
REVIEW

Glycosylation is a key in SARS-CoV-2 infection
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Abstract
SARS-CoV-2 causes the respiratory syndrome COVID-19 and is responsible for the current pandemic. The S protein of SARS-
CoV-2-mediating virus binding to target cells and subsequent viral uptake is extensively glycosylated. Here we focus on how
glycosylation of both SARS-CoV-2 and target cells crucially impacts SARS-CoV-2 infection at different levels: (1) virus binding
and entry to host cells, with glycosaminoglycans of host cells acting as a necessary co-factor for SARS-CoV-2 infection by
interacting with the receptor-binding domain of the SARS-CoV-2 spike glycoprotein, (2) innate and adaptive immune response
where glycosylation plays both a protective role and contributes to immune evasion bymasking of viral polypeptide epitopes and
may add to the cytokine cascade via non-fucosylated IgG, and (3) therapy and vaccination where a monoclonal antibody-
neutralizing SARS-CoV-2 was shown to interact also with a distinct glycan epitope on the SARS-CoV-2 spike protein. These
evidences highlight the importance of ensuring that glycans are considered when tackling this disease, particularly in the
development of vaccines, therapeutic strategies and serological testing.
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The SARS-CoV-2 causes the severe respiratory syndrome
COVID-19 and is responsible for the current pandemic
representing a significant threat to human health around
the whole world [1]. At the moment of writing this man-
uscript, more than 234 million infections and three million
of deaths have been reported worldwide. SARS-CoV-2 is
an enveloped virus that belongs to the family of
Betacoronavirus and the subfamily of Sarbecoronavirus
[2] (Fig. 1). Its genome consisting of positive-sense

single-stranded RNA shares over 96% whole-genome
identity with the bat coronavirus RaTG13 and 90% with
a pangolin coronavirus [1]. Moreover, SARS-CoV-2 is
about 80% identical to SARS-CoV-1 and has about 50%
identity with MERS-CoV that caused severe acute respi-
ratory syndrome outbreaks during 2002-2003 and 2012,
respectively [4]. The SARS-CoV-2 genome encodes four
structural proteins, the spike (S) glycoprotein, the mem-
brane (M) protein, the envelope (E) protein and the nu-
cleocapsid (N) protein [4]. The S protein of SARS-CoV-2
is extensively glycosylated with each protomer of the
transmembrane homotrimeric protein displaying 22 N-gly-
cosylation sites and several O-glycosylation sites [5].
Similarly, the S protein of other coronaviruses (feline co-
ronavirus, SARS-CoV and MERS-CoV) has been report-
ed recently to be densely glycosylated with N-glycans [6,
7]. Studies on other coronaviruses indicate that also the M
protein may be N-glycosylated and/or O-glycosylated [8].

Recent reports show that glycosylation of both virus
and the target cells crucially affects SARS-CoV-2 infec-
tion at several levels: (i) virus replication and exocytosis,
(ii) virus binding and entry to host cells, shaping viral
tropism, (iii) innate and adaptive immune response, and
(iv) therapy, vaccination and serological testing (Fig. 2).
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Virus glycosylation during replication
and exocytosis

The replication mechanism of SARS-CoV-2 is currently
studied in detail and appears to closely resemble the one
of SARS-CoV and other coronaviruses [9]. SARS-CoV rep-
lication includes the formation of cytoplasmic replication
complexes constituting of viral RNA and viral non-
structural proteins and the transcription and translation of
the four viral structural proteins that are translocated into the
ER and transit to the ER-Golgi intermediate compartment
(ERGIC), where encapsidated RNA virus particles are
enveloped by viral transmembrane envelope proteins,

envelope (E), membrane (M) and spike (S) [9]. Virus gly-
coproteins undergo N-glycosylation and O-glycosylation
during transit in the ER, the ERGIC and the Golgi by the
glycosylation machinery of the host (mammalian) cells
(Fig. 3). Unlike mammalian glycoproteins, viral glycopro-
teins such as S protein contain a retrieval signal that retards
their trafficking, thereby accumulating in the ER, ERGIC
and Golgi where virus particles are assembled and then bud
[11]. Viral glycoproteins undergo incomplete maturation,
which results in higher levels of high-mannose N-glycans
than those found in most mammalian glycoproteins [5].

