxel-wise group
analysis. Establishing correspondences across brains for comparison and group analysis is almost
universally done by registering images to one another directly or via a template. Image registration
is generally categorized into two groups, rigid and non-rigid registration. Rigid registration only
consists of rotation and translation (1). Non-rigid registration is more complex and would take
deformation methods, such as affine transformation and spline transform. There are a large
number of optimized non-rigid registration algorithms and available registration tools, including
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advanced normalization tools (ANTS), analysis of functional
neuroimages (AFNI), automated image registration (AIR), Drop,
FMRIB’s software library (FSL), and statistical parametric
mapping (SPM). Thus, a comprehensive evaluation of different
registration methods has become a research topic of interest.
It is the basis for users to choose the most suitable methods
for the specific research problem and for algorithm developers
to be better informed theoretically (2). However, it is hard to
assess image registration algorithms under different research
contexts accurately. According to literature and survey, the main
obstacles to building a unified evaluation standard of registration
algorithm are as follows:

(1) No ground truth results are supplied in practice. In reality,
the registration results are mainly assessed by an experienced
expert. The lack of golden truth makes the evaluation
research less convincing in terms of data. Also, it is hard to
be flexible and straightforward to evaluate the performance
of registration methods in a complex reality.

(2) Various parameter configurations for registration algorithms
may lead to registered images of different quality.
Experienced investigators can set appropriate parameters
based on images’ information. For the same input image,
the difference in parameter setting would cause different
registered outcomes (3).

(3) The same image data may be processed with different
registration techniques to complete various tasks. Therefore,
the data sets should be classified first and then preprocessed
by other data registration methods according to different
data characteristics.

(4) Data quality and raw data quality substantially impact
registration results, which means that the data received
by the registration program are quite different. The
same algorithm may make a profound difference in the
registration outcome when dealing with data with a
significant quality difference.

Some researchers have done relevant research about the
evaluation and comparison of registration algorithms to
investigate this topic. Hellier et al. compared five different
fully automated non-linear brain image registration software
programs using the quantitative measures (4–6). Klein et al.
evaluated 14 non-linear deformation algorithms applied to
human brain MRI registration on four datasets and ranked these
algorithms (7). Rajagopalan and Pioro investigated disparate
voxel-based morphometry (VBM) results between SPM and
FSL software in patients with ALS to determine which tool
has the best performance of VBM in the ALS disease setting
(8). Most recently, Dadar et al. compared publicly available
linear MRI stereotaxic registration techniques by viewing the
registered images by an expert rater to assess the quality of
the registrations (9). At the same time, Viergever et al. made
a retrospective view on the past two decades of medical image
registration. They mentioned that “validation of registration
methods and translation of image registration research results
to the clinical practice still is the highlighted research and be
more urgent than two decades ago (10).” Meanwhile, Rohlfing
provides experimental evidence that registration accuracy

measures such as tissue label overlap scores, image similarity,
image difference, or transformation inverse consistency
error, even when used in combination, cannot distinguish
accurate from inaccurate registrations (11). Some previous
accuracy standards are no more extended evaluation standards.
Simulated data and a database with expert landmark annotations
have been employed for comparison in the last decade to
measure accuracy.

The registration of brain MRI with common templates is
a long-standing problem. Different individuals’ brain shapes
and cortical topology are very different, especially in diseases
affecting brain morphology and structure, such as brain atrophy.
Previous researches mainly focus on registration accuracies, such
as overlap, volume similarity, and registration error. However,
the choice of registration technology has a more significant
impact on image registration results. Few studies have used
different registration tools to process image features. This means
that the existing studies on the selection of image registration
technology are insufficient. The image registration methods used
in many studies are not standardized, and the accuracy level
after registration is unknown and difficult to be quantified.
Such problems will significantly affect the results of follow-
up research. Therefore, the evaluation of image registration
technology only at the accuracy level is not comprehensive.When
facing different image processing projects, researchers need a
flexible selection scheme to help them select the appropriate
registration technology according to data sets’ characteristics
and personalized needs. Here, we investigate the performance of
three publicly registration tools in two typical different disease
cases, aiming to find a suitable registration tool for different
disease types and research focus. Our research uses ABIDE and
TCGA date sets to conduct experiments and deeply compares
the registration performance of FSL, SPM12, and AFNI. In
addition, we compare the three mainstream image registration
technologies in terms of user experience and recommend them
to different groups.

