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Background: Epicardial adipose tissue (EAT) is a key aspect in the investigation of cardiac 
pathophysiology. We sought to develop a deep learning (DL) model for fully automatic extraction and 
quantification of EAT through pulmonary computed tomography venography (PCTV) images.
Methods: In this retrospective study, we included 128 patients with atrial fibrillation and PCTV from  
2 hospitals. A DL model for automated EAT segmentation was developed from a training set of 51 patients 
and a validation set of 13 patients from hospital A. The algorithm was further validated using an internal test 
set of 16 patients from hospital A and an external test set of 48 patients from hospital B. The consistency and 
measurement agreement of EAT quantification were compared between the DL model and the conventional 
manual protocol using the Dice score coefficient (DSC), Hausdorff distance (HD95), Pearson correlation 
coefficient, and Bland-Altman plot. 
Results: In the internal and external test set, automated segmentation with DL was successful in all cases. 
The total analysis time was shorter for DL than for manual reconstruction (5.43±2.52 vs. 106.20±15.90 min; 
P<0.001). The EAT segmented with the DL model had good consistency with manual segmentation (the 
DSC of the internal and external test sets were 0.92±0.02 and 0.88±0.03, respectively). The quantification of 
EAT evaluated with the 2 methods showed excellent correlation (all correlation coefficients >0.9; all P values 
<0.001) and minimal measurement difference. 
Conclusions: The proposed DL model achieved fully automatic quantification of EAT from PCTV 
images. The yielded results were highly consistent with those of manual quantification.
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Introduction

Epicardial adipose tissue (EAT) stores fat between the 
myocardium and the epicardium and is derived from 
the splanchnopleuric mesoderm (1). EAT affects local 
myocardial electrophysiology via direct infiltration and 
intermyocyte disruption, tissue fibrosis, and gap junction 
remodeling (2). In addition, the thickness, volume, 
radiodensity, and radiomic features of EAT are associated 
with atrial fibrillation (AF) and other adverse cardiovascular 
events such as atherosclerosis (3-6). Therefore, accurate 
EAT quantification is fundamental for cardiac adipose 
tissue-related research, in which EAT usually serves as an 
imaging biomarker.

Coronary artery calcium score (CACS) computed 
tomography (CT) imaging is the most widely applied data 
source for EAT quantification (7,8), owing to its high 
accessibility and ease of generation. However, CACS cannot 
depict the full spectrum of EAT characteristics, especially 
for EAT vascularization, which can be additionally provided 
using a contrast-enhanced scan. Nevertheless, using 
contrast-enhanced CT for manual EAT quantification is 
labor-intensive because of the need for slice-by-slice editing 
of the border between the EAT and pericardium.

Recently, deep neural networks have been widely used 
in the field of medical image segmentation (9). Their 
application to the fully automatic segmentation of EAT 
has enabled EAT quantification for large-cohort studies 
(3,10-12). Currently, most deep learning (DL) algorithms 
with automatic EAT segmentation set the pericardium 
as the detection target and use threshold segmentation 
to separate EAT from the pericardium. Commandeur 
et al. used 2 multitask convolutional neural networks 
(CNNs) to segment EAT. The first CNN detected the 
heart’s boundaries and performed segmentation, and the 
second CNN used a statistical shape model to detect the 
pericardium; the median Dice score coefficient (DSC) was 
0.823 (13). Hoori et al. applied a novel look ahead slab-
of-slices with bisection, in which they split the heart into 
halves, retaining the increasing curvature of the sac and 
presenting similar images to the training network. The 
average DSC of this method was 0.89 (14).

Pulmonary CT venography (PCTV) is commonly used 
before radiofrequency ablation in patients with AF to define 

the left atrium (LA) and pulmonary vein anatomy. PCTV is 
ideal for studying the EAT and prognosis in patients with 
AF. However, no prior studies have used PCTV for EAT 
quantification. To fully explore the potential risk factors for 
AF (15-17), it is necessary to develop a model for the fully 
automatic segmentation of EAT based on PCTV scans.