The S protein of SARS-CoV-2 consists of an S1 subunit
containing an N-terminal domain and the receptor-binding

Fig. 1 Spike (S) glycoprotein
gene-based phylogenetic analysis.
The analysis includes all five de-
fined subgenera of
Betacoronaviruses, namely,
Sarbecovirus, Embecovirus,
Merbecovirus, Nobecovirus and
Hibecovirus. The isolates in the
gray area are from the current
outbreak of SARS-CoV-2 from
around the world. The nearest
neighbors of SARS-CoV-2 are
the bat-SL-CoV, encircled in yel-
low (from [3] with permission)
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domain (RBD) and an S2 subunit membrane domain impor-
tant for fusion of the virion with the host cell membrane.
During biological processing and prior to budding, S1 und
S2 subunits are cleaved via a furin cleavage site and S protein

is assembled into a homotrimer [12]. Site-specific mass spec-
trometric analysis of the homotrimer after mutation of the
furin cleavage site and expression in HEK293F cells revealed
that all 22 N-glycosylation sites were occupied with
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Fig. 2 Role of glycosylation in
SARS-CoV-2 biology and
COVID-19 pathogenesis
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Fig. 3 Steps of replication and
subcellular site glycosylation of
pathogenetic human
coronaviruses (adapted from [10]
with permission)
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oligomannose-type, hybrid-type or complex-type N-glycans
[5, 13]. Overall, the extent of high mannosylation was about
30%, which is similar to that of the S protein from SARS-CoV
but lower than those described for other viral glycoproteins
such as HIV-1 envelope glycoprotein that consists of a 60%
high-mannose N-glycans [6, 13]. Interestingly, in the
homotrimer, the RBD located in S1 contains two N-glycosyl-
ation sites at N331 and at N343 that are occupied mostly by
complex-type asialylated core-fucosylated N-glycans and also
by hybrid structures at N343 [6, 13], suggesting that the im-
mature nascent N-glycans at these two sites are accessible
towards glycosidases and glycosyltransferases in the ER/
Golgi. Interestingly, the biological processing of S1 and S2
was quite different when expressed as single domains inde-
pendently: Only 17 N-glycosylation sites out of 22 were oc-
cupied; N331 and N343 were mostly occupied with high-
mannose N-glycans and with asialylated core-fucosylated
biantennary N-glycans [14]. The O-glycosylation sites in the
RBD are probably not sterically accessible to GalNAc trans-
ferases in the nascent S trimer as they were only detected as
traces in the homotrimer [5, 13]. The 5 N-glycosylation sites
from the C terminus of S2, the domain responsible for inva-
sion and fusion, are mostly occupied with complex-type gly-
cans [6, 13]. Interestingly, traces of sulfation and diLacNAc
motives were also observed on N-glycans of SARS-CoV-2 S
protein [13], which are hallmarks of the HEK293F expression
system but may also be glycoprotein-specific [15].

It is important to note that SARS-CoV-2 glycosylation
does reflect the specific features of the glycosylation machin-
ery of the host cell and will therefore vary with the cell type,
where viral replication takes place. Moreover, since glycosyl-
ation exhibits also inter-individual differences, the viral gly-
cosylation pattern may differ among patients infected with the
virus (see the “Innate and adaptive immunity” section).

Virus binding and entry (Fig. 4)

Glycosylation of the virus as well as of the host cells is cen-
trally involved in SARS-CoV-2 binding and entry in at least
four different ways. First, infection experiments employing
primary human bronchial epithelial cells and authentic
SARS-CoV-2 virus clearly demonstrated that the glycosami-
noglycan heparan sulfate of the cellular glycocalyx is required
to mediate infection of these target cells by SARS-CoV-2
[16]. Heparan sulfate was shown to interact with the
receptor-binding domain of the SARS-CoV-2 spike glycopro-
tein, adjacent to ACE-2, shifting the spike structure to an open
conformation to facilitate ACE-2 binding [16]. This finding
extends the previous observation that heparin saccharides de-
crease the binding of the S protein to ACE-2 through interac-
tion of the RBD of S with heparin saccharides [17].