Our research investigates the registered results in two disease
types, autism spectrum disorder (ASD), and glioma. Glioma
may cause deformation in the morphology of the brain, and
physicians can use high-resolution structural MRI images to
detect the focus of infection and glioma grades. By contrast, ASD
is connected with brain function and emotion and is often a
pervasive developmental disorder. The pathogenesis of ASD is
related to heredity, so the patient would have ASD at a very
young age. The structural MRI and functional MRI images can
be used to diagnose ASD in the clinic. We collect the MRI
image data from public databases to construct our disease dataset.
We do not intend to evaluate accuracy and error by manual
labeling and check which are not available in reality. We plan
to compare the features and characteristics of different tools’
results because registration techniques are designed for follow-up
analysis and application. We focus on the difference in registered
results under various analyses, such as texture and edge-gradient
features, voxel-based morphometry, and the impacts of this
inter-method discrepancy on prediction and detection. From the
application’s perspective, we investigate the difference between
three mature and powerful software to provide instructions for

Frontiers in Public Health | www.frontiersin.org 2 June 2022 | Volume 10 | Article 896967

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chen et al. Smart Registration Methods for MRI

TABLE 1 | Dataset information.

Dataset ABIDE II-ETH TCGA-LGG

Slice thickness (mm) 0.9 2.5

No. of slices 180 69–80

Scan matrix 256 ×256 256 × 256

Repetition time (ms) 8.4 10,002

Echo time(ms) 22 125

No. of scans 31 27

different researchers to select a suitable tool and more quickly get
better achievements.

The structure of our study is as follows: in Materials and
Methods, we describe the data acquisition and registration tools,
then the strategy for data processing, and the ABIDE II and
TCGA-LGG data set used to assess different registration tools.
We focus on the difference in registered results under various
analyses, such as texture and edge-gradient features, voxel-
based morphometry, and the impacts of these inter-method
discrepancies on prediction and detection. As a result, we instruct
different researchers to select a suitable tool and more quickly
get better achievements by investigating the difference between
three mature and powerful software. Finally, in the discussion,
we summarize the current work, emphasize the importance
of selecting appropriate registration methods, and discuss the
limitations and future improvement ideas.

MATERIALS AND METHODS

Data Acquisition and Quality Control
This section introduces the basic information of ABIDE II-
ETH and TCGA-LGG. Table 1 presents the basic information of
the database.

(1) ABIDE II-ETH. Autism Brain Imaging Data Exchange II was
established to further promote discovery science on the brain
connectome in ASD (12). It is a multi-center and multi-
scanner study involving 19 sites, ten charter institutions and
seven new members, overall donating 1,114 datasets from
521 individuals with ASD and 593 controls (age range: 5–
64 years). We select the ETH dataset to finish our research.
There are 37 samples in the ETH set (age range 14–31
years), 13 for ASD and 24 for typical control (TC). Then, we
manually check the ETH dataset to discard the bad quality
image with serious artifacts.

(2) TCGA-LGG. The Cancer Genome Atlas Low-Grade Glioma
(TCGA-LGG) data collection is part of a more significant
effort to build a research community focused on connecting
cancer phenotypes to genotypes by providing clinical images
matched to subjects fromTheCancer GenomeAtlas (TCGA)
(13). It contains CT and MRI data collected from 199
patients, and the number of studies in TCGA-LGG is 224. To
gain the low-level glioma data with the same scan sequence
and quality similar to the autism data set, we manually select

a small part of the subject containing T2-w and T2-Flair
sequence MRI data to finish our research.