U-net is one of the most successful network architectures 
for DL in medical image segmentation (18). One of its 
derivatives, no new U-net (nnU-Net), demonstrates 
remarkable performance across multiple tasks and has 
been adopted by researchers for diverse segmentation 
challenges (19). Its outstanding efficacy and reliability were 
demonstrated by its exceptional performance in the Medical 
Segmentation Decathlon Challenge (20). We hypothesized 
that nnU-Net is a suitable DL algorithm for automatic 
EAT quantification. Thus, this study aimed to develop 
and validate an nnU-Net-based DL model for automatic 
segmentation and EAT quantification based on PCTV data.

Methods

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The 
institutional review boards of Shanghai General Hospital 
and Dongtai People’s Hospital approved this retrospective 
study, and the requirement for written informed consent 
from patients was waived due to the retrospective nature 
of the study. For model development, PCTV images of 
patients with AF who were candidates for ablation therapy 
between June 2018 and August 2018, were retrospectively 
included from 1 tertiary hospital. We randomly selected 
20% of cases as the test cohort. The remaining data were 
divided into training and validation cohorts in a 4:1 ratio. 
The external validation cohort comprised 48 randomly 
selected cases undergoing PCTV from another tertiary 
hospital. We excluded (I) patients with significant motion 
artifacts due to failed breath holding, (II) patients with 
histories of prior percutaneous coronary interventions, 
(III) patients with histories of prior chest surgeries, and 
(IV) patients in whom the scanning range did not cover 
the whole heart. Figure 1 shows the patient inclusion and 
exclusion criteria flowchart.
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Figure 1 Inclusion and exclusion criteria for the internal and external cohort. PCTV, pulmonary computed tomography venography. 

Pulmonary CT venography scan protocol

For the internal cohort, all patients were subjected to 
scanning with a 256-slice wide detector CT scanner 
(Revolution HD, GE HealthCare, Chicago, IL, USA). 
PCTV images were acquired using a nongated helical 
mode, with the region of interest placed in the LA. A 
50- to 60-mL contrast media bolus [Iomeron (iomeprol),  
400 mg iodine/m; Bracco Medical Technologies, Milan, 
Italy] was injected into the antecubital vein at a rate of 4– 
5 mL/s, which was followed by flushing with 40 mL of 
saline. The detailed scan parameters were as follows: 
collimation =256×0.625 mm, reconstructed slice thickness 
=0.625 mm, reconstructed slice interval =0.5 mm, rotation 
time =280 ms, and matrix =512×512 pixels. In addition, we 
applied automated tube voltage and current modulation (KV 
Assist, Smart mA, GE HealthCare).

For the external test cohort, PCTV data were acquired 
from a second-generation dual-source CT scanner 
(SOMATOM Definition Flash, Siemens Healthineers, 
Erlangen, Germany) through a nongated helical mode. 
We employed contrast injection and triggering techniques 
similar to those used with the internal training cohort. 
The detailed scan parameters were as follows: collimation 
=64×0.6 mm, reconstructed slice thickness =0.75 mm, 
reconstructed slice interval =0.5 mm, and rotation time 
=280 ms. Moreover, we applied automated tube voltage and 
current modulation (CAREKv, CAREDose 4D, Siemens 
Healthineers).

Development of a DL model for EAT quantification

Our proposed fully automatic processing flow based on the 
nnU-Net framework is shown in Figure 2. This process was 
implemented according to the 3 steps described below.

In the first step, to avoid missegmentation of the neck 
and abdominal fat with nnU-Net, the input volume was 
preprocessed using morphological processing to detect the 
upper and lower ranges of the slices, and the slices out of 
this range were set to 0. All morphological processing was 
performed using the Python toolkit SimpleITK (https://
simpleitk.org/). Details of morphological processing are 
included in the online appendix.