Second, for entering host cells, SARS-CoV-2 utilizes the
cell surface receptor ACE-2 as a point of entry as has been

Fig. 4 Proposed mechanisms of
glycan-mediated host invasion of
SARS-CoV-2. Receptor binding
and invasion are facilitated by the
interaction of its S protein with (1)
heparan sulfate, ACE-2 receptors
via (2a) glycan-glycan, (2b) gly-
can-protein, (2c) protein-protein
interactions, (3) sialic acids and
(4) lectins. In addition, A/B blood
antigens (5) at the virion surface
may prevent infection in a poten-
tial host producing blood group-
specific antibodies. ✓ indicates
inter-molecular interactions that
promote receptor binding and in-
vasion. X indicates glycan-
mediated interactions that may
prevent infection
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shown by cryo-electron microscopy, X-ray crystallography
and cell culture experiments [12, 18–21]. The ACE-2 receptor
is a membrane glycoprotein that is N-glycosylated as well
[22]. Molecular dynamics simulations conducted to examine
the co-complex of glycosylated S protein with glycosylated
ACE-2 revealed glycan-protein and glycan-glycan interac-
tions apart from protein-protein interactions. The sialylated
complex-type glycans at N090 and N322 of ACE-2 were
shown to form glycan-protein interactions with several re-
gions of the S trimer [13]. In addition, complex-type and hy-
brid N-glycans at N546 of ACE-2 are in contact with the
glycans at N0074 and N0165 located in the N-terminal do-
main of S [13]. Glycans at N165 and N234 of the S protein
were shown to modulate the conformation of S protein’s
receptor-binding domain [23].

Third, by contrast to SARS-CoV, S protein from SARS-
CoV-2 was found to have a sialic acid binding pocket at its N-
terminus that is similar to the one of MERS-CoV [24] indicat-
ing that sialic acids probably play a role in SARS-CoV-2
binding. Sialic acids are 9-carbon monosaccharides that ter-
minate N-glycan, O-glycan and glycosphingolipid chains and
occur at high abundance on the cellular glycocalyx.

Fourth, NMR studies showed that the two N-glycans of the
RBD of the S protein at N331 and N343 bind to human lectins
galectin-3, 7 and 8, Siglec-10, macrophage galactose lectin
(MGL) and dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN) [25]. Since
these lectins recognize specific ligands in complex-type gly-
cans, the findings indicate that additional mechanisms could
be involved in the tropism and binding of SARS-CoV-2 to
host cells. DC-SIGN was shown to mediate cell entry of
SARS-CoV [26]. Galectin-1 was shown to stabilize HIV-1
attachment to host cells promoting HIV-1 infectivity [27].

Innate and adaptive immunity

Glycans play an important role in innate and adaptive immu-
nity and it early became clear that, in the SARS-CoV-2 infec-
tion context, they can have a sweet and sour role, i.e. either
playing a protective role or contribute to immune evasion.

One of the most evident protective mechanisms is the po-
tential immunity generated by the glycan determinants of the
ABO histo-blood group antigens [28]. Studies in samples col-
lected from blood donors in France revealed that the propor-
tion of seropositives was significantly lower in group O do-
nors when compared with other blood group donors, suggest-
ing that blood group O individuals have lower risk of being
infected [29]. In addition, genome-wide association studies in
COVID-19 patients with severe disease in several hospitals in
Italy and Spain identified a 3p21.31 gene cluster as a genetic
susceptibility locus in patients with COVID-19 with respira-
tory failure. A blood group-specific analysis further showed a

higher risk in blood group A than in other blood groups and a
protective effect in blood group O as compared with other
blood groups [30]. These observations are supported by a
recent meta-analysis concluding that blood type A might be
more susceptible to infect COVID-19 as compared to blood
group O [31]. The reasons for the influence of ABO histo-
blood groups remain to be unraveled. However, it is very
likely that glycosylation of the S protein plays an important
role, since, as outlined above, glycosylation of the S protein
displays glycosylation features of the infected host cells i.e. of
the infected individual. The synthesis of the ABO histo-blood
group antigens is determined by distinct gene alleles at the
ABO locu s . I n A and B b lood g roups , an N-
acetylgalactosamine and a galactose, respectively, are trans-
ferred in an α1,3 linkage on the precursor H-type precursor
structure, generating the corresponding A or B antigens
(Fig. 5). The blood group O is determined by the O alleles,
which are null alleles responsible for a lack of glycosyltrans-
ferase activity, and therefore the H antigen remains unmodi-
fied. The presence of O alleles in a homozygosity leads to the
blood group O, characterized by the absence of A or B antigen
expression. Blood group O individuals develop anti-A and
anti-B antibodies induced by the exposure to the microbiota.
Similarly, blood group A and B individuals develop either
anti-B or anti-A antibodies, respectively [28]. It is therefore
expected that when virions are produced in cells that express
the enzymes responsible for the A or B blood group, they
display the corresponding glycan antigen, and therefore in
blood group O individuals, the anti-A and anti-B antibodies
could prevent the infection [28]. Further studies addressing
levels of anti-glycan antibodies (ABO or other) remain of
potential great interest.