Registration Tools
SPM12
The SPM has several versions, and the latest is the SPM12
(14, 15). SPM12 is designed to work with MATLAB to run on
Windows systems, while other similar tools are always supported
by Linux or Mac and are easy to install. If someone is new to
imaging, SPM12 is a recommended choice because plenty of
tutorials give practical instructions on how to implement the
various methodologies.

The spatial normalizationmethod in SPM12 is a unifiedmodel
based on a probabilistic approach. It combines the functions of
image registration, tissue classification, and bias correction in
the same generative model. The model is based on a Gaussian
mixture and is extended to incorporate a smooth intensity
variation and non-linear registration with tissue probability
maps (15).

FSL
FSL is a software package developed by the Oxford Center for
Functional MRI of the Brain (Oxford University), composed of
image analysis and statistical tools for neuroimage data study.
Flirt or Fnirt performed image registration in FSL. Flirt uses a
multi-start, multiresolution global optimization method (16, 17),
tailored explicitly for volumetric registration of brain images to
give a reliable estimate of the worldwide minimum given some
time restriction. The optimization algorithm uses four resolution
levels: n = 8, 4, 2, 1mm. Initially, the procedure starts with
a large-scale search at 8mm resolution (e.g., applying a set
of initial rotations). Following this, various local optimizations
are performed with multiple starting points in the local
neighborhood of the best issues identified in the search. Then
a series of multi-start local optimizations at 4mm resolution
is completed.

AFNI
AFNI is a leading software suite of C, Python, R programs,
and shell scripts primarily developed to analyze and display
anatomical and functional MRI (fMRI) data (18). The software
is made to run on virtually a Unix system with X11 and Motif
displays and is a widely used tool for image preprocessing. There
are plenty of functions to perform registration, e.g., @auto_tlrc,
3dWarp, 3dWarpDrive, 3dAllineate, @toMNI_Awarp,
@toMNI_Qwarp. The common function for registration is
@auto_tlrc. This function is run by default parameters. Here, we
use @auto_tlrc to execute registration (19).

Data Processing
We download data from the website and also check the quality
and image label. After eliminating unqualified data, there are
33 for autism data sets (ASD + TC) and 45 for glioma data
sets (glioma + TC) as a study data source. It is learned from
Table 2 that the available data formats for each tool are not
entirely the same. Firstly, we convert images of DICOM format
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TABLE 2 | Format requirements.

Public tools data format DICOM ANALYZE NIFTI_PAIR NIfTI-1 NIFTI_GZ HEAD/BRIK MINC CTF ASCII

SPM
√ √ √ √

FSL
√ √ √ √

AFNI
√ √ √ √ √ √ √ √ √

FIGURE 1 | Comparison framework.

into NIFTI-1 format. NIFTI-1 format is also the most commonly
used international MRI format.

To explore the features difference among the three tools
registered results, we construct the comparison framework
shown in Figure 1. After organizing the dataset, we execute
the registration step by AFNI, SPM, and FSL. T1-w and T2-
FLAIR images were all registered to the standard space. SPM12
operations are finished on MATLAB R2012a. FSL and AFNI are
installed and run in Ubuntu14 on a virtual machine.

There are three primary features for images: color, texture, and
shape. Here, MRI images are gray images without color features.
We consider volume as one of the evaluation items. Then we will
introduce each item and its measurements.

Textural Feature
A textural feature is a diagnostic tool for physicians when reading
MRI images. Learning from this, Zacharaki et al. extract MRI

texture and shape features, constructing the feature vector to

train a support vector machine (SVM) classifier to classify brain

tumor type and grade (20). A textural feature is usually employed

for tumor grading in tumor studies because it provides fine-
grained, repeatable information. Besides, for autism, commonly

diagnosed by behavioral, chemical, clinical, structural, and
functional changes in the brain, MRI texture represents a

new image feature, which can supplement the traditional

image features (such as volume measurement). Vidhusha and

Anandhan focused on extracting texture features for autistic and

control subjects, and validated them using neural classifiers to
achieve automatic detection of autism (21). Textural features are