For the second step, we used 2-dimensional (2D) 
and 3-dimensional (3D) nnU-Net to train the EAT 
segmentation models based on the preprocessed training 
set described above. nnU-Net is a DL-based segmentation 
method that automatically configures itself for any new task, 
including preprocessing, network architecture, training, 
and postprocessing (19). The source code for nnU-Net is 
publicly available on GitHub (https://github.com/MIC-
DKFZ/nnunet). The preprocessed internal validation and 
test sets were sent to the 2 networks for obtaining their 
segmentation results during inference. We did not use the 
postprocessing method of selecting the largest connected 
domain in nnU-Net, as this processing is unsuitable for 
EAT segmentation. Instead, we trained the model using 
Python 3.9 and PyTorch 1.12.1 on a PC configured with 
an Intel Core i9-9900K CPU and a GeForce RTX 3090Ti 
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Figure 2 Automatic EAT segmentation workflow. (A-D) Steps for the preprocessing pipeline: (A) binarize and fill the images, (B) perform 
the opening operation, (C) keep the largest connected component and delete the image slice by slice, and (D) keep the largest connected 
component and determine the lower bound. (E) The postprocessing procedure. nnU-Net, no new U-net; EAT, epicardial adipose tissue. 

GPU. The epoch was set at 1000.
Upon analyzing the segmentation results of the validation 

set, we observed distinct strengths and weaknesses in both 
the 2D nnU-Net and 3D nnU-Net models. The 2D nnU-
Net accurately determined the spatial position of the 
heart but misidentified the fat around the vessels as EAT. 
Conversely, the 3D nnU-Net correctly segmented EAT 
along the pericardium contour but misidentified some fat 
located far from the heart.

Finally, we decided to merge the segmentation outcomes 
of the 2D and 3D models through the intersection of the 
3D results with the expanded 2D results. The fused result 
was then postprocessed via thresholding; thus, voxels in 
the fat Hounsfield range (−190/−30 HU) were selected. 
We calculated the volume and radiodensity of the EAT 
with SimpleITK 2.2.0 using Python 3.9.12. The automatic 
segmentation model of EAT is available online (http://www.
huyifan.top:8000).

Manual segmentation and quantification of EAT

We used the 3D slicer 4.11.20210226 (21) for EAT 

segmentation and calculated the volume and radiodensity 
in Python, as described above. The pulmonary trunk 
bifurcation was considered the superior limit of the 
pericardium. We further manually corrected the pericardial 
boundary slice by slice. Once the manual editing was 
finished, EAT was identified according to the preset 
Hounsfield thresholds (−190/−30 HU). The above analysis 
was performed by a radiologist with 7 years of relevant 
experience.

We obtained the EAT volume by multiplying the volume 
per unit in a voxel-by-voxel count (n), which was defined as 
follows:

EAT unitVol Vol n= ×  [1]

Then, we accumulated the radiodensity-per-unit voxel 
(Densityi) in EAT and calculated the average (DensityEAT), 
which was defined as follows:

n
EAT i1

1Density Density
n i=

= ∑  [2]

The masks segmented by the automatic and manual 
segmentation models are binary images, where 0 indicates 

http://www.huyifan.top:8000
http://www.huyifan.top:8000
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Table 1 Clinical characteristics of the internal and external cohorts

Clinical characteristics
Internal cohort External cohort

Training (n=51) Validation (n=13) Test (n=16) Test (n=48)

Age (years)* 64±11 61±10 66±11 66±12

Sex (male), n (%) 29 (56.9) 6 (46.2) 9 (56.3) 24 (50.0)

AF type (PAF), n (%) 30 (58.8) 11 (84.6) 9 (56.3) 28 (58.3)

(PeAF), n (%) 21 (41.2) 2 (15.4) 7 (43.8) 20 (41.7)

Diabetes, n (%) 12 (23.5) 2 (15.4) 3 (18.8) 8 (16.7)

Hyperlipidemia, n (%) 22 (43.1) 3 (23.1) 8 (50.0) 26 (54.2)