The glycosylation status of IgG at asparagine 297 also con-
tributes to the cytokine storm described in severe COVID-19.
The level of afucosylation at asparagine 297 of IgG antibodies
directed against SARS-CoV-2 was particularly elevated in
critically ill patients amplifying pro-inflammatory cytokine
release and acute phase responses, but not in those with mild
symptoms [32]. Additionally, glycans are ligands of endoge-
nous lectins expressed by different immune cells and capable
of regulating various functional aspects of innate and adaptive
immunity [33]. As noted above, N-glycans of the RBD of the
S protein were identified as binding partners of a wide range
of human lectins involved in innate and adaptive immunity.
Additionally, it is of interest to note that sulfated glycans

H an�gen A an�gen B an�gen
α2

β β

α2α3 α3 α2

β

Fig. 5 Human blood group antigens. Yellow circle, galactose; yellow
square, N-acetyl galactosamine; red triangle, fucose
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found on the SARS-CoV-2 S protein may serve as selectin
ligands [34] and may have a role in immune regulation.

Glycans can have major impact in sterically masking poly-
peptide epitopes in viral proteins with major consequences for
immune evasion, for neutralizing antibodies and the design
and efficacy of vaccines. Previous studies with other viruses
showed that glycan density plays a role in shielding immuno-
genic epitopes. This mechanism of immune evasion has been
well characterized for other viral glycoproteins, such as the
HIV-1 envelope protein [35], the influenza hemagglutinin
[36] and the Lassa virus glycoprotein complex [37]. Recent
site-specific analyses of N-linked glycosylation on trimeric S
proteins revealed that glycans contribute to the formation of a
cluster of N-glycans at specific regions on MERS-CoV S [6].
Additional molecular evolution analysis of SARS and MERS
S genes also showed a higher incidence of amino-acid diver-
sity on exposed surfaces of the S protein that are not hidden by
N-linked glycans [6]. Similar analysis to SARS-CoV-2 S var-
iations may contribute to further elucidate the role of glycans
in immune evasion, as well as neutralizing antibodies and the
development of effective vaccine strategies.

With respect to the role glycans of both SARS-CoV-2 and
host cells have in cell binding and immune response, varia-
tions in glycosylation of both virus and host are likely to
influence tissue tropism and individual susceptibility to infec-
tion. As for the host, glycosylation may vary depending on
cell type and tissue [38], age, ethnicity, individual expression
profiles of glycosylation-related genes [28] and disease [38].
In addition, mutations of SARS-CoV-2 and ACE 2 leading to
alterations of N-glycosylation sites could be responsible for
differences in virus infectivity and patients’ susceptibility, re-
spectively. The relevance of the observation that so far no
variation of the glycosylation sites of SARS-CoV-2 has been
observed during the global transmission course remains to be
evaluated [39].

Translational aspects

With respect to the role of SARS-CoV-2 glycosylation for
virus replication, infectivity and immune response, glycosyl-
ation has major potential impact on therapeutic and vaccina-
tion strategies as well as on serological testing.

Vaccination

Current vaccination strategies are based on the use of
(a) structural immunogenic virus proteins, (b) attenuated
or inactivated virus, (c) recombinant vector vaccines and
(d) nucleic acid vaccines [40]. Glycosylation of SARS-
CoV-2 will, however, differently impact each of these
different strategies. The use of immunogenic structural
virus proteins as vaccines is based on the production of

recombinant proteins in prokaryotic or eukaryotic ex-
pression systems. Similar to the development of
SARS-CoV vaccines [41], the heavily glycosylated
SARS-CoV-2 S protein is a key target for the develop-
ment of SARS-CoV-2 vaccines [42]. Glycosylation of
the recombinant S glycoprotein does depend on the gly-
cosylation machinery of the chosen expression system.
For instance, the nanoparticle vaccine NVX-CoV2373 is
composed of recombinant trimeric full-length SARS-
CoV-2 spike glycoproteins expressed in the established
baculovirus Spodoptera frugiperda (Sf9) insect cell ex-
pression system [42]. The majority of recombinant N-
glycoproteins expressed in baculovirus-Sf9 insect cells
a re g lycosy la ted wi th s imple , non-s ia ly la ted ,
paucimannose glycans at sites that are glycosylated with
complex-type, sialylated N-glycans in mammalian cells
[43].