extracted from original MRI ROI images rather than registered
results, but here, we explore the textural difference between

results suffering different processing pipelines, and we will do a

single statistical analysis to discuss the significant difference.
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The textural feature has several extraction methods, including
statistical, model, signal processing, and geometric forms. Here,
we choose the gray level co-occurrence matrix (GLCM) proposed
by Haralick et al. regarded as one of the most promising
texture analysis methods (22, 23). It estimates the image
properties related to second-order statistics. GLCM is a joint
distribution describing the gray level of two pixels with a
particular spatial positional relationship. Five derived variables
were calculated from the GLCM matrix, contrast, correlation,
energy, homogeneity, and IDM to investigate the difference
between textural features. Then these computations will be
described in detail next.

Contrast. The deeper the texture groove, the greater the contrast
and the clearer the visual effect; conversely, the contrast is small,
the groove is shallow, and the effect is blurred.

contrast =
Ng
∑

i=1

Ng
∑

j=1

(i− j)2p(i, j) (1)

Correlation. It represents the consistency of the image texture. If
there is a horizontal direction texture in the image, the COR of
the horizontal direction matrix is larger than the COR value of
the remaining matrix.

correlation =

Ng
∑

i=1

Ng
∑

j=1
p(i, j)ij− µxµy

σx(i)σy(j)
(2)

Energy. It is the sum of the squares of the gray level co-
occurrence matrix values, so it is also called angular second
moment, which reflects the uniformity of image gray distribution
and texture thickness. A large energy value indicates a textured
pattern that is more uniform and regular.

energy =
Ng
∑

i=1

Ng
∑

j=1

(p(i, j))2 (3)

Homogeneity. It reflects the density of elements in GLCM relative
to the diagonal distribution of GLCM.

homogeneity 1 =
Ng
∑

i=1

Ng
∑

j=1

p(i, j)

1+
∣

∣i− j
∣

∣

(4)

Inverse Difference Moment. IDM measures the local
homogeneity of an image and reports the inverse difference
moment of an image. IDM weights are the inverse of contrast
weights. It has the value that determines whether the print is
textured or non-textured.

IDM =
Ng−1
∑

k=0

px−y(k)

1+ k2
(5)

Volume Feature
Volume could provide significant information on pathological
study and can capture volume change in the brain. Quantitatively
detecting the density and volume of brain tissue at the voxel
level can reflect the differences in brain tissue components
and characteristics in different brain regions. The latest study
explores that the inter-method discrepancies in brain volume
estimation may drive inconsistent findings in autism (3). In
this part, we employ SPM12 as the brain volume estimation
tool. The images are segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) volume in the native
space to estimate the volume by using the New Segment tool
of SPM12 (6). Spm_get_volumes script is used to calculate the
tissue volumes using c1, c2, and c3 images corresponding to
native space tissue maps of GM, WM, and CSF, respectively.
Native space volumes are selected to minimize volume changes
due to spatial transformations. Total intracranial volume (TIV)
is calculated as the sum of the GM, WM, and CSF volumes in the
native space of the structural MRI images.

Shape Feature
We calculate textural matrix to understand the textural feature
and compare the brain tissue volume estimation, but it is hard to
compare shape differences for shape features. Thus, we employ
machine learning algorithms using shape features as the input
and record the prediction accuracy to evaluate the shape feature
performance. Based on the shape features extracted from MRI,
machine learning algorithms could find the standard classifier
function to distinguish the healthy and disease cases. To capture
shape features in MRI images, we extracted the histogram of
oriented gradient [HOG; (24)], a prominent local image feature
widely used in computer vision applications, fromMRI images to
establish the feature sets. TheHOG technique counts occurrences
of gradient orientation in localized portions of an image. When
studying the brain tumor, the HOG could describe local object
appearance and shape within an image by distributing intensity
gradients or edge directions. Thus, this descriptor can detect the
abnormal edge of the tumor issues and help physicians find the
lesions. About ASD, the HOG descriptor may also find some
markers to distinguish the healthy and disease cases.