Hypertension, n (%) 32 (62.7) 6 (46.2) 9 (56.3) 32 (66.7)

CAD, n (%) 13 (25.5) 2 (15.4) 1 (6.3) 7 (14.6)

*, values are presented as the mean ± SD. AF, atrial fibrillation; PAF, paroxysmal atrial fibrillation; PeAF, persistent atrial fibrillation; CAD, 
coronary artery disease; SD, standard deviation. 

background and 1 indicates EAT. The number of voxels for 
EAT is obtained by counting the number of occurrences 
of 1 in the binary image. In this study, the slice and 
voxel spacings were obtained from Digital Imaging and 
Communications in Medicine (DICOM) images, and the 
volume per voxel was obtained by multiplying the 3D voxel 
spacings. The radiodensity of each EAT voxel was obtained 
from the corresponding DICOM voxel radiodensity.

Statistical analysis

We used SegMetrics 1.0.36 and Scipy 1.7.3 in Python 
3.9.12 for all statistical analyses. Continuous variables are 
presented as the mean ± standard deviation (SD) if normally 
distributed and otherwise as the median with interquartile 
range. We evaluated the performance of automatic 
segmentation models through DSC and Hausdorff distance 
(HD95). DSC is a measure of the similarity of 2 samples 
and is defined as follows:

( ) 2 X Y
,

X Y
Dice X Y

∩
=

+
 [3]

HD(dH(X,Y)) measures how far 2 subsets of a metric 
space are from each other and is defined as follows:

( ) ( ) ( ){ }, max max ,maxH x X y Y
d X Y d x,Y d y,X

∈ ∈
=  [4]

where d(x,Y) finds the shortest distance for each point x 
to set Y, and ( )max

x X
d x,Y

∈
 obtains the largest value from 

the calculated shortest distances of all points; d(y,X) and 

( )max
y Y

d y,X
∈

 act similarly but in a different set order. HD95 

is based on the calculation of the 95th percentile of the 
distances between boundary points in X and Y.

The correlation of the EAT characteristics between 
automatic and manual quantification was evaluated with 
Pearson correlation coefficient. The Bland-Altman plot 
was used to illustrate the consistency and difference in EAT 
quantification results between the automatic and manual 
approaches. Statistical significance was defined as a 2-sided 
P value less than 0.05.

Results

Clinical characteristics

A total of 166 patients with AF who were referred for 
PCTV were initially screened. Of these patients, 15 and 
11 patients were excluded due to their clinical history of 
revascularization or due to incomplete imaging coverage 
of the whole pericardium, respectively. Another 12 patients 
with severe motion or metal artifacts were also excluded. 
Finally, 128 patients {68 males; median age 65 [interquartile 
range (IQR), 59–73] years} were included in the analysis. 
Their detailed demographic characteristics are shown in 
Table 1.

Efficacy of DL-based automatic EAT quantification

B e f o r e  p r e p r o c e s s i n g ,  t h e r e  w e r e  1 5  c a s e s  o f 
missegmentation outside of the heart. After morphological 
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Figure 3 The fused results of the 2D and 3D models. (A) The 2D and (D) 3D model training loss curves. The 3 curves in the figure 
are the training (blue), validation loss (red), and results of the evaluation (green). The segmentation results of the (B) 2D and (E) 3D 
models. (C) The process of dilating the 2D model segmentation results. (F) The results of the fusion model. The red box represents the 
missegmentation, and the green box represents the correct segmentation. 

Table 2 Automated segmentation performance of EAT with the DL model

Segmentation index
Internal set External set

Training Validation Test Test

DSC 0.94±0.02 0.93±0.03 0.92±0.02 0.88±0.03

HD95 (mm) 0.66±0.13 0.93±0.31 0.88±0.28 0.99±0.52

Data are presented as the mean ± SD. EAT, epicardial adipose tissue; DL, deep learning; DSC, Dice score coefficient; HD95, Hausdorff 
distance 95%; SD, standard deviation. 

processing, the heart slices were correctly identified in all 
128 patients. The fused results are presented in Figure 3. 
The performance of the fusion model for each dataset is 
shown in Table 2.