As may be inferred from studies obtained for other re-
combinant vaccine glycoproteins, glycosylation of SARS-
CoV-2 vaccine spike glycoprotein may influence the im-
mune response of the vaccinated individual in several
ways:

1. As glycosylation, particularly N-linked glycosylation,
profoundly affects protein folding and oligomerization
during biosynthesis in the ER and the Golgi [44], it is
very likely that proper folding of the immunogenic
polypeptide epitopes of vaccine glycoproteins will at
least partly depend on a suitable glycosylation of the
recombinant protein. Moreover, in view of the dense
glycosylation of the S protein, it is highly likely that
glycans influence the epitope accessibility for anti-
bodies targeting the S protein.

2. The presence of non-human glycans on recombinant
therapeutic glycoproteins may result in the induction
of antibodies directed against these glycan epitopes,
in the clearance through pre-existing antibodies from
serum and in the induction of IgE-mediated anaphy-
laxis [45].

3. Proper glycosylation of recombinant vaccine glyco-
protein may influence the ability to raise an effective
adaptive immune response, since modification of pro-
tein antigens by glycans influences cellular uptake,
proteolytic processing, presentation by MHC and sub-
sequent T-cell priming [46].

Whether antibody-dependent enhancement as observed
with dengue virus, Zika virus, Ebola virus and
coronaviruses involves glycosylation-dependent mecha-
nisms remains to be studied [47]. In conclusion, appropri-
ate glycosylation of SARS-CoV-2 antigens should be tak-
en into consideration for the development of effective
prophylactic vaccines.
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Therapy

In view of the role for binding and entry into the host cell, the
spike protein of SARS-CoV-2 as well as the ACE-2 receptor
is a potential target for inhibition by small molecules or anti-
bodies that might block host receptor binding and/or mem-
brane fusion [37]. Interaction of both spike protein and
ACE-2 receptor with inhibitory small and large molecules will
be influenced by glycosylation. Pinto and coworkers demon-
strated that a human monoclonal antibody generated against
the RBD of S from SARS-CoV was also able to neutralize
SARS-CoV-2 [48]. Remarkably, this human monoclonal an-
tibody does not only bind to amino acids of the RBD region of
S, but it also interacts with the core fucose of the N-glycan at
N343 in SARS-CoV-2, which corresponds to N330 in SARS-
CoV [48]. When designing therapeutic antibodies directed
against the S protein, the shielding of relevant epitopes by S
protein’s glycans must be considered. Moreover, since the N-
glycan at N297 of IgG strongly influences binding to Fcγ
receptors [49], the glycosylation of biotechnologically pro-
duced therapeutic antibodies will have to be designed precise-
ly to consider this issue.

Serological testing

The detection of anti-SARS-CoV-2 antibodies using ELISA
or related technologies employs recombinant structural
SARS-CoV-2 proteins as antigens. Avidity of the antigen/
antibody interaction determined by the binding affinity of
the proteins, the charge and the structural arrangement of the
proteins in the complex, may likely be influenced by glyco-
sylation [50]. To ensure comparability of test results even
when using the same test, care must be taken regarding gly-
cosylation of the recombinant glycoproteins used that is kept
constant from batch to batch. Further studies addressing these
issues may provide crucial information on the glycosylation
impact regarding serological assays’ specificities and
sensitivities.

In view of the importance of glycosylation for thera-
peutic proteins, for vaccination and for serological testing,
the design and the analysis of glycosylation are of central
significance for the production of recombinant glycopro-
teins used for vaccination, therapy or serological testing.
Glycan profiling will be significant not only for the de-
sign of effective glycoproteins, but also for quality control
of the manufacturing processes.

In summary, being an enveloped virus, SARS-CoV-2 en-
velope proteins display the glycans that are produced in the
infected cells. As described above, the glycosylation of a giv-
en cell is dependent on the expression of glycosyltransferases,
which are differentially expressed between cell types within
the same individual, as well as present variations from indi-
vidual to individual. These are important issues with

biological and immunological implications. A large set of data
is pointing towards the key role that glycans have in several
aspects of the SARS-CoV-2 infection, COVID-19 disease
progression and clinical approaches. These evidences high-
light the importance of ensuring that glycans are considered
when tackling this disease, particularly in the development of
vaccines, therapeutic strategies and serological testing.
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