Then, the classification method is the support-vector machine
(SVM), the supervised learningmodel. The combination of HOG
and SVM is the classical strategy in object detection, especially in
human detection (24). In the model, the cross-validation (CV)
method is used to evaluate the performance of classifiers trained
by different MRI data sets registered by three tools. The widely
used methods in brain image analysis include leave-one-out
cross-validation (25, 26), leave-two-out cross-validation (27–29),
k-fold cross-validation (1), and stratified k-fold cross-validation
(30, 31). The cross-validation results are conducted from the
strategy that divides the raw data into K groups (K-fold), and
each subset of data is used as a verification set. The remaining
K-1 subset data is used as a training set. Then the K models,
respectively, evaluate the results in the verification set, which
effectively utilizes limited data, and the results are as close as
possible to the model’s performance on the test set. According
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to review studies and previous research, we use stratified ten-
fold cross-validation to measure classification performance. All
operations are performed in python3.7 in Ubuntu14 on a
virtual machine.

RESULTS

Time and Failure Rate
Execution time is a crucial factor that needs to consider, which
can reflect the effectiveness of tools. During the registration step,
we calculate the time in each registration pipeline. Table 3 and
Figure 2 show that AFNI gets the best speed performance and
then SPM12 while FSL is the slowest.

Registration is also regarded as an optimization process,
which means there are failures in this step. We also collect the
failure rate in the registration step. From Table 3, the failure
rate in AFNI is higher than in FSL, and in FSL it is higher
than in SPM. Auto-registration in SPM12 is based on prior
knowledge using the tissue probability map to find the optimum
transformation to achieve high and accurate registration. What is
more, in SPM12, there is no feedback mechanism, and the final
transformed results will be returned, whether good or bad. By
contrast, FSL and AFNI both have the mechanism that if the cost
function cannot be optimized, they will return the failuremessage

TABLE 3 | Time acquisition and failure rate.

ABIDE II-ETH TCGA-LGG

Time

(Average)

Failure

rate (%)

Time

(Average)

Failure

rate (%)

SPM12 94 s 0 100 s 0

FSL 110 s 0 4min 16

AFNI 78 s 0 86 s 20

and some additional suggestions to help the user optimize the
registration command and get better results. So, AFNI and FSL
have improvable abilities while SPM12 is poor.

The purpose of our study is not to attempt to find the most
accurate one that has been investigated in many previous studies
(7, 9, 32–34). We compare the registered results in the image to
explore the degree of change in the features and structures made
by the three registration tools and find the difference between
these changes to help the user select the registration tool based
on their registration results difference and research purpose.

Texture Feature
We extract valuable features from the registered images by
different tools to find the difference. Brain regions were extracted
using the brain extraction tool [BET; (35)]. We extracted textural
features from disease data sets to study the difference between
registration tools and disease types (36, 37). Input images are
brain-extracted MRI images to gain whole-brain texture GLCM
matrix and calculate the five features, i.e., contrast, correlation,
energy, homogeneity, and inverse difference moment (IDM).

Figure 3 shows the results of the comparison of texture
features. The value distribution is similar among SPM, FSL, and
AFNI and shows no significant difference. But FSL gets a higher
value, implying that FSL is more inclined to retain more uniform
and regular texture patterns. AFNI has a higher correlation value
corresponding to its biggest size of MRI holding more pixels and
details that could be measured more similar pattern.

In the statistical analysis, SPM12 values shows significant
difference with AFNI (p = 0.017314065 < 0.05, 95%) and FSL (p
= 0.046368617 < 0.05, 95%), indicating that SPM12 registered
images have more sharp textural changes. A larger contrast
value correlates with a greater disparity in intensity values
among neighboring voxels, suggesting that SPM12 processed
results have more sharp intensity changes and deeper texture
grooves. Next, the inverse difference moment, also known as

FIGURE 2 | Registered results by three tools. (A) TCGA-LGG. (B) ABIDE-ETH.
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FIGURE 3 | Texture feature extracted from the dataset.
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TABLE 4 | Brain volume estimation results.