Table 3 shows the volume and radiodensity of the 
manually and automatically segmented EATs for each 
dataset. Compared with manual segmentation, Pearson 
correlation coefficient for the EAT volume and radiodensity 
reached 0.95 (P<0.01), indicating an excellent correlation 
between the 2 approaches (Figure 4). The Bland-Altman 

plots indicate that the 2 have good consistency (Figure 5).

Efficiency of DL-based automatic EAT quantification

In the internal test cohort, the average EAT segmentation 
and quantification processing time was 5.43±2.52 and 
106.20±15.90 min for the DL and manual approaches, 
respectively. Similarly, with the external validation set 
considered, the average time for the DL model was 
4.26±1.21 min, whereas the average time for manual 
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Table 3 Quantification results of EAT with 2 methods

EAT parameters DL model Manual Correlation coefficient 95% CI P value

EAT density (HU)

Internal validation −86.82±5.36 −86.26±5.04 0.99 0.98–1.00 <0.001

Internal test −85.18±3.70 −84.68±3.59 0.97 0.92–0.99 <0.001

External test −85.24±6.63 −86.81±6.09 0.99 0.99–1.00 <0.001

EAT volume (cm3)

Internal validation 136.07±64.44 139.44±67.03 1 0.98–1.00 <0.001

Internal test 137.15±35.26 141.15±34.78 0.98 0.94–0.99 <0.001

External test 123.13±47.57 118.53±45.92 0.99 0.98–1.00 <0.001

Data are presented as the mean ± SD. EAT, epicardial adipose tissue; DL, deep learning; CI, confidence interval; HU, Hounsfield unit; SD, 
standard deviation.

Figure 4 Pearson correlation coefficients between the manual and deep learning models for EAT volumetric and radiodensity 
measurements. (A-C) Scatterplots representing the radiation density. (D-F) Scatterplots representing the volume. HU, Hounsfield unit; DL, 
deep learning; EAT, epicardial adipose tissue. 
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Figure 5 Bland-Altman plots for the measurement difference of EAT between the manual and DL model segmentation. (A) The variability 
in radiodensity measurement of EAT between the manual and DL model segmentations in the internal validation datasets. (B) The 
variability in the radiodensity measurement of EAT between the manual and DL model segmentations in the internal test datasets. (C) The 
variability in the radiodensity measurement of EAT between the manual and DL model segmentations in the external test datasets. (D) The 
variability in the volume measurement of EAT between the manual and DL model segmentations in the internal validation datasets. (E) 
The variability in the volume measurement of EAT between the manual and DL model segmentations in the internal test datasets. (F) The 
variability in the volume measurement of EAT between the manual and DL model segmentations in the external test datasets. DL, deep 
learning; HU, Hounsfield unit; SD, standard deviation; EAT, epicardial adipose tissue. 

segmentation was 100.80±12.20 min.

Discussion

We developed and evaluated a DL model based on nnU-
Net for fully automatic EAT extraction from PCTV scans. 
Our model accurately and efficiently determined the volume 
and radiodensity of EAT in clinical studies. Moreover, we 
found that the predicted and manual segmentation methods 
were highly consistent.

EAT is a unique fat deposition located between the 
myocardium and the visceral layer of the epicardium. EAT 
can be highly protective for the adjacent myocardium 
through i ts  dynamic brown fat- l ike thermogenic 
function but also deeply harmful due to the paracrine or 
vasocrine secretion of pro-inflammatory and profibrotic  
cytokines (22). Therefore, EAT has been considered to play 
a pivotal role in the pathogenesis of AF, heart failure, and 
coronary artery diseases (23). Quantitative data obtained 
from body composition imaging analysis has been shown 