TIV (mean) GM% (mean) WM% (mean) CSF% (mean)

TCGA-LGG 1.5364 39.89 45.17 14.94

SPM (TCGA) 1.9012 35.41 41.61 22.97

AFNI (TCGA) 1.8936 36.08 45.13 18.79

FSL (TCGA) 1.5123 33.62 43.89 22.49

ETH 1.2960 58.79 32 9.21

SPM (ETH) 1.8776 54.21 30.17 15.02

AFNI (ETH) 1.8977 55.63 29.63 14.74

FSL (ETH) 1.5641 55.81 28.01 16.19

ETH = ABIDE II-ETH.

the inverse variance, reflects the clarity and regularity of texture.
The images with clear, regular, easy to describe texture would
have a larger value demonstrating that these images are more
in line with human feelings. The AFNI is clearer than the
other two data sets in Figure 2, which is consistent with our
calculated values. SPM12 also has significant difference with
AFNI (p= 0.018590934 < 0.05, 95%) and FSL (p= 0.044412676
< 0.05, 95%) as well. We guess the reason is that AFNI retains
more detailed information, including uniform and sharp textural
change, while SPM12 abandons these details and hold sharp
textural feature.

Brain Volume Estimation
Some brain diseases may give rise to the volume change in the
brain, such as edema, which is obvious in the image. We calculate
the TIV and the percentage of gray matter, white matter, and
CSF in the original and registered structural MRI images. We
set the volume estimation from the MRI in the original space
as the standard result. From Table 4 and Figure 4, AFNI shows
the closest results with similar GM, WM, and CSF percentages,
and sometimes overestimates the total volume. The whole-brain
volume estimated by SPM was always higher than the standard
TIV. FSL estimates of CSF are the highest.

Shape Feature-Based Classifier
Finally, we compare the evaluated accuracy of the cross-
validation. For the ASD dataset, the number of healthy and
disease cases is 22 and 11, respectively. For the glioma dataset,
the number of healthy and disease cases is 22 and 17, respectively,
and the k that we use in k-fold is 10.

From Table 5, we can observe the difference between the
registration tools. The performance of SPM shows the highest
accuracy, while AFNI is better than FSL. Since the HOG feature
represents the shape information by edge directions, which
collects contrast information, this result is consistent to compare
results found in the texture feature part. MRI images registered
by SPM retain richer contrast sources, which may mean that
SPM is a suitable preprocessing tool when dealing with structural
problems. The SPM performs best in our structural HOG
feature model.

DISCUSSION

To estimate the performance of registration algorithms of SPM,
FSL, and AFNI, we calculate the registration time, compare
the texture feature extracted from skull-striped structural MRI
images, and investigate the inter-methods discrepancies in
brain volume estimate. Finally, we compare these registered
images’ applied performance in the classification model and
we get the conclusion that SPM12 is usable for newcomers
or employed when dealing with basic and normal processing
workflow because it is like a black box that users cannot
know the registration process details. FSL is a powerful
toolkit for research. Its function-based integrated toolbox
facilitates researchers for the different hierarchy of requirements.
However, FSL’s semi-integrated design cannot meet scholars’
requirements for function module combinations and workflow
model optimization. In contrast, AFNI is cumbersome and
complex to use. However, it can provide some personalized
customization and allow some threshold adjustments, which is
very useful for many professional researchers, but it may be
difficult for novices to use.