to be associated with the development, risk, and clinical 
outcomes of diverse diseases, encompassing cardiovascular 
and oncological conditions (24). Recent evidence supports 
the crucial involvement of EAT accumulation in the 
pathogenesis of AF and coronary artery disease (15,25). 
The emergence of automatic segmentation models based 
on CT angiography and CACS scans has significantly 
advanced research on the relationship between EAT 
and cardiovascular adverse events, such as myocardial 
infarction (10,11,26,27). However, the investigation into 
the association between EAT and AF still lacks validation 
from large-scale cohorts (16,28,29). This discrepancy 
can be attributed to the limitations of existing EAT 
segmentation models when applied to scans from PCTV. 
The comprehensive coverage of the chest in PCTV scans 
poses challenges, as existing segmentation models may 
missegment the neck root and midabdominal structures. 
To address this issue, our model offers a fully automated 
approach to accurately segmenting EAT from PCTV 
scans, eliminating the instability associated with manual 
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segmentation. This innovative method provides an efficient 
tool for conducting large-scale multicenter studies and 
enhances the reliability of research investigating the 
relationship between EAT and AF.

Setting the pericardium as the detection target requires 
the detection of an intact pericardium; however, the 
pericardium is difficult to identify on slices from the bottom 
of the heart. The pericardium is disconnected by the 
vasculum on the top slices of the heart. Consequently, we 
established EAT as the direct learning target. For network 
structure, we selected nnU-Net due to its ability to self-
configure (19). This method avoids tedious tuning work 
and allows for a greater focus on the segmentation results. 
In this study, we combined the segmentation results of the 
2 networks by observing the segmentation in the validation 
set and mutually complementing each network’s advantages, 
making our segmentation results more suitable for clinical 
practice.

The postprocessing of the original nnU-Net network 
includes selecting the largest connected component. 
Given that EAT is scattered over a wide physical area, it 
is unsuitable for such postprocessing. We found that the 
missegmentation differed between the 2D and 3D nnU-
Nets. The 2D model could pinpoint the location of the 
heart, likely because training the 2D slices requires less 
memory. This allows the model to identify the spatial 
location of the heart in each slice. Conversely, the 3D 
model could not determine the position of the heart relative 
to the whole. This led to the fat under the diaphragm 
being misidentified as EAT. When the contour of the 
pericardium is difficult to identify, the 2D model likely 
exhibits missegmentations on some slices, which can lead 
to a slight decrease in DSC; however, in the multiplanar 
reconstruction (MPR), the segmentation boundary is 
highly uneven. The 3D model connects the epicardium 
at the upper and lower slices and also fits (almost exactly) 
the boundary of the pericardium. Therefore, we use the 
segmentation of the 3D model as the cornerstone when 
fusing the segmentation of the 2 models.

Our model allows for the quantitative analysis of EAT in 
large-scale cohorts to study and validate its association with 
AF. For example, our model can determine the relationship 
between EAT volume and recurrence after radiofrequency 
ablation of AF and can stably segment EAT from PCTV 
scans. The extracted radiomic features have strong 
consistency, and the resultant markers will produce more 
accurate measures than those from studies based on manual 
segmentation.

Despite the promising results described above, 
our study has  some l imitat ions.  First ,  we used a 
nonelectrocardiography-gated acquisition protocol for 
PCTV. This inevitably resulted in mild motion artifacts 
in a small number of slices, which might have affected 
EAT quantification. In addition, our model employs 
morphological processing, which increases processing time 
and requires the scan range to encompass most of the aortic 
arch; otherwise, some slices containing the heart would be 
missed. Therefore, the current model cannot process source 
data directly acquired from different scanning protocols. 
Further investigations with data from various CT scanners 
and acquisition protocols are needed to improve the 
generalizability of our proposed model.

Conclusions

Our DL model uses PCTV data to achieve faster EAT 
segmentation than do manual methods. In addition, the 
EAT volume and density, quantified using the DL model, 
were consistent and correlated well with the manual 
quantification results.
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