According to our analysis conclusion, tool selection mainly
depends on research tasks. If the focus of studies is only
MRI images’ single feature, it is wise to choose the feature-
targeted tools, for example, the contrast feature of texture
feature for SPM, and if studies require multiple features or
detailed features, AFNI will be a good choice. When involving
multi-modal MRI sequences, like DWT, PET, and DTI, FSL
would become the first choice. For glioma and autism spectrum
disorder, the glioma is more sensitive to contrast features, so
SPM12 may perform better registration results when studying
the glioma dataset. When using the shape features like HOG,
SIFT, or LBA, SPM12 may have the best performance on
comparing AFNI and FSL. Tumor detection, prediction, and
classification are likely to employ these structural and edge-
related features, and so SPM12 will be an advisable process
tool with stable performance and feature-sensitive advantages,
facilitating tumor study.

Image registration research is still progressing steadily, and
new research results are emerging. At present, there is still
no unified evaluation criterion. Experience and habits are still
the main factors affecting people’s choice of methods and
tools. Our study provides a new idea for the comparison
of registration tools. Using data sets from different diseases,
we study the differences in texture features, structure, and
classification performance of the three registration tools, discuss
their characteristics, and analyze the causal correlation between
features and classification models. Our study is not without
limitations. The focus of this study is only on structural images,
while the registration between functional images and othermodal
data has not been investigated in detail. Secondly, only three
kinds of public registration tools are selected, and some tools in
current research are omitted. In addition, the default parameter
settings are adopted in the study. Still, in the specific analysis,
different parameter settings will significantly impact the results,
and the appropriate parameter configuration can optimize the
processing results. There is some research on MRI registration
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FIGURE 4 | Brain tissue volume comparison.

using a deep learning algorithm, which may achieve better
performance than traditional MRI registration methods. In the
next step, we need to compare and analyze the registration results
of these methods (38, 39).

CONCLUSIONS

Although SPM has the most stable performance, it also produces

poor registered results when dealing with low-quality data
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TABLE 5 | Prediction results on two datasets.

ABIDE II-ETH dataset SPM % AFNI % FSL %

Accuracy (high) 78.79 72.73 63.64

Accuracy (low) 69.70 63.64 54.55

TCGA-LGG dataset SPM % AFNI % FSL %

Accuracy (high) 92.31 88.83 81.17

Accuracy (low) 86.24 80.52 72.08

sets. According to its advantages and drawbacks, SPM12 has
a stable speed and success rate but does not guarantee the
processed results, especially when handling low-quality images.
FSL is a mature and widely applicable toolkit for employers,
with relatively stable performance, a success rate, and complete
functions. Its graphical user interface provides basic processing
flow operation, while multi-parameter settings and failure
feedback mechanisms can realize complex user processing and
meet the optimization requirements. It is an excellent toolbox
for beginners and proficient hands. Last, AFNI, with quite a fast
speed and complex modules, can meet various requirements.
But it is not friendly to newcomers, even though it offers an
integrated processing function-similar function and modules,
unique data format, and command-line operation, all confusing
to beginners.

The texture feature is significant in image registration. SPM
registration enhances the contrast feature of the texture feature,
giving up other detailed information. FSL registration contains
enough contrast information and most of the details. AFNI
registration is apparent to view details in the brain structure.
Due to plentiful details, too much information may make finding
key features to differentiate brain structure by single textual
features. Therefore, SPM registered image is easy to distinguish
the different and distinct tissue types in the images. MRI images
processed by AFNI and FSL are more suitable for complex and
fine-grained investigations.

In conclusion, AFNI will be a good product application for
its immediate and quick response with processed results but

requires extra steps to ensure quality. It also plays an essential
role in academics and research with its excellent flexibility,
which could quickly test various combined processing steps in
research. It is also the only MRI registration tool that supports
all formats. SPM12 always works as a guide tool for newcomers
to medical imaging. A rich online teaching resource and simple
and easy-to-learn operations make everyone accomplish the
basic processing flow and get stable results. Its support for the
Windows environment is the main reason for its popularity.
FSL combined advantages of both, providing GUI for basic and
simple processing flow and customized parameters setting for
flexible and optimized procedure. In addition, FSL is a suitable
tool for other MRI sequences like DWT and has been widely used
in numerous studies.